Intelligent Photo Editing

Modifying Input Code

> The input code determines the generator output.

Understand the meaning of each dimension to control the output.

Connecting Code and Attribute

(c) Hair style

(d) Emotion

Image

Arched eyebrows, attractive, brown hair, heavy makeup, high cheekbones, mouth slightly open, no beard, pointy nose, smiling, straight hair, wearing earrings, wearing lipstick, young.

Attributes

CelebA

5 o'clock shadows, attractive, bags under eyes, big lips, big nose, black hair, bushy eyebrows, male, no beard, pointy nose, straight hair, young.

GAN+Autoencoder

- We have a generator (input z, output x)
- However, given x, how can we find z?
 - Learn an encoder (input x, output z)

Attribute Representation

Photo Editing

https://www.youtube.com/watch?v=kPEIJJsQr7U

Using the results from *method 2* as the initialization of *method 1*

Editing Photos

• z₀ is the code of the input image Us

image

Using discriminator to check the image is realistic or not

$$z^* = \arg \min_{z} \frac{U(G(z)) + \lambda_1 ||z - z_0||^2 - \lambda_2 D(G(z))}{1}$$

Not too far away from the original image

Does it fulfill the constraint of editing?

Generative Visual Manipulation on the Natural Image Manifold

Jun-Yan Zhu Philipp Krähenbühl Eli Shechtman Alexei A. Efros

https://www.youtube.com/watch?v=9c4z6YsBGQ0

Jun-Yan Zhu, Philipp Krähenbühl, Eli Shechtman and Alexei A. Efros. "Generative Visual Manipulation on the Natural Image Manifold", ECCV, 2016.

Neural Photo Editing

Andrew Brock

Andrew Brock, Theodore Lim, J.M. Ritchie, Nick Weston, Neural Photo Editing with Introspective Adversarial Networks, arXiv preprint, 2017

Image super resolution

 Christian Ledig, Lucas Theis, Ferenc Huszar, Jose Caballero, Andrew Cunningham, Alejandro Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang, Wenzhe Shi, "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network", CVPR, 2016

Figure 2: From left to right: bicubic interpolation, deep residual network optimized for MSE, deep residual generative adversarial network optimized for a loss more sensitive to human perception, original HR image. Corresponding PSNR and SSIM are shown in brackets. [$4 \times$ upscaling]

Image Completion

http://hi.cs.waseda.ac.jp/~iizu ka/projects/completion/en/

Demo

Image completion is a very complicated task...

Previous approach

Previous approach

https://www.youtube.com/watch?v=5Ua4NUKowPU