Actor-Critic
Hung-vyi Lee

Asynchronous Advantage
Actor-Critic (A3C)

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy P.
Lillicrap, Tim Harley, David Silver, Koray Kavukcuoglu, "Asynchronous Methods for
Deep Reinforcement Learning”, ICML, 2016

Review — Policy Gradient

baseline

1 N T,
R —ZZ(Z v =1t = b | Plogpe (af|st)
N — = t'=t -

G/ : obtained via interaction
Very unstable

With sufficient samples,
approximate the expectation of G.

Can we estimate the
expected value of G?

Review — Q-Learning

* State value function V™ (s)
 When using actor m, the cumulated reward expects to
be obtained after visiting state s
* State-action value function Q™ (s, a)

* When using actor m, the cumulated reward expects to
be obtained after taking a at state s
for discrete action only

V7(s) — Q7 (s,a = left)
S » yer — S » Q" — Q™(s,a =right)

scalar _
— Q" (s,a = fire)

Estimated by TD or MC

Actor-Critic

Q™o (s ar) — V™ (st') V7o (st')

G{' : obtained via interaction

l

ElGe] = Q™0 (s, ar)

Advantage Actor-Critic

Estimate two networks? We

TN ny _ym(-n
Q" (st ar) — V™ (s¢) can only estimate one.

4

e+ VT (ser1) = V7 (st)

Only estimate state value

A little bit variance

Q" (st at) = Elre* + V™ (s{h1)]

Q" (st ar) =i + V™ (sty1)

Advantage Actor-Critic

1T interacts with
the environment

TD or MC

Update actor from |
m — 1 based on

Advantage Actor-Critic

* Tips
* The parameters of actor mw(s) and critic V™(s)
can be shared

—> eft

/ Network — right

S = Network \ —> fire
Network —»V™(s)

* Use output entropy as regularization for m(s)
* Larger entropy is preferred — exploration

Asynchronous Advantage
Actor-Critic (A3C) ’

The idea is from Z= A

Asynchronous

Source of image:
https://medium.com/emergent-
future/simple-reinforcement-learning-with-
tensorflow-part-8-asynchronous-actor-critic-
agents-a3c-c88f72a5e9f2#.68x6na709

1. Copy global parameters |
2. Sampling some data A Input (s)
3. Compute gradients 1
4. Update global 0
models j@_j _j
AG
Worker 1 Worker 2
! !
Environment 1 Environment 2

Global Network

Policy m(s)

&

Network

V(s)

AN N ETY:
9

(other workers also
update models)

Worker 3 Worker n

! !

Environment3 ... ' Environmentn

Pathwise Derivative
Policy Gradient

David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, Martin Riedmiller,
“Deterministic Policy Gradient Algorithms”, ICML, 2014

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess,

Tom Erez, Yuval Tassa, David Silver, Daan Wierstra, “CONTINUOUS CONTROL WITH DEEP
REINFORCEMENT LEARNING”, ICLR, 2016

Another Way to use Critic

Original Actor-critic

decrease increase

Pathwise derivative

policy gradient - - We know the parameters
Q"(s,a)/” of Q function

From Q function we
know that taking a’ at :
state s is better than a <:|

Pathwise derivative Original Actor-critic
policy gradient

http://www.cartomad.com/comic/109000081104011.html

Action a is a continuous vector
S —> Actor —» a

a=argmaxQ(s,a)
a

Actor as the solver of this optimization problem

Pathwise Derivative Policy
Gradient

n'(s) = argmaxQ™(s,a) « a is the output of an actor
a

Gradient ascent: Fixed
O™ — 9T + NVerQ™ (s, a)
S =
Updatem — '
" — oot
S —> Actor — a = a—
T
\)
Y

This is a large network

T interacts with - Replay
Buffer

the environment

Exploration %
T =1 TD or MC

Find a new actor

' “better” than T | Learning Q" (s, a)

\
0" — O + nVynQ™ (s, a)

Update m — 7’

I , Actor _,I
T

Q" (s, a)

Q-Learning Algorithm

* Initialize Q-function Q, target Q-function (? =

* In each episode
* For eachtimestept

* Given state s, take action a; based on Q
(exploration)

* Obtain reward r;, and reach new state s, 1

* Store (s¢, ag, 11, S¢4+1) into buffer

* Sample (s;, a;, 13, S;+1) from buffer (usually a batch)
e Targety =1; + max Q(s;j11,Q)

Update the parameters of Q to make Q(s;, a;) close
to y (regression)

Every C steps reset Q = Q

Q-Learning Algorithm wmy Pathwise Derivative Policy Gradient

e Initialize Q-function Q, target Q-function Q = Q, actor ,
targetactorm =m

* In each episode
* For eachtimestept

Given state s, take action a; based on& T
(exploration)

Obtain reward 1, and reach new state s, 1
Store (s¢, ag, 1¢, S¢4+1) into buffer
Sample (s;, a;, 13, S;+1) from buffer (usually a batch)

Targety = 1; + H‘lg*é'@l—-n—a% Q(Si+1;ﬁ(5i+1))
Update the parameters of Q to make Q(s;, a;) close
to y (regression)

Update the parameters of = to maximize Q(si,n(si))

Every C steps reset 0 = Q
Every Cstepsreseti =

Connection with GAN

Method GANs AC
Freezing learning yes yes
Label smoothing yes no

Historical averaging yes no
Minibatch discrimination ~ yes no
Batch normalization yes yes
Target networks n/a yes
Replay bufters no yes
Entropy regularization no yes
Compatibility no yes

David Pfau, Oriol Vinyals, “Connecting Generative Adversarial
Networks and Actor-Critic Methods”, arXiv preprint, 2016

