Actor-Critic Hung-yi Lee

Asynchronous Advantage Actor-Critic (A3C)

Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lillicrap, Tim Harley, David Silver, Koray Kavukcuoglu, "Asynchronous Methods for Deep Reinforcement Learning", ICML, 2016

Review – Policy Gradient

Review – Q-Learning

- State value function $V^{\pi}(s)$
 - When using actor π , the *cumulated* reward expects to be obtained after visiting state s
- State-action value function $Q^{\pi}(s, a)$
 - When using actor π , the *cumulated* reward expects to be obtained after taking a at state s

s V^{π} $V^{\pi}(s)$ s $V^{\pi}(s, a = left)$ scalar s Q^{π} $Q^{\pi}(s, a = right)$ $Q^{\pi}(s, a = right)$ $Q^{\pi}(s, a = fire)$

Estimated by TD or MC

Advantage Actor-Critic

$$Q^{\pi}(s_{t}^{n}, a_{t}^{n}) - V^{\pi}(s_{t}^{n})$$

$$r_{t}^{n} + V^{\pi}(s_{t+1}^{n}) - V^{\pi}(s_{t}^{n})$$

Estimate two networks? We can only estimate one.

Only estimate state value A little bit variance

$$Q^{\pi}(s_{t}^{n}, a_{t}^{n}) = E[r_{t}^{n} + V^{\pi}(s_{t+1}^{n})]$$
$$Q^{\pi}(s_{t}^{n}, a_{t}^{n}) = r_{t}^{n} + V^{\pi}(s_{t+1}^{n})$$

Advantage Actor-Critic

- Tips
 - The parameters of actor $\pi(s)$ and critic $V^{\pi}(s)$ can be shared

- Use output entropy as regularization for $\pi(s)$
 - Larger entropy is preferred \rightarrow exploration

Asynchronous

Source of image: https://medium.com/emergentfuture/simple-reinforcement-learning-withtensorflow-part-8-asynchronous-actor-criticagents-a3c-c88f72a5e9f2#.68x6na7o9

 $\Delta \theta$

- 1. Copy global parameters
- 2. Sampling some data
- 3. Compute gradients
- 4. Update global models

Pathwise Derivative Policy Gradient

David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, Martin Riedmiller, "Deterministic Policy Gradient Algorithms", ICML, 2014

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David Silver, Daan Wierstra, "CONTINUOUS CONTROL WITH DEEP REINFORCEMENT LEARNING", ICLR, 2016

Actor

Critic

a

Actor as the solver of this optimization problem

Action *a* is a *continuous vector* $a = \arg \max_{a} Q(s, a)$ $s \longrightarrow \operatorname{Actor}_{\pi}$

Pathwise Derivative Policy Gradient

 $\pi'(s) = \arg \max_{a} Q^{\pi}(s, a)$ a is the output of an actor

Q-Learning Algorithm

- Initialize Q-function Q, target Q-function $\hat{Q} = Q$
- In each episode
 - For each time step t
 - Given state s_t, take action a_t based on Q (exploration)
 - Obtain reward r_t , and reach new state s_{t+1}
 - Store (s_t , a_t , r_t , s_{t+1}) into buffer
 - Sample (s_i , a_i , r_i , s_{i+1}) from buffer (usually a batch)
 - Target $y = r_i + \max_a \hat{Q}(s_{i+1}, a)$
 - Update the parameters of Q to make Q(s_i, a_i) close to y (regression)
 - Every C steps reset $\hat{Q} = Q$

Q-Learning Algorithm
Pathwise Derivative Policy Gradient

- Initialize Q-function Q, target Q-function $\hat{Q} = Q$, actor π , target actor $\hat{\pi} = \pi$
- In each episode
 - For each time step t
 - 1 Given state s_t , take action a_t based on \mathbf{Q} π (exploration)
 - Obtain reward r_t , and reach new state s_{t+1}
 - Store (s_t , a_t , r_t , s_{t+1}) into buffer
 - Sample (s_i , a_i , r_i , s_{i+1}) from buffer (usually a batch)
 - 2 Target $y = r_i + \max_a \hat{Q}(s_{i+1}, a) \hat{Q}(s_{i+1}, \hat{\pi}(s_{i+1}))$
 - Update the parameters of Q to make $Q(s_i, a_i)$ close to y (regression)
 - Update the parameters of π to maximize $Qig(s_i, \pi(s_i)ig)$
 - Every C steps reset $\hat{Q} = Q$
 - Every C steps reset $\hat{\pi} = \pi$

Connection with GAN

Method	GANs	AC
Freezing learning	yes	yes
Label smoothing	yes	no
Historical averaging	yes	no
Minibatch discrimination	yes	no
Batch normalization	yes	yes
Target networks	n/a	yes
Replay buffers	no	yes
Entropy regularization	no	yes
Compatibility	no	yes

David Pfau, Oriol Vinyals, "Connecting Generative Adversarial Networks and Actor-Critic Methods", arXiv preprint, 2016