Improving Sequence Generation by GAN

Hung-yi Lee

Outline

Conditional Sequence Generation

- RL (human feedback)
- GAN (discriminator feedback)

Unsupervised Conditional Sequence Generation

- Text Style Transfer
- Unsupervised Abstractive Summarization
- Unsupervised Translation

Conditional Sequence Generation

The generator is a typical seq2seq model. With GAN, you can train seq2seq model in another way.

Review: Sequence-to-sequence

Outline of Part III

Improving Supervised Seq-to-seq Model

- RL (human feedback)
- GAN (discriminator feedback)

Unsupervised Seq-to-seq Model

- Text Style Transfer
- Unsupervised Abstractive Summarization
- Unsupervised Translation

Introduction

https://image.freepik.com/free-vector/varietyof-human-avatars_23-2147506285.jpg http://www.freepik.com/free-vector/varietyof-human-avatars_766615.htm

• Machine obtains feedback from user

Chat-bot learns to maximize the *expected reward*

Maximizing Expected Reward

[Li, et al., EMNLP, 2016]

Maximizing Expected Reward

Maximizing Expected Reward

Policy Gradient

$$\frac{dlog(f(x))}{dx} = \frac{1}{f(x)} \frac{df(x)}{dx}$$

$$\bar{R}_{\theta} = \sum_{h} P(h) \sum_{x} R(h, x) P_{\theta}(x|h) \approx \frac{1}{N} \sum_{i=1}^{N} R(h^{i}, x^{i})$$

$$\overline{ZR}_{\theta} = \sum_{h} P(h) \sum_{x} R(h, x) \overline{VP}_{\theta}(x|h) \approx \frac{1}{N} \sum_{i=1}^{N} R(h^{i}, x^{i}) \overline{VlogP}_{\theta}(x|h)$$

$$= \sum_{h} P(h) \sum_{x} R(h, x) P_{\theta}(x|h) \frac{\overline{VP}_{\theta}(x|h)}{P_{\theta}(x|h)}$$
Sampling

$$= \sum_{h} P(h) \sum_{x} R(h, x) P_{\theta}(x|h) \overline{VlogP}_{\theta}(x|h)$$

$$= E_{h \sim P(h), x \sim P_{\theta}(x|h)} [R(h, x) \overline{VlogP}_{\theta}(x|h)]$$

Policy Gradient

Gradient Ascent

$$\theta^{new} \leftarrow \theta^{old} + \eta \nabla \bar{R}_{\theta^{old}}$$
$$\nabla \bar{R}_{\theta} \approx \frac{1}{N} \sum_{i=1}^{N} R(h^{i}, x^{i}) \nabla log P_{\theta}(x^{i} | h^{i})$$

 $R(h^{i}, x^{i}) \text{ is positive}$ $After updating \theta, P_{\theta}(x^{i}|h^{i}) \text{ will increase}$ $R(h^{i}, x^{i}) \text{ is negative}$ $After updating \theta, P_{\theta}(x^{i}|h^{i}) \text{ will decrease}$

Policy Gradient - Implemenation

$$\theta^{t+1} \leftarrow \theta^t + \eta \nabla \overline{R}_{\theta^t}$$

$$\frac{1}{N} \sum_{i=1}^N R(c^i, x^i) \nabla \log P_{\theta^t}(x^i | c^i)$$

$$R(c^i, x^i) \text{ is positive}$$

$$\text{Updating } \theta \text{ to increase } P_{\theta}(x^i | c^i)$$

$$R(c^i, x^i) \text{ is negative}$$

$$\text{Updating } \theta \text{ to decrease } P_{\theta}(x^i | c^i)$$

Comparison						
	Maximum Likelihood	Reinforcement Learning				
Objective Function	$\frac{1}{N} \sum_{i=1}^{N} log P_{\theta}(\hat{x}^{i} c^{i})$	$\frac{1}{N}\sum_{i=1}^{N} R(c^{i}, x^{i}) log P_{\theta}(x^{i} c^{i})$				
Gradient	$\frac{1}{N} \sum_{i=1}^{N} \nabla log P_{\theta}(\hat{x}^{i} c^{i})$	$\frac{1}{N}\sum_{i=1}^{N} R(c^{i}, x^{i}) \nabla log P_{\theta}(x^{i} c^{i})$				
Training Data	$\{(c^{1}, \hat{x}^{1}), \dots, (c^{N}, \hat{x}^{N})\}$ $R(c^{i}, \hat{x}^{i}) = 1$	$\{(c^{1}, x^{1}), \dots, (c^{N}, x^{N})\}$ obtained from interaction weighted by $R(c^{i}, x^{i})$				

Alpha GO style training !

