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Spoken Knowledge Organization by Semantic
Structuring and a Prototype Course Lecture
System for Personalized Learning

Hung-yi Lee, Sz-Rung Shiang, Ching-feng Yeh, Yun-Nung Chen, Yu Huang, Sheng-Yi Kong, and
Lin-shan Lee, Fellow, IEEE

Abstract—TIt takes very long time to go through a complete online
course. Without proper background, it is also difficult to under-
stand retrieved spoken paragraphs. This paper therefore presents
a new approach of spoken knowledge organization for course lec-
tures for efficient personalized learning. Automatically extracted
key terms are taken as the fundamental elements of the semantics
of the course. Key term graph constructed by connecting related
key terms forms the backbone of the global semantic structure.
Audio/video signals are divided into multi-layer temporal struc-
ture including paragraphs, sections and chapters, each of which in-
cludes a summary as the local semantic structure. The interconnec-
tion between semantic structure and temporal structure together
with spoken term detection jointly offer to the learners efficient
ways to navigate across the course knowledge with personalized
learning paths considering their personal interests, available time
and background knowledge. A preliminary prototype system has
also been successfully developed.

Index Terms—Course lectures, keyterm extraction, speech sum-
marization, spoken content retrieval.

I. INTRODUCTION

HE necessity of life-long learning in the era of knowledge
explosion together with the ever-increasing bandwidth
of Internet and continuously falling costs for memory bring
about the rapid proliferation of Massive Open Online Courses
(MOOC:sS). Instructors post slides and video/audio recording of
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their lectures on on-line lecture platforms, and learners can easily
access the curricula. The worldwide online learners working in
different technical areas with different background knowledge
have widely varying learning requirements. For example, the
novices of a subject may need an effective way to comprehend
the high-level core concepts in the subject, while some experts
may need an easy way to review the low-level details of a specific
subtopic of the subject. As a result, new techniques for person-
alized learning helping all different learners properly utilize the
curricula in their own most efficient way and plan their own
personalized learning paths are highly desired but still missing
for on-line lecture platforms today.

A major difficulty for the many different learners to effi-
ciently utilize the many complete course lectures available over
the Internet is that it may not be easy for people in the busy
world to spend very long time to go through a complete course
(e.g. it may include tens of hours). With recent advances of
spoken content retrieval [1], [2], it is now possible to search
over the on-line lectures for some specific topics based on the
audio information [3]-[6]. Good examples include MIT lecture
browser [3] and Speech@FIT lecture browser [4]. Such lecture
browsers enable the user to type a text query and receive a list of
spoken segments within the lectures containing the query terms.

Direct retrieval over the course content for some specific
topics may not always be helpful to the learners. The course
content is usually semantically structured with one concept
following the other. Without the background, it is often difficult
to understand a retrieved paragraph of a course. Without the
semantic structure of the content, it is difficult for the learners
to come up with suitable queries to search for the target topics.
Displaying the key terms extracted from lecture courses is an
effective way to present to the learners the core concepts in the
courses. FAU Video Lecture Browser displaying automatically
extracted key terms to help the interactive assessment of video
lectures [5] is a good example of such approaches.

Some on-line lecture platforms can summarize the
audio/video recordings of the course lectures into compact
versions. A good example is the lecture browsing system
of Toyohashi University of Technology [7], [8]. With the
summaries of the lecture recordings, novices can listen to the
summaries for obtaining the core concept of the courses and
selecting the right parts best fitting their needs before going
through the complete version, and the students can also review
the content of the courses very quickly.

In this paper, in order to help individual learners develop their
personalized learning paths from an on-line lecture platform con-
sidering specific learning requirements, we present a new ap-
proach of spoken knowledge organization for the course lectures.

2329-9290 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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We automatically extract key terms from the lectures and take
them as the fundamental elements of the semantics for the spoken
knowledge covered by the course content. We automatically con-
nectrelated key terms to construct the key term graph as the back-
bone of the global semantic structure of the course. We divide
the audio/video signals into paragraphs, sections and chapters
as a multi-layer temporal structure of the course, and develop
summaries for each paragraph, section and chapter as the local
semantic structure. The global semantic structure of key term
graph is then interconnected with the nodes of the multi-layer
temporal structure. All these are jointly referred to as semantic
structuring here in this paper. The whole content of the course
is then indexed by spoken content retrieval technologies, so the
learners can efficiently navigate over the knowledge covered by
the course with globally and locally structured semantics. This
offers multiple ways to the learner to interact with the system
and access the curricula in their personalized way. A prelimi-
nary prototype system was successfully developed at National
Taiwan University (NTU), referred to as NTU Virtual Instructor.
The first version was completed in 2009 [9], while this paper
presents the latest version and the technologies used [10].

The rest of this paper is structured as follows. The proposed
approaches are overviewed in Section II. The course corpus used
in this research and the bilingual ASR techniques used for tran-
scribing the spoken content are briefly summarized in Sections I11
and IV. The semantic analysis, key term extraction, key term
graph construction, speech summarization and spoken content
retrieval are then respectively presented in detail in Sections V,
VI, VII, VIII and IX. The prototype system is described in
Section X, and Section XI finally gives the concluding remarks.

II. OVERVIEW OF THE PROPOSED APPROACH

An overview of the proposed approach is shown in Fig. 1. The
course materials including slides (we assume slides for the lec-
tures are available) and multimedia (synchronized audio/video)
is at the upper left corner of Fig. 1. The audio signals (and there-
fore video signals) are first divided into utterance-level seg-
ments as in the top middle of the figure.

A. Automatic Speech Recognition (ASR)

An ASR system transcribes the utterance-level segments
into lattices or one-best transcriptions at the upper right
corner of Fig. 1. Correctly transcribing the spoken lectures
is challenging [11]-[13], not only because the lectures are
spontaneous, but because spoken lectures usually contain many
technical terms or OOV words, so the texts of the slides are
very helpful in enhancing the lexicon and language model used
in ASR [8], [14], [15].

On the other hand, many lecturers with non-English native
languages give the lectures primarily in their native languages
(referred to as the host language here, such as Mandarin), but
with some special terms produced in English (referred to as
guest language) embedded within the utterances of the host lan-
guage. This is because very often almost all special terminolo-
gies for the courses are directly produced by the lecturers in
English without translating them into the host languages. Al-
though only a small portion of signals in this corpus belongs
to English, since most of them are terminologies, they should
not be ignored. Since the dataset is very biased to Mandarin,
special ASR techniques should be designed to transcribe this
kind of corpus. Because such situation is very common for lec-
tures offered in countries with non-English native languages,
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Fig. 1. Overview of the proposed approach.

special efforts have been made and reported here to handle this
problem. The ASR for such bilingual lectures is summarized in
Section IV.

B. Multi-layer Temporal Structure

At the upper middle of Fig. 1, the temporal structure of
the course is constructed in button-up three layers: paragraph,
section and chapter. The paragraphs are groups of neighboring
utterance-level segments with similar lexical distributions in
their transcriptions clustered with dynamic programming [16].
A paragraph is usually a part of a slide. The audio corresponding
to a slide or a few slides with the same title is regarded as a
section, usually containing several paragraphs. Since there exist
software tools to synchronize the slides and the video/audio
during recording, sometimes the slides and the video/audio
recording are automatically synchronized, and the sections can
be obtained directly. Otherwise, the video/audio recording can
be aligned with the slides by hidden Markov modeling in which
each slide is a state based on its text and the ASR transcriptions
of a paragraph is an observation [16]. A chapter corresponds to
a set of consecutive slides on a common subject, usually shown
on the slides, which are defined by the instructor or a textbook.
The paragraphs, sections and chapters are actually nodes on
different layers in the multi-layer temporal structure.

C. Semantic Analysis

This is at the lower middle of Fig. 1 to be further described
in Section V. Semantic analysis generates the latent topics of
the course as well as some useful semantic parameters helpful
to key term extraction, key term graph construction, and sum-
marization as presented below.

D. Key Term Extraction

This is in the middle left of Fig. 1. Key terms are used here
as the fundamental elements of the course semantics. They are
automatically extracted based on not only the latent topic infor-
mation but also audio information such as prosody and external
resources such as Google and Wikipedia, as will be presented
in Section VI. The extracted key terms are displayed in each
node in the temporal structure (paragraph, section and chapter),
so the learners can realize the core concepts discussed in a node
by a glance at the key terms. The system can also show all the
nodes (paragraphs, sections and chapters) containing a specific
key term, so the learner can know how the key term is related to
other parts of the course or learn the concept about the key term
sequentially following the order it was discussed in the lectures.
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TABLE I
DETAILED INFORMATION FOR THE PARTITIONS OF THE TARGET CORPUS. THE NUMBERS IN

THE PARENTHESES IN COLUMNS (B) AND (C) ARE THE NUMBERS OF UNIQUE TOKENS

(d) Ratio of (e) Percentage
(a) Length (b) Number of (c) Number of | English Words to | of Code-switched
(in hours) | Chinese Characters | English Words | Chinese Characters Utterances
Training Set 9.1 124K (1.2K) 10K (0.9K) 8.0% 53%
Adaptation Set 0.5 6.7K (0.5K) 0.6K (0.2K) 8.7% 54%
Development Set 2.1 30K (0.8K) 2.7K (0.5K) 8.8% 55%
Testing Set 33.5 305K (0.7K) 27K (0.5K) 8.8% 57%

Fig.2. Interconnection between the semantic structure and the multi-layer tem-
poral structure.

E. Key Term Graph Construction

This is at the lower left corner of Fig. 1. The key term
graph has all key terms extracted from the entire course as its
nodes, with only those with high enough relationships linked
by edges. This graph represents the backbone of the global
semantic structure of the course. Each key term is connected
to the paragraphs, sections and chapters (nodes in the temporal
structure) in which the keyterms is included. Therefore, the
semantic structure of key terms and the temporal structure are
inter-connected through the key terms as shown in Fig. 2. In
this way, the learner can easily find out related parts of the
course which can be studied jointly. The details for keyterm
graph construction will be reported in Section VII.

F. Speech Summarization

The summaries of the course content of the nodes in the tem-
poral structure are generated as in the middle bottom of Fig. 1
(paragraphs, sections and chapters). Therefore, instead of lis-
tening to the whole audio/video recording (e.g. several hours for
a chapter), a learner can skim the much shorter summaries and
then decide if he wishes to go through the entire content in de-
tail. This will be further discussed in Section VIII. The semantic
analysis, key term extraction, key term graph construction and
speech summarization mentioned above in Section II-C to II-F
are jointly referred to as semantic structuring here in this paper.

G. Spoken Content Retrieval

The key term graph, summaries, semantic structure and tem-
poral structure jointly build the course content in a structured
way. However, the learner needs to be able to retrieve the spoken
segments mentioning the concepts he wishes to learn. The lat-
tices generated by ASR from the audio of the courses are in-
dexed and retrieved for this purpose as on the right part of
Fig. 1. When the learner enters a text query, the spoken con-
tent retrieval engine searches through the lattices and returns
the utterance-level segments regarded as containing the query,
together with the links to the paragraphs, sections or chapters it
belongs to, since it makes better sense to listen to the complete

paragraph, section or chapter for learning the concepts with the
query. The details will be introduced in Section IX.

III. CORPUS DESCRIPTION

The corpus used in this research was the lectures for a course
of 45.2 hours long on Digital Speech Processing offered in Na-
tional Taiwan University in 2006. There was a total of 17 chap-
ters with 196 sections in the multi-layer temporal structure in
Subsection II-B. The course slides were available, completely
in English. The audio was recorded by the hand-held micro-
phone with 16 KHz sampling rate. The utterances in the lec-
tures were produced spontaneously with many disfluencies such
as pauses, hesitations, repairs and repetitions making the recog-
nition more challenging. The intra-sentential code-switching is
an extra problem. The instructor produced the whole lectures
in the host language of Mandarin (the native language), but
many words or phrases (primarily terminologies of the course)
were naturally produced in English (the guest language) and
embedded in the Mandarin utterances. For example, in the sen-
tence, “BR 7 speech recognition I F T 2 48, HPIEFEE in-
dexing IR retrieval B35 lT (Except for speech recognition tech-
nology, we also need technologies for indexing and retrieval.),”
the phrase “speech recognition” and the words “indexing” and
“retrieval” were produced in English, while other parts of the
sentence were in Mandarin.

The whole corpus was divided into several partitions, and
their detailed information is in Table I. The acoustic models
used to transcribe the target lecture corpus were trained in
two scenarios, speaker-dependent and speaker-adaptive. In
speaker-dependent scenario, 9.1 hours speech in the corpus
(Training Set in Table I) was used to train speaker dependent
acoustic models; while in speaker-adaptive scenario, speaker
independent acoustic models were adapted by 0.5 hour speech
in the corpus (dAdaptation Set in Table I). All parameters in
acoustic model training procedures were tuned on a 2.1 hours
development set (Development Set in Table I). The audio
besides Training Set, Adaptation Set and Development Set in
the corpus is referred to as Testing Set, which has the length
of 33.5 hours. The recognition accuracies were evaluated on
2.2 hours of speech from Testing Set, and 40 sections (around
11.7 hours speech) in Testing Set were used for testing the
performance of summarization. The key term extraction, key
term graph construction and spoken content retrieval were all
tested based on the complete Testing Set. Columns (b) and
(c) in Table I are the numbers of Chinese characters! and
English words respectively, and the numbers in the parentheses
in columns (b) and (c) are the numbers of unigue tokens. In

IFor Mandarin Chinese, the positions of word boundaries are not uniquely
defined, so the number of Chinese words in a sentence is not unique. Hence, we
report the numbers of Chinese characters instead of words here.
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Testing Set, there are respectively 93% and 71% of unique
Chinese characters and English words included in Training
Set. The ratios of English words to Chinese characters are in
column (d). Column (e) shows the percentage of code-switched
utterances in each set. From columns (d) and (e), we found
that although only a small portion of the signals belongs to
English words in the corpus, more than half of the utterances
has code-switched phenomenon.

We recruited graduate students of National Taiwan Univer-
sity who had taken the target course to annotate key terms, key
term graph and reference summaries. There were 61 subjects
annotating key terms. Since different subjects annotated quite
different sets of key terms with different numbers, we assigned
a score proportional to 1/N; to a term if it was annotated by
a subject § who selected a total of N; key terms. In this way
when a subject annotated less key terms, each of these annotated
key terms received a higher score. We then sorted the terms by
their total scores assigned by the 61 subjects, and selected the
top /V of them as the reference key terms, where N was the in-
teger closest to the average of V; for all subjects. A total of 154
key terms? (including 59 key phrases and 95 keywords) were
generated as the reference key terms in this way. Examples of
such reference key terms included “language model,” “speech
recognition,” “name entity” (key phrases), “LVCSR,” “n-gram”
and “entropy” (keywords). Only 3 out of 59 key phrases and
4 out of 95 keywords were in Chinese. This shows that most
terminologies carrying key information for the course were in
English. Given this reference key term list, the 61 annotators
achieved average precision, recall and F-measure of 66.13%,
90.30% and 76.37%. Based on these reference key terms, 12
subjects generated their key term graphs by connecting the key
terms considered as relevant. To form one reference key term
graph from the key term graphs generated by different subjects,
we assigned a score proportional to 1/ N, to a pair of key terms
if they were connected on a key term graph with N, edges pro-
duced by subject £. Then the reference key term graph was gen-
erated by connecting the N’ of key term pairs with the highest
scores, where N’ was the integer closest to the average of Ny, for
all subjects. The average Graph Edit Distance (GED)[17] from
the reference key term graph to the key term graphs generated
by the annotators was 0.066. Reference summaries for the 40
sections in Testing Set were generated by 15 annotators. The ref-
erence summaries were utterance-level segments selected from
the sections. Each sections has 3 short and 3 long reference sum-
maries generated by different annotators. For the short version,
the length (number of Chinese characters plus English words
in the manual transcriptions) of the summaries does not exceed
10% of the whole sections; for the long version, the length does
not exceed 30%. The average kappa score between the anno-
tators were 75% and 48% respectively for short and long sum-
maries. This shows that the annotators agreed with each other
more when generating the short summaries. For spoken content
retrieval, 162 Chinese queries were manually selected as testing
queries, each consisting of a single word.

