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Review – Policy Gradient
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With sufficient samples, 
approximate the expectation of G.

Can we estimate the 
expected value of G?



Review – Q-Learning

• State value function 𝑉𝜋 𝑠

• When using actor 𝜋, the cumulated reward expects to 
be obtained after visiting state s 

• State-action value function 𝑄𝜋 𝑠, 𝑎

• When using actor 𝜋, the cumulated reward expects to 
be obtained after taking a at state s

𝑉𝜋s
𝑉𝜋 𝑠

scalar

𝑄𝜋 𝑠, 𝑎 = 𝑙𝑒𝑓𝑡

𝑄𝜋 𝑠, 𝑎 = 𝑓𝑖𝑟𝑒

𝑄𝜋 𝑠, 𝑎 = 𝑟𝑖𝑔ℎ𝑡𝑄𝜋

for discrete action only

s

Estimated by TD or MC 



Actor-Critic
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Advantage Actor-Critic

𝑄𝜋 𝑠𝑡
𝑛, 𝑎𝑡

𝑛 − 𝑉𝜋 𝑠𝑡
𝑛 Estimate two networks? We 

can only estimate one.

𝑄𝜋 𝑠𝑡
𝑛, 𝑎𝑡

𝑛 = 𝑟𝑡
𝑛 + 𝑉𝜋 𝑠𝑡+1

𝑛

𝑄𝜋 𝑠𝑡
𝑛, 𝑎𝑡

𝑛 = 𝐸 𝑟𝑡
𝑛 + 𝑉𝜋 𝑠𝑡+1

𝑛

𝑟𝑡
𝑛 + 𝑉𝜋 𝑠𝑡+1

𝑛 − 𝑉𝜋 𝑠𝑡
𝑛

Only estimate state value

A little bit variance



Advantage Actor-Critic

𝜋 interacts with 
the environment

Learning 𝑉𝜋 𝑠
Update actor from 
𝜋 → 𝜋’ based on 

𝑉𝜋 𝑠

TD or MC𝜋 = 𝜋′
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Advantage Actor-Critic

• Tips

• The parameters of actor 𝜋 𝑠 and critic 𝑉𝜋 𝑠
can be shared

• Use output entropy as regularization for 𝜋 𝑠

• Larger entropy is preferred → exploration 

Network𝑠

Network

fire

right

left

Network

𝑉𝜋 𝑠



Asynchronous Advantage 
Actor-Critic (A3C)

The idea is from 李思叡



Source of image: 
https://medium.com/emergent-
future/simple-reinforcement-learning-with-
tensorflow-part-8-asynchronous-actor-critic-
agents-a3c-c88f72a5e9f2#.68x6na7o9

Asynchronous

𝜃2

𝜃1

1. Copy global parameters 

2. Sampling some data

3. Compute gradients

4. Update global 
models

∆𝜃

∆𝜃

𝜃1

+𝜂∆𝜃𝜃1

(other workers also 
update models)



Pathwise Derivative 
Policy Gradient
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“Deterministic Policy Gradient Algorithms”, ICML, 2014
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Another Way to use Critic
𝑄𝜋 𝑠, 𝑎

𝑎1 𝑎2

𝑄𝜋 𝑠, 𝑎

𝑎

increasedecrease

We know the parameters 
of Q function

Original Actor-critic

Pathwise derivative 
policy gradient

𝑎′

From Q function we 
know that taking a’ at 
state s is better than a



http://www.cartomad.com/comic/109000081104011.html

Original Actor-criticPathwise derivative 
policy gradient

Actor Critic

𝑎 = 𝑎𝑟𝑔max
𝑎

𝑄 𝑠, 𝑎

Action 𝑎 is a continuous vector
Actor
𝜋

𝑠 𝑎

Actor as the solver of this optimization problem



Pathwise Derivative Policy 
Gradient

𝑄𝜋 𝑄𝜋 𝑠, 𝑎

𝑠

𝑎

= 𝑎𝑟𝑔max
𝑎

𝑄𝜋 𝑠, 𝑎𝜋′ 𝑠

Actor
𝜋

𝑠 𝑎

Update 𝜋 → 𝜋′

=

This is a large network

FixedGradient ascent:

a is the output of an actor

𝜃𝜋
′
← 𝜃𝜋 + 𝜂𝛻𝜃𝜋𝑄

𝜋 𝑠, 𝑎



𝜋 interacts with 
the environment

Learning 𝑄𝜋 𝑠, 𝑎
Find a new actor 
𝜋′ “better” than 𝜋

TD or MC𝜋 = 𝜋′

𝑄𝜋 𝑄𝜋 𝑠, 𝑎

𝑠

𝑎Actor
𝜋

𝑠 𝑎

Update 𝜋 → 𝜋′

=

𝜃𝜋
′
← 𝜃𝜋 + 𝜂𝛻𝜃𝜋𝑄

𝜋 𝑠, 𝑎

Replay 
Buffer

Exploration



• Initialize Q-function 𝑄, target Q-function ෠𝑄 = 𝑄, actor 𝜋, 
target actor ො𝜋 = 𝜋

• In each episode

• For each time step t

• Given state 𝑠𝑡, take action 𝑎𝑡 based on Q 
(exploration)

• Obtain reward 𝑟𝑡, and reach new state 𝑠𝑡+1
• Store (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) into buffer

• Sample (𝑠𝑖, 𝑎𝑖, 𝑟𝑖, 𝑠𝑖+1) from buffer (usually a batch)

• Target 𝑦 = 𝑟𝑖 +max
𝑎

෠𝑄 𝑠𝑖+1, 𝑎

• Update the parameters of 𝑄 to make 𝑄 𝑠𝑖, 𝑎𝑖 close 
to 𝑦 (regression)

• Update the parameters of 𝜋 to maximize 𝑄 𝑠𝑖,𝜋 𝑠𝑖
• Every C steps reset ෠𝑄 = 𝑄

• Every C steps reset ො𝜋 = 𝜋

Q-Learning Algorithm



• Initialize Q-function 𝑄, target Q-function ෠𝑄 = 𝑄, actor 𝜋, 
target actor ො𝜋 = 𝜋

• In each episode

• For each time step t

• Given state 𝑠𝑡, take action 𝑎𝑡 based on Q 
(exploration)

• Obtain reward 𝑟𝑡, and reach new state 𝑠𝑡+1
• Store (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) into buffer

• Sample (𝑠𝑖, 𝑎𝑖, 𝑟𝑖, 𝑠𝑖+1) from buffer (usually a batch)

• Target 𝑦 = 𝑟𝑖 +max
𝑎

෠𝑄 𝑠𝑖+1, 𝑎

• Update the parameters of 𝑄 to make 𝑄 𝑠𝑖, 𝑎𝑖 close 
to 𝑦 (regression)

• Update the parameters of 𝜋 to maximize 𝑄 𝑠𝑖,𝜋 𝑠𝑖
• Every C steps reset ෠𝑄 = 𝑄

• Every C steps reset ො𝜋 = 𝜋

Q-Learning Algorithm Pathwise Derivative Policy Gradient

෠𝑄 𝑠𝑖+1, ො𝜋 𝑠𝑖+1
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Connection with GAN

David Pfau, Oriol Vinyals, “Connecting Generative Adversarial 
Networks and Actor-Critic Methods”, arXiv preprint, 2016