Let two agents talk to each other

How old are you? See you. 🧵

See you.

I though you were 12.

What make you think so?

Using a pre-defined evaluation function to compute R(h,x)

Outline of Part III

Improving Supervised Seq-to-seq Model

- RL (human feedback)
- GAN (discriminator feedback)

Unsupervised Seq-to-seq Model

- Text Style Transfer
- Unsupervised Abstractive Summarization
- Unsupervised Translation

http://www.nipic.com/show/3/83/3936650kd7476069.html

Conditional GAN

Algorithm

Training data:

Pairs of conditional input c and response x

- Initialize generator G (chatbot) and discriminator D
- In each iteration:
 - Sample input c and response x from training set
 - Sample input c' from training set, and generate response \tilde{x} by G(c')
 - Update D to increase D(c, x) and decrease $D(c', \tilde{x})$

В

is not differentiable

Three Categories of Solutions

Gumbel-softmax

• [Matt J. Kusner, et al, arXiv, 2016]

Continuous Input for Discriminator

[Sai Rajeswar, et al., arXiv, 2017][Ofir Press, et al., ICML workshop, 2017][Zhen Xu, et al., EMNLP, 2017][Alex Lamb, et al., NIPS, 2016][Yizhe Zhang, et al., ICML, 2017]

"Reinforcement Learning"

[Yu, et al., AAAI, 2017][Li, et al., EMNLP, 2017][Tong Che, et al, arXiv, 2017][Jiaxian Guo, et al., AAAI, 2018][Kevin Lin, et al, NIPS, 2017][William Fedus, et al., ICLR, 2018]

Gumbel-softmax

(a)

https://gabrielhuang.g itbooks.io/machinelearning/reparametriz ation-trick.html

https://casmls.github.i o/general/2017/02/01 /GumbelSoftmax.html

http://blog.evjang.com/ 2016/11/tutorialcategoricalvariational.html

Three Categories of Solutions

Gumbel-softmax

• [Matt J. Kusner, et al, arXiv, 2016]

Continuous Input for Discriminator

[Sai Rajeswar, et al., arXiv, 2017][Ofir Press, et al., ICML workshop, 2017][Zhen Xu, et al., EMNLP, 2017][Alex Lamb, et al., NIPS, 2016][Yizhe Zhang, et al., ICML, 2017]

"Reinforcement Learning"

[Yu, et al., AAAI, 2017][Li, et al., EMNLP, 2017][Tong Che, et al, arXiv, 2017][Jiaxian Guo, et al., AAAI, 2018][Kevin Lin, et al, NIPS, 2017][William Fedus, et al., ICLR, 2018]

What is the problem?

Real sentence

Generated

Discriminator can immediately find the difference.

Can never be 1-of-N

WGAN is helpful

Three Categories of Solutions

Gumbel-softmax

• [Matt J. Kusner, et al, arXiv, 2016]

Continuous Input for Discriminator

[Sai Rajeswar, et al., arXiv, 2017][Ofir Press, et al., ICML workshop, 2017][Zhen Xu, et al., EMNLP, 2017][Alex Lamb, et al., NIPS, 2016][Yizhe Zhang, et al., ICML, 2017]

"Reinforcement Learning"

[Yu, et al., AAAI, 2017][Li, et al., EMNLP, 2017][Tong Che, et al, arXiv, 2017][Jiaxian Guo, et al., AAAI, 2018][Kevin Lin, et al, NIPS, 2017][William Fedus, et al., ICLR, 2018]

Reinforcement Learning?

- Consider the output of discriminator as reward
 - Update generator to increase discriminator = to get maximum reward
 - Using the formulation of policy gradient, replace reward R(c, x) with discriminator output D(c, x)
- Different from typical RL
 - The discriminator would update

Reward for Every Generation Step $\nabla \overline{R}_{\theta} \approx \frac{1}{N} \sum_{i=1}^{N} D(c^{i}, x^{i}) \nabla log P_{\theta}(x^{i} | c^{i})$

 $c^{i} = \text{``What is your name?''} \quad D(c^{i}, x^{i}) \text{ is negative}$ $x^{i} = \text{``I don't know''} \quad Update \ \theta \text{ to decrease } \log P_{\theta}(x^{i}|c^{i})$ $log P_{\theta}(x^{i}|c^{i}) = log P(x_{1}^{i}|c^{i}) + log P(x_{2}^{i}|c^{i}, x_{1}^{i}) + log P(x_{3}^{i}|c^{i}, x_{1:2}^{i})$ $P(\text{``I''}|c^{i}) = P(x_{1}^{i}|c^{i}) + log P(x_{2}^{i}|c^{i}, x_{1}^{i}) + log P(x_{3}^{i}|c^{i}, x_{1:2}^{i})$

Method 1. Monte Carlo (MC) Search [Yu, et al., AAAI, 2017] Method 2. Discriminator For Partially Decoded Sequences [Li, et al., EMNLP, 2017]

Tips: RankGAN

Kevin Lin, Dianqi Li, Xiaodong He, Zhengyou Zhang, Ming-Ting Sun, "Adversarial Ranking for Language Generation", NIPS 2017

Image caption generation:

Method	BLEU-2	BLEU-3	BLEU-4	Method	Human score
MLE	0.781	0.624	0.589	SeqGAN	3.44
SeqGAN	0.815	0.636	0.587	RankGAN	4.61
RankGAN	0.845	0.668	0.614	Human-writte	n 6.42

Experimental Results

Input	We've got to look for another route.
MLE	l'm sorry.
GAN	You're not going to be here for a while.
Input	You can save him by talking.
MLE	I don't know.
GAN	You know what's going on in there, you know what I mean?

- MLE frequently generates "I'm sorry", "I don't know", etc. (corresponding to fuzzy images?)
- GAN generates longer and more complex responses (however, no strong evidence shows that they are better)

Find more comparison in the survey papers.

[Lu, et al., arXiv, 2018][Zhu, et al., arXiv, 2018]

More Applications

- Supervised machine translation [Wu, et al., arXiv 2017][Yang, et al., arXiv 2017]
- Supervised abstractive summarization [Liu, et al., AAAI 2018]
- Image/video caption generation [Rakshith Shetty, et al., ICCV 2017][Liang, et al., arXiv 2017]

If you are using seq2seq models, consider to improve them by GAN.

Outline of Part III

Conditional Sequence Generation

- RL (human feedback)
- GAN (discriminator feedback)

Unsupervised Conditional Sequence Generation

- Text Style Transfer
- Unsupervised Abstractive Summarization
- Unsupervised Translation

Text Style Transfer

Direct Transformation

as close as possible

Direct Transformation

as close as possible

Direct Transformation

Discrete?

Word embedding [Lee, et al., ICASSP, 2018]

as close as possible

 Negative sentence to positive sentence: it's a crappy day \rightarrow it's a great day i wish you could be here \rightarrow you could be here it's not a good idea \rightarrow it's good idea i miss you \rightarrow i love you i don't love you \rightarrow i love you i can't do that \rightarrow i can do that i feel so sad \rightarrow i happy it's a bad day \rightarrow it's a good day it's a dummy day \rightarrow it's a great day sorry for doing such a horrible thing \rightarrow thanks for doing a great thing my doggy is sick \rightarrow my doggy is my doggy my little doggy is sick \rightarrow my little doggy is my little doggy

Projection to Common Space

Projection to Common Space

Outline of Part III

Improving Supervised Seq-to-seq Model

- RL (human feedback)
- GAN (discriminator feedback)

Unsupervised Seq-to-seq Model

- Text Style Transfer
- Unsupervised Abstractive Summarization
- Unsupervised Translation

Abstractive Summarization

 Now machine can do abstractive summary by seq2seq (write summaries in its own words)

Review: Unsupervised Conditional Generation

Unsupervised Abstractive Summarization

Unsupervised Abstractive Summarization

Unsupervised Abstractive Summarization Only need a lot of documents to train the model

This is a *seq2seq2seq auto-encoder*.

Using a sequence of words as latent representation.

感謝 王耀賢 同學提供實驗結果

Unsupervised Abstractive Summarization

- **Document**:澳大利亞今天與13個國家簽署了反興奮劑雙 邊協議,旨在加強體育競賽之外的藥品檢查並共享研究成 果.....
- Summary:
 - Human:澳大利亞與13國簽署反興奮劑協議
 - Unsupervised:澳大利亞加強體育競賽之外的藥品檢查
- **Document**:中華民國奧林匹克委員會今天接到一九九二年 冬季奧運會邀請函,由於主席張豐緒目前正在中南美洲進 行友好訪問,因此尚未決定是否派隊赴賽.....

• Summary:

- Human:一九九二年冬季奧運會函邀我參加
- Unsupervised:奥委會接獲冬季奧運會邀請函

感謝 王耀賢 同學提供實驗結果

Unsupervised Abstractive Summarization

- **Document**:據此間媒體27日報道,印度尼西亞蘇門答臘島 的兩個省近日來連降暴雨,洪水泛濫導致塌方,到26日為止 至少已有60人喪生,100多人失蹤
- *Summary*:
 - Human:印尼水災造成60人死亡
 - Unsupervised:印尼門洪水泛濫導致塌雨
- **Document**:安徽省合肥市最近為領導幹部下基層做了新規 定:一律輕車簡從,不準搞迎來送往、不準搞層層陪同.....
- Summary:
 - Human:合肥規定領導幹部下基層活動從簡
 - Unsupervised:合肥領導幹部下基層做搞迎來送往規定: 一律簡

Semi-supervised Learning

Using matched data

Outline of Part III

Improving Supervised Seq-to-seq Model

- RL (human feedback)
- GAN (discriminator feedback)

Unsupervised Seq-to-seq Model

- Text Style Transfer
- Unsupervised Abstractive Summarization

Unsupervised Translation

Unsupervised Machine Translation

[Alexis Conneau, et al., ICLR, 2018] [Guillaume Lample, et al., ICLR, 2018]

Unsupervised Speech Recognition

[Liu, et al., arXiv, 2018] [Chen, et al., arXiv, 2018]

Unsupervised Speech Recognition

• Phoneme recognition

Audio: TIMIT Text: WMT

Concluding Remarks

Conditional Sequence Generation

- RL (human feedback)
- GAN (discriminator feedback)

Unsupervised Conditional Sequence Generation

- Text Style Transfer
- Unsupervised Abstractive Summarization
- Unsupervised Translation

Concluding Remarks from A to Z

(only list those mentioned in class)

Μ	Ν	0	Ρ	Q	R
MMGAN	NSGAN	?	Progressive GAN	?	Rank GAN

Y ?

Conditional Sequence Generation

- Jiwei Li, Will Monroe, Alan Ritter, Michel Galley, Jianfeng Gao, Dan Jurafsky, Deep Reinforcement Learning for Dialogue Generation, EMNLP, 2016
- Jiwei Li, Will Monroe, Tianlin Shi, Sébastien Jean, Alan Ritter, Dan Jurafsky, Adversarial Learning for Neural Dialogue Generation, EMNLP, 2017
- Matt J. Kusner, José Miguel Hernández-Lobato, GANS for Sequences of Discrete Elements with the Gumbel-softmax Distribution, arXiv 2016
- Tong Che, Yanran Li, Ruixiang Zhang, R Devon Hjelm, Wenjie Li, Yangqiu Song, Yoshua Bengio, Maximum-Likelihood Augmented Discrete Generative Adversarial Networks, arXiv 2017
- Lantao Yu, Weinan Zhang, Jun Wang, Yong Yu, SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient, AAAI 2017

Conditional Sequence Generation

- Sai Rajeswar, Sandeep Subramanian, Francis Dutil, Christopher Pal, Aaron Courville, Adversarial Generation of Natural Language, arXiv, 2017
- Ofir Press, Amir Bar, Ben Bogin, Jonathan Berant, Lior Wolf, Language Generation with Recurrent Generative Adversarial Networks without Pretraining, ICML workshop, 2017
- Zhen Xu, Bingquan Liu, Baoxun Wang, Chengjie Sun, Xiaolong Wang, Zhuoran Wang, Chao Qi, Neural Response Generation via GAN with an Approximate Embedding Layer, EMNLP, 2017
- Alex Lamb, Anirudh Goyal, Ying Zhang, Saizheng Zhang, Aaron Courville, Yoshua Bengio, Professor Forcing: A New Algorithm for Training Recurrent Networks, NIPS, 2016
- Yizhe Zhang, Zhe Gan, Kai Fan, Zhi Chen, Ricardo Henao, Dinghan Shen, Lawrence Carin, Adversarial Feature Matching for Text Generation, ICML, 2017
- Jiaxian Guo, Sidi Lu, Han Cai, Weinan Zhang, Yong Yu, Jun Wang, Long Text Generation via Adversarial Training with Leaked Information, AAAI, 2018
- Kevin Lin, Dianqi Li, Xiaodong He, Zhengyou Zhang, Ming-Ting Sun, Adversarial Ranking for Language Generation, NIPS, 2017
- William Fedus, Ian Goodfellow, Andrew M. Dai, MaskGAN: Better Text Generation via Filling in the_____, ICLR, 2018

Conditional Sequence Generation

- Sidi Lu, Yaoming Zhu, Weinan Zhang, Jun Wang, Yong Yu, Neural Text Generation: Past, Present and Beyond, arXiv, 2018
- Yaoming Zhu, Sidi Lu, Lei Zheng, Jiaxian Guo, Weinan Zhang, Jun Wang, Yong Yu, Texygen: A Benchmarking Platform for Text Generation Models, arXiv, 2018
- Zhen Yang, Wei Chen, Feng Wang, Bo Xu, Improving Neural Machine Translation with Conditional Sequence Generative Adversarial Nets, NAACL, 2018
- Lijun Wu, Yingce Xia, Li Zhao, Fei Tian, Tao Qin, Jianhuang Lai, Tie-Yan Liu, Adversarial Neural Machine Translation, arXiv 2017
- Linqing Liu, Yao Lu, Min Yang, Qiang Qu, Jia Zhu, Hongyan Li, Generative Adversarial Network for Abstractive Text Summarization, AAAI 2018
- Rakshith Shetty, Marcus Rohrbach, Lisa Anne Hendricks, Mario Fritz, Bernt Schiele, Speaking the Same Language: Matching Machine to Human Captions by Adversarial Training, ICCV 2017
- Xiaodan Liang, Zhiting Hu, Hao Zhang, Chuang Gan, Eric P. Xing, Recurrent Topic-Transition GAN for Visual Paragraph Generation, arXiv 2017

Text Style Transfer

- Zhenxin Fu, Xiaoye Tan, Nanyun Peng, Dongyan Zhao, Rui Yan, Style Transfer in Text: Exploration and Evaluation, AAAI, 2018
- Tianxiao Shen, Tao Lei, Regina Barzilay, and Tommi Jaakkola, Style Transfer from Non-Parallel Text by Cross-Alignment, NIPS 2017
- Chih-Wei Lee, Yau-Shian Wang, Tsung-Yuan Hsu, Kuan-Yu Chen, Hung-Yi Lee, Lin-shan Lee, Scalable Sentiment for Sequence-to-sequence Chatbot Response with Performance Analysis, ICASSP, 2018
- Junbo (Jake) Zhao, Yoon Kim, Kelly Zhang, Alexander M. Rush, Yann LeCun, Adversarially Regularized Autoencoders, arxiv, 2017

Unsupervised Machine Translation

- Alexis Conneau, Guillaume Lample, Marc'Aurelio Ranzato, Ludovic Denoyer, Hervé Jégou, Word Translation Without Parallel Data, ICRL 2018
- Guillaume Lample, Ludovic Denoyer, Marc'Aurelio Ranzato, Unsupervised Machine Translation Using Monolingual Corpora Only, ICRL 2018

Unsupervised Speech Recognition

- Da-Rong Liu, Kuan-Yu Chen, Hung-Yi Lee, Lin-shan Lee, Completely Unsupervised Phoneme Recognition by Adversarially Learning Mapping Relationships from Audio Embeddings, arXiv, 2018
- Yi-Chen Chen, Chia-Hao Shen, Sung-Feng Huang, Hung-yi Lee, Towards Unsupervised Automatic Speech Recognition Trained by Unaligned Speech and Text only, arXiv, 2018