Evaluation

Ref: Lucas Theis, Aäron van den Oord, Matthias Bethge, "A note on the evaluation of generative models", arXiv preprint, 2015

Likelihood

We cannot compute $P_G(x^i)$. We can only sample from P_G .

Likelihood

- Kernel Density Estimation
- Estimate the distribution of $P_G(x)$ from sampling

Each sample is the mean of a Gaussian with the same covariance.

Now we have an approximation of P_G , so we can compute $P_G(x^i)$ for each real data x^i Then we can compute the likelihood.

Likelihood v.s. Quality

Low likelihood, high quality?
Considering a model generating good images (small variance)

Objective Evaluation

x: imagey: class (output of CNN)

Objective Evaluation

Inception Score

$$= \sum_{x} \sum_{y} \frac{P(y|x) log P(y|x)}{\int_{y} P(y) log P(y)}$$
 Negative entropy of P(y|x)
$$- \sum_{y} \frac{P(y) log P(y)}{\int_{y} P(y) log P(y)}$$
 Entropy of P(y)

	GAN	DISCRIMINATOR LOSS	GENERATOR LOSS
	MM GAN	$\mathcal{L}_{\mathrm{D}}^{\mathrm{GAN}} = -\mathbb{E}_{x \sim p_d}[\log(D(x))] + \mathbb{E}_{\hat{x} \sim p_g}[\log(1 - D(\hat{x}))]$	$\mathcal{L}_{G}^{\text{gan}}=-\mathcal{L}_{\text{d}}^{\text{gan}}$
	NS GAN	$\mathcal{L}_{D}^{NSGAN} = \mathcal{L}_{D}^{GAN}$	$\mathcal{L}_{\mathbf{G}}^{\mathrm{nsgan}} = \mathbb{E}_{\hat{x} \sim p_g}[\log(D(\hat{x}))]$
	WGAN	$\mathcal{L}_{\mathbf{D}}^{\mathrm{wgan}} = -\mathbb{E}_{x \sim p_d}[D(x)] + \mathbb{E}_{\hat{x} \sim p_g}[D(\hat{x})]$	$\mathcal{L}_{G}^{WGAN}-=\mathcal{L}_{D}^{WGAN}$
-	WGAN GP	$\mathcal{L}_{\mathrm{D}}^{\mathrm{WGAN}} = \mathcal{L}_{\mathrm{D}}^{\mathrm{WGAN}} + \lambda \mathbb{E}_{\hat{x} \sim p_g} [(\nabla D(\alpha x + (1 - \alpha \hat{x}) _2 - 1)^2]$	$\mathcal{L}_{\mathrm{G}}^{\mathrm{wgan}} = -\mathbb{E}_{\hat{x} \sim p_{g}}[D(\hat{x})]$
-	LS GAN	$\mathcal{L}_{\mathrm{D}}^{\mathrm{LSGAN}} = -\mathbb{E}_{x \sim p_d} [(D(x) - 1)^2] + \mathbb{E}_{\hat{x} \sim p_g} [D(\hat{x})^2]$	$\mathcal{L}_{\mathbf{G}}^{\mathrm{lsgan}} = -\mathbb{E}_{\hat{x} \sim p_g}[(D(\hat{x}-1)^2]$
-	DRAGAN	$\mathcal{L}_{\mathrm{D}}^{\mathrm{dragan}} = \mathcal{L}_{\mathrm{D}}^{\mathrm{gan}} + \lambda \mathbb{E}_{\hat{x} \sim p_d + \mathcal{N}(0,c)} [(\nabla D(\hat{x}) _2 - 1)^2]$	$\mathcal{L}_{\rm G}^{\rm dragan} = -\mathcal{L}_{\rm d}^{\rm ns \; gan}$
-	BEGAN	$\mathcal{L}_{\mathrm{D}}^{\mathrm{BEGAN}} = \mathbb{E}_{x \sim p_d}[x - \mathrm{AE}(x) _1] - k_t \mathbb{E}_{\hat{x} \sim p_g}[\hat{x} - \mathrm{AE}(\hat{x}) _1]$	$\mathcal{L}_{\mathbf{G}}^{\text{began}} = \mathbb{E}_{\hat{x} \sim p_g}[\hat{x} - \mathbf{AE}(\hat{x}) _1]$
60 50	Dataset	= MNIST Dataset = FASHION-MNIST Dataset = CIFA	R10 Dataset = CELEBA

Smaller is better FIT:

https://arxiv.org/pdf/1706.08500.pdf

Mario Lucic, Karol Kurach, Marcin Michalski, Sylvain Gelly, Olivier Bousquet, "Are GANs Created Equal? A Large-Scale Study", arXiv, 2017

https://arxiv.org/pdf/1511.01844.pdf

We don't want memory GAN.

Using k-nearest neighbor to check whether the generator generates new objects

Missing Mode ?

Mode collapse is easy to detect.