IV. RECOGNIZING BILINGUAL CODE-SWITCHED LECTURES

Transcribing bilingual corpus is difficult, because each
acoustic event may belong to either language, and may form
some words in either language when combined with adjacent
acoustic events. The lack of such bilingual corpora further
made model training difficult. Also, the English words were

2The key terms never appearing in Testing Set were removed.
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Fig. 3. Proposed Approach for Bilingual Acoustic Modeling.

usually pronounced with Mandarin accent, so different from
the standard English produced by native speakers. Here we
present the ways to handle the code-switched nature of the
course lectures considered.

A. Baseline

The simplest way to develop a bilingual recognition system
is to use a phoneme set including all phonemes of the two lan-
guages for acoustic model construction, similarly a lexicon of
all words needed for the two languages, and a language model
based on the bilingual lexicon [18]. Such a system is certainly
capable of recognizing bilingual speech, and is taken as the
baseline here.

B. Bilingual Acoustic Modeling

The overall block diagram for improved bilingual acoustic
modeling is in Fig. 3. We begin with a set of full state-tied tri-
phone models based on the complete bilingual phoneme set, in-
cluding all Mandarin phonemes plus English phonemes, trained
with the complete bilingual training data. This is referred to
as “Acoustic Models (Full)” in the block (A) at the upper left
corner of Fig. 3, where blocks indicated by “HO” and “GE” rep-
resent triphone models with central phonemes in the host and
guest languages respectively, although phonemes of different
languages can appear in the context. To address the problem
of lack of training data for the guest language, all acoustic units
are classified into weak units (with insufficient training data, for
example, guest language units) and strong units (with sufficient
training data, for example, host language units) [19]. Here the
acoustic unit refers to three possible levels: either a triphone
model, an HMM state, or a Gaussian in an HMM state.

With the lists of weak and strong acoustic units, distance cal-
culation is performed between each weak unit (model, state,
Gaussian) and all strong units within the same phonetic class
uing symmetric KL divergence [18], [20]-[22]. This gives the
mapping table at the upper middle of Fig. 3, based on which
each weak unit (model, state, Gaussian) with too small training
data is merged with a strong unit on the same level with min-
imum distance. In this way, the weak unit borrows the training
data from the strong unit.

On the Gaussian level, merging is performed by combining
the means and covariance matrices. For merging on the state
level, every Gaussian in the state merges with another Gaussian
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in the corresponding state with minimum symmetric KL diver-
gence. For merging on the model level, all states belonging
to the model are respectively merged with its corresponding
counterpart with state alignment estimated by state transition
probabilities [20]. Such unit merging process produces a set of
“shared units” as shown in the block (B) at the upper right corner
of Fig. 3 as “Acoustic Models (Merged 1),” in which the “shared
units” are those produced when a weak unit is merged with the
corresponding strong unit. The parameters for all “shared units”
in “Acoustic Models (Merged 1)” are then re-estimated with
maximum likelihood estimation in speaker dependent case or
a cascade of Maximum Likelihood Linear Regression (MLLR)
and Maximum a Posteriori (MAP) in speaker adaptation case.
This gives the set of “Acoustic Models (Merged 2)” at the right
middle of Fig. 3.

After the re-estimation, the merged units tend to be closer to
the strong units than the weak units because the former domi-
nate the data. Hence, we recover the merged units by copying
all parameters from the merged units to be the respective units
for both languages, and then applying an additional run of pa-
rameter re-estimation. This is illustrated in Fig. 3, where the re-
covery process gives the set of “Acoustic Models (Recovered
1)” in block (D) at the lower right corner which does not in-
clude the “shared units” any longer, and the parameter re-esti-
mation gives the final set of “Acoustic Models (Recovered 2)”
in block (E) at the lower left corner. In the last re-estimation
process, parameters of all units for both languages can be es-
timated individually based on their own data, but with initial
parameters estimated by the shared data when merged.

C. Frame-level Guest Language Detection

Here a frame-level guest language detector based on neural
net and specially selected features is further integrated in
the bilingual recognizer. For each speech frame o, at time ¢,
the guest language detector generates a posterior probability
for the frame belonging to the guest language, P(G|o:). In
the Viterbi search, if o, is identified as in the guest language
(P(G|oy) > 0.5), its likelihood for each HMM state ¢; for
guest language models, P(o,|g;), is boosted [23].

D. Experiments

For all the experiments in this subsection, the acoustic models
used were all triphone models with state-clustering by decision
trees. Two scenarios, speaker adaptation and speaker dependent
acoustic modeling, were considered as mentioned in Section III.
In both scenarios, the same lexicon and language model were
used. The bilingual lexicon used for speech recognition included
2.1 K English and 11.2 K Chinese words. The 2.1 K English
words were selected from the slides and the reference transcrip-
tions of Training and Adaptation Sets in Table I, which cov-
ered all of the English words in Testing Set. The 11.2 K Chinese
words included all commonly used Chinese characters taken
as mono-character Chinese words and multi-character Chinese
words discovered by PAT-Tree based approaches from a large
corpus [24]. We used the Kneser-Ney trigram language model
with a background model adapted with the transcriptions in
Training Set in Table 1. For the speaker adaptation scenario,
the Mandarin speaker independent models were trained with
31.8 hours of the ASTMIC corpus of Mandarin read speech,
and the English models with 29.7 hours of the EATMIC corpus
of English read speech produced by Taiwanese speakers, and
then adapted by Adaptation Set in Table 1. The speaker depen-
dent acoustic models were directly initialized and trained from

887

TABLE II
RESULTS FOR BILINGUAL ACOUSTIC MODELING (BAM) AND THE INTEGRATION
WITH GUEST LANGUAGE DETECTION (BAM+GLD) FOR THE SCENARIO OF
SPEAKER ADAPTATION (SA) AND SPEAKER DEPENDENT (SD) MODELING. THE
SUPERSCRIPTS * AND ! ON OVERALL ACCURACIES RESPECTIVELY INDICATE
SIGNIFICANTLY BETTER THAN THE BASELINE SYSTEM (BASELINE) AND THE
BILINGUAL ACOUSTIC MODELING (BAM)

Acoustic Accuracy (%)

Models Approach | Mandarin | English | Overall
Baseline 75.75 51.95 73.96

SA BAM 76.72 58.06 75.32%
BAM+GLD | 76.77 58.51 | 75.40*

Baseline 83.62 61.87 81.99

SD BAM 84.46 72.45 83.56*
BAM+GLD | 84.57 72.52 | 83.67*1

Training Set in Table 1. For evaluation, when aligning recog-
nition results with the reference transcriptions, insertions, dele-
tions and substitutions were evaluated respectively for each lan-
guage and summed up for overall evaluation [23]. The basic unit
for alignment and calculation was character for Mandarin 3 and
word for English.

Overall accuracy and individual performance for both lan-
guages are summarized in Table II. The English accuracy is
emphasized here because the English terms are usually the key
terms, in addition to the lack of English training data. The results
for both the standard speaker adaptation (SA, upper half) with
cascaded MLLR and MAP, and speaker dependent (SD, lower
half) models are reported in the table. In each case, the results for
the baseline system mentioned in Subsection I'V-A without con-
sidering the bilingual characteristics (Baseline), for the bilingual
acoustic modeling approaches described in Section IV-B with
Gaussian unit merging and recovery (BAM), and for BAM plus
the guest language detection in Subsection IV-C (BAM+GLD)
are all listed in different rows. Pairwised t-test with significance
level at 0.05 was also performed over the overall results (con-
sidering Mandarin and English jointly). The superscripts * and

on overall accuracies respectively indicate significantly better
than the results in rows labeled “Baseline” and “BAM.”

We can see from the table that the accuracies were improved
by the bilingual acoustic modeling approach in all cases (BAM
vs Baseline). With the unit merging and recovery, the English
accuracy part was dramatically improved, while Mandarin
accuracy was slightly improved as well. The integration with
the guest language detection also offered further improvements
(BAM+GLD vs BAM).

V. SEMANTIC ANALYSIS

We use a very popular approach for latent topic analysis:
probabilistic latent semantic analysis (PLSA) [25]. Given
the lecture corpus £ here, PLSA obtained the probability of
observing a word w given latent topic Ty, P{w|T}), and the
mixture weight of topic Ty, given document d, P(T}|d), where
{Ty.k = 1,2,..., K}. For the multi-layer temporal structure
mentioned in Section II-B, the documents d considered here
can be either the utterance-level segments, the paragraphs,

sections or chapters.

3Because in Mandarin Chinese different word sequences can correspond to
the same character sequence, when evaluating the recognition performance,
character accuracies are usually used instead of word accuracies.
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Several different measures can be obtained based on the
PLSA model [26]. First of all, we can have a topic distribution
given a word w,

P(w|Tk)P(Tk)

P(Tyw) = =5

(1)

where P(w) can be obtained by estimating the probability of
w in the corpus £, and P(T},) can be estimated by averaging
P(Ty|d) over all the documents d in L.

Given P(T}.|w) in (1), latent topic entropy F(w) for a word
w [26] is defined:

K

E(w)=- Z P(Ty|w)log P(Ty|w).
k=1

2

Clearly, a lower F(w) implies that the distribution of
P(T}|w) is more focused on a smaller number of latent topics.

The latent topic significance of a word w with respect to a
specific topic 7}, [26] is defined as below:

 aee fw, d)P(Ty|d)
Sul(Ti) = Pace flw. )1 — P(Ty|d)]

In the numerator of (3), the count of the given word w in each
document d, f(w,d), is weighted by the likelihood that the
given topic 7}, is addressed by the document d, P(Ty|d), and
then summed over all documents d in the corpus £. The de-
nominator is very similar except for latent topics other than T},
or P(T}|d) in the numerator of (3) is replaced by [1 — P(T}|d)]
in the denominator.

G3)

VI. KEYTERM EXTRACTION

We assume the key terms of a course are the fundamental ele-
ments of the semantics of the knowledge covered, so automatic
extraction of key terms is very important. In key term extraction,
supervised approaches can provide better performance than un-
supervised approaches [27]. However, in real world application,
a set of key terms as training examples for the supervised ap-
proaches is usually not available. Therefore, only unsupervised
key term extraction are considered here, which is still a very
challenging task today [28], [29].

Here the key terms considered include two types: key phrases
(e.g. “hidden Markov model” and “information theory”) and
keywords (e.g. “perplexity”’). TF-IDF is a good measure for
identifying key phrases [30], [31], but it suffers from identifying
some incomplete phrases (usually parts of key phrases) as key
phrases. For example, TF-IDF may regard “hidden Markov” (an
incomplete phrase) as a key phrase. To address this problem,
in Section VI-A, right/left branching entropy is used to rule
out the incomplete phrases. On the other hand, because a word
may have different meanings in different context, but a phrase
seldom has several meanings, identifying keywords are harder
than key phrases, so more sophisticated approach is needed for
identifying keywords. Therefore, in Section VI-B, we present
an unsupervised two-stage approach for automatically selecting
keywords, which realizes keyword extraction by considering
various information from the Internet, the transcriptions and
audio signals of the lectures including prosodic features [32].

A. Key Phrase Identification

The purpose here is to identify patterns of two or more words
appearing together in the transcriptions of the lectures much

more frequently than other sequences of words, so we can take
them as candidates of key phrases such as “hidden Markov
model” or “information theory.” The approach proposed here is
to use right/left branching entropy. The right branching entropy
of a pattern u (two or more words), H,.(u), is defined as

Ho(uw)=— Y pla)logp(a),

acA,

4)

where u is the pattern of interest (e.g., “hidden Markov™), A,
is the set of all “child” patterns of u, found in the lecture tran-
scriptions, or all patterns which are formed by appending a word
after u (e.g., “hidden Markov model,” “hidden Markov chain”
for “hidden Markov™), a is an element of A4,,, and

fla)
J(u)’

where f(u) and f(a) are the frequency counts of « and « in
the transcriptions respectively. Thus p(a) is the probability of
having « given u, and H, (u) is therefore the right branching
entropy of «.

When a pattern “hidden Markov model” appears very fre-
quently, most patterns of “hidden Markov” are all followed by
the word “model” (so “hidden Markov™ has a low H,.(u)), while
the patterns of “hidden Markov model” are followed by many
different words such as “is,” “can,” “to,” “with”... (so “hidden
Markov model” has a high H.(u)). In this way we can use the
right branching entropy H,.(u) to identify the right boundary of
a key phrase candidate (to the right of “model” rather than the
right of “Markov” in the above example) by setting thresholds
for H.,.(u).

Similarly we can define a left branching entropy H;(u) for
each pattern u to be used similarly to identify the left boundary
of a key phrase candidate (e.g. the left boundary of the phrase
“hidden Markov model” is to the left of “hidden” rather than
the left of “Markov,” because “hidden” is preceded by many
different words, while “Markov” is almost always preceded by
“hidden”).

In the test, we compute the average H, () and H;(«) for all
possible patterns u, and then take those patterns u whose 1. (u)
and H;(u) are both higher than the average values to be the
key phrase candidates. Then the key phrase candidates whose
TF-IDF are higher than a threshold are selected as key phrases.
The threshold can be determined by a development set.

pla) =

)

B. Keyword Selection

All single words in the lecture transcriptions which is labeled
as a “Noun” by a POS tagger and not in the stop word list are
taken as candidates of keywords. With the framework shown
in Fig. 4, in the first stage, all keyword candidates are ranked
according to their topic coherence and term significance mea-
sures. In the second stage, based on the ranking in the first stage,
pseudo-positive/-negative examples for keywords are selected
to train an SVM classifier which decides the final keyword list.

1) First Stage—Candidate Ranking: The first reference for
keyword ranking is the topic coherence. This is based on the
observation that words having more coherent context are more
likely to be keywords. For example, in the course related to
speech processing, the keyword “perplexity” is usually sur-
rounded by context regarding “language model,” “entropy,”
etc; on the other hand, the word “equation” is not a keyword,
it is usually surrounded by widely varying context. Hence, we
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Fig. 4. The framework of two-stage keyword extraction.

evaluate the topic coherence of the context of each candidate
keyword ¢t.

The topic coherence of each candidate keyword ¢ is evalu-
ated as below. Given a database 7 (first consider the lecture
transcriptions £ as D here, although D will be generalized to
other databases latter on), we train a PLSA model from D with
a topic distribution { P(T%|d), k = 1.2,..., K}. For each key-
word candidate ¢, we then select the M documents out of 7 with
the highest frequency counts of ¢ as the contexts of ¢, C(¢). The
topic coherence for the keyword candidate ¢ is then defined as
the average pairwise cosine similarity for the documents d in
C(t) as below:

Zd,d’ec(t),d;éd’ 7(d,d")
ho(t) = M(M - 1)

(6)

where the subscript D2 in hp(#) indicates that the topic coher-
ence is based on the database D, M is the size of the context
C(t), and T'(d,d’) is the cosine similarity between the PLSA
topic distributions of d and d':

T(d,d') = , e P(Tk|d)P(”Tk|dl) |
\/Zf:l P(T,®,|d)2\/zg:1 P

We consider those keyword candidates ¢ with higher Ap (%),
are more likely to be keywords.

Latent topic entropy (LTE) described in (2) in Section V is
certainly an important parameter for keyword ranking too. The
latent topic entropy of a keyword candidate ¢, F'p (1), evaluated
based on the PLSA model trained from the database D is there-
fore computed. The subscript D of E'p(¢) indicates it is based on
the database D. A lower Ep(t) implies that ¢ is more focused on
less latent topics, or carries more topical information or salient
semantics. With the term frequency jointly considered, the sig-
nificance score of a keyword candidate 7 is defined as
_ /(D)

)

where f(t, D) is the frequency count of  in D, and -y is a scaling
factor.

The lecture transcriptions £ can serve as the database D here,
with each paragraph regarded as a document d. However, the
information in the course lectures may be limited. This can be
generalized using Google search engine and the Wikipedia. We
use each keyword candidate 7 as the query to request the Google
search engine, and the top M web pages returned by Google are
regarded as C(t). In this way, the database D is approximately
all the web pages on the Internet. Similarly, we also take all the
Wikipedia pages as D by the search engine of Wikipedia.

TABLE III
PERFORMANCE OF KEY PHRASE EXTRACTION USING
ASR OR MANUAL TRANSCRIPTIONS (%)

[ ] Approach | Precision | Recall | F-measure |
% English Phrases 29.58 35.59 32.31
< | Branching Entropy 58.54 81.36 68.09
'S | English Phrases 41.27 44.07 42.62
CE% Branching Entropy 59.26 81.36 68.57

TABLE IV
PERFORMANCE OF KEYWORD EXTRACTION USING
ASR OR MANUAL TRANSCRIPTIONS (%)

[ ] Approach | Precision | Recall | F-measure |
English Words 5.98 94.92 11.25
% TF-IDF 37.78 16.59 23.05
< | K-means Exemplar 40.28 30.53 34.73
Proposed 45.45 31.91 37.50
= English Words 5.89 95.74 11.10
= TF-IDF 41.67 31.91 36.14
‘E" K-means Exemplar | 49.32 37.89 42.86
Proposed 50.81 67.02 57.80

Based on a database D, each candidate keyword ¢ is given a
score Kp(t) by putting together (6) and (8),

Kp(t) = hp(t) - sp(t). ®

Finally, the candidate keywords are ranked according to the
weighted sum of Kp(t) based on different databases D.

2) Second Stage—SVM Classifier: From the candidate list
ranked by the first stage, we simply assume the top M’ can-
didates to be pseudo-positive examples and the bottom A’ can-
didates to be pseudo-negative examples, and use these exam-
ples to train an SVM classifier. The features for SVM classifier
training include prosodic features*, lexical features (TF-IDF,
POS tags, etc.), and semantic features (from PLSA, etc.) [32].
Finally, we use this SVM classifier to classify all the candidate
keywords (including the selected examples) to decide whether
they are keywords.

C. Experiments
Both the transcriptions generated by the baseline speaker
adaptive models (row Baseline in the upper part of Table II)

4pitch related, energy related, and duration related, since keywords are very
often produced with wider pitch range, higher energy, and lower speed
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and manual transcriptions were used for key term extraction
here. We used 1/10 of the lecture transcriptions and the key
terms included out of the 154 as the development set to tune the
parameters including M (size of C(t) in (6)), 7y in (8), and M’
(number of SVM training examples), the weights for the sum
of Kp(t) in (9) for different databases D, and the parameter
for SVM training. The number of PLSA topics was 25.

The results (Precision, Recall and F1 measure) for key phrase
extraction based on ASR or manual transcriptions are listed in
Table III. In row labeled English Phrases, all the English noun
phrases appearing in the transcriptions were taken as key phrase
candidates, and the candidates whose TF-IDF higher than a
threshold were selected as key phrase. The rows Branching
Entropy are the results using the approach in Section VI-A. We
found that the results in rows Branching Entropy was better
than English Phrases in all cases. This shows that branching
entropy could select better candidates than considering all the
English noun phrases as candidates. We also find that results for
ASR transcriptions were rather close to the manual case, prob-
ably because the phrase patterns had relatively high recognition
accuracy. With ASR transcriptions, using branching entropies
to find key phrase candidates yielded an F-measure of 68.09%
in Table III, which implies the usefulness of this approach 5.

The results (Precision, Recall and F1 measure) for keyword
extraction using ASR or manual transcriptions are listed in
Table IV compared to three baselines: English Words (all the
noun in English appearing in the transcriptions were considered
as keywords), TF-IDF (selecting N candidate keywords with
the highest TF-IDF scores) and K-means exemplar (using
K-means algorithm® to cluster candidate keywords based on la-
tent topic distributions, and selecting exemplars of the clusters
as keywords) [33], [34]. Considering all the English words as
keywords obtain high recall rate but low precision rate. This is
because most keywords were in English, but most of English
words were not keywords. We find that the proposed approach
outperformed both baselines in terms of all evaluation measures
(Precision, Recall and F1 measure) for both ASR and manual
transcriptions. F-measures of 37.50% and 57.80% respectively
for ASR and manual transcriptions were obtained. Note that the
results for key phrases in Table III are significantly better than
keywords in Table IV. This implies it is much more difficult to
identify a simple word as a keyword than for a pattern as a key
phrase.

VII. KEYTERM GRAPH

Here we try to connect the related key terms into a key term
graph on which each key term is a node, so the key term graph
forms the backbone of the global semantic structure of the
course lectures.

A. Approaches

We define a relationship function R(%;,t;) for every two key
terms #; and #; to describe the degree of relationship between
them. The key term pairs ¢; and ¢; with R(¢;,¢;) exceeding a
threshold are considered as related, and linked on the key term
graph. R(t;,t;) can be one of the five functions R, (¢;,t;) to
R.(t;,t;) proposed below or their linear combinations.

51t is possible to apply the two-stage approach in Section VI-B for key phrase
extraction, but this approach did not improve key phrase extraction in the ex-
periments.

bsetting K = N

(a) Co-occurrence Rate based on the lecture transcriptions £:

n(tiv t )
n(t:) +nlt;) i (10)

where n(t;), n(t;) and n(#;,¢;) are the number of para-
graphs containing #;, ; and both ¢; and #;.
(b) Word-level Context Coherence:

(i) N Cu ()]
|Cl ( D4 1Cw ()]

where C,(#;) is the word-level context of ¢,, or the word

set containing all words (excluding stop words) in the

ipti i Ow(ti”
is the number of distinct words in Ci,(¢;). Therefore,
Ry (t;,t;) is the dice co-efficient of the sets C,(%;) and

w t])

(c) Latent Topic Similarity based on the topic distribution

given aterm ¢;, or { P(Ty|t;), k =1,..., K} asin (1):

Sl PA)PIL)
K, P@dr S, P

which is the cosine similarity between the topic distribu-
tion vectors very similar to (7).
(d) Similarity in Latent Topic Significance:

S 50 (TS, (Tk>
NSNS

which is parallel with (12), except that the topic distribu-

tions P(Ty|t;) in (1) used in (12) are replaced by the la-

tent topic significances Sy, (T%) in (3). In (13), those terms

highly significant to the same topics are highly related.
(e) Inverse Normalized Google Distance (NGD):

Re(ti,t;) = —NGD(t;, t;),

Ro(ti,t;) = '
(tist;) n(ts, t;)

Ry(ti ;) =

Q)

(tint))

(12)

Ra(ti, t;) (13)

Tk) 2

(14)

where the normalized Google Distance, NGD(¢;,1;), be-
tween two terms ¢; and ¢; is estimated inversely propor-
tional to the possibility that £; and £; appear on the same
web page obtained from Google search engine using Z;, 5,
as well as “¢; and ¢;* as the queries [35]. The concepts of
R, (t;,t;) and R.(t;,t;) are very similar, but R.(¢;,¢;)
is based on the paragraphs of the course transcriptions,
while R.(ti,t;) on the web pages.

B. Experiments

Here we constructed the key term graph based on the best
results of automatically extracted key terms in Section VI with
57.80% of F1 measure in Table IV. We conduct 3-fold cross val-
idation. The extracted key terms were first separated into 3 sets,
roughly corresponding to the first, middle and last parts of the
course. In each trial, 2 sets of key terms and their human-gener-
ated graphs were used as the development set to determine the
respective thresholds for the relationship functions to be used
for generating the key term graph for the remaining test set.
This process was repeated 3 times. We used Graph Edit Distance
(GED)[17] from the machine-generated graph to the human-
generated graph as the evaluation measure. Smaller GED indi-
cates better performance.

Table V shows the performance of the key term graphs eval-
uated by GED. The results based on the five relationship func-
tions, R, (t;,¢;) in (10) to R.(¢;,¢;) in (14), are respectively
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Fig. 5. Part of the reference key term graph and the key term graphs generated by different relationship functions (a) Part of reference key term graph, (b) Part of
key term graph based on co-occurrence rate (part of the result in row (a) in Table V), (c¢) Part of key term graph based on the integration of latent topic similarity

and similarity in latent topic significance (part of the result in row (f) in Table V).

TABLE V
PERFORMANCE OF KEYTERM GRAPH CONSTRUCTION BASED ON DIFFERENT
RELATIONSHIP FUNCTIONS IN TERMS OF GRAPH EDIT DISTANCE (GED)

| Functions for Relation Evaluation | GED |
(a) R, (t;,t;): Co-occurrence Rate 0.182
(b) Ry (t;,t;): Word-level Context Coherence 0.212
(©) R.(t;,t;): Latent Topic Similarity 0.136
(d) | Rq(t;,t;): Similarity in Latent Topic Significance | 0.152
(e) | Re(t;,t;): Inverse Normalized Google Distance | 0.212

L® | © + (d) [0.076 |

in rows (a) to (e). We find that the relationship functions based
on semantic analysis, that is, latent topic similarity R.(¢;,%;)
in row (c) and similarity in latent topic significance R4(¢;,1;)
in row (d), yielded better results than other functions in rows
(a), (b) and (e). This shows that the semantic analysis was re-
ally useful for keyterm graph construction. The relatively larger
values of GED for rows (a) and (e) indicates that the related
key terms did not necessarily co-occur in either the same course
paragraphs or the same web pages, and the results in row (b)
reveals that related key terms did not necessarily have coherent
contexts. In addition, in row (f), we further weighted summed
the scores in rows (c) and (d) with weights determined by the
development set. We found that the integration of the two func-
tions based on latent topics in rows (c) and (d) offered fur-
ther improvements over the individuals (rows (f) vs (c), (d)).

However, further integrating the results in (f) with (a), (b) and
(e) did not provide any further improvements, probably because
row (f) was much better than rows (a), (b) and (e).

In Fig 5, parts of the key term graphs generated by different
relationship functions are displayed 7. Fig 5(a) is part of the ref-
erence key term graph. It is obvious that there are two groups of
key terms. One group of key terms is related to speech recogni-
tion (at right hand side of Fig 5(a)), and another group is more
related to semantic analysis (at left hand side). Fig 5(b) is part
of the key term graph generated based on co-occurrence rate
(R, (t;,%;) in (10)), or part of the result in row (a) in Table V.
Compared with the reference key term graph, a large amount of
related key terms could not be connected by co-occurrence rate.
This is because some of the related key terms such as “MFCC”
and “Hidden Markov Model” were introduced in different chap-
ters, and thus had very low co-occurrence rate. The key term
graphs generated by word-level context coherence (R (%, #;) in
(11)) had the same issue as co-occurrence rate. Fig 5(c) is part of
the key term graph generated by integrating Latent Topic Sim-
ilarity (R.(t;,t;) in (12)) and Similarity in Latent Topic Sig-
nificance (Ry(t;,t;) in (13)), or part of the result in row (f) in
Table V. The graph in Fig 5(c) is more similar to the reference
graph in Fig 5(a) than Fig 5(b), which shows that semantic in-
formation can identify the related key terms with low co-occur-
rence rate.

7We can not display the complete key term graph because there are too many
key terms.



892 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 22, NO. 5, MAY 2014

VIII. SPEECH SUMMARIZATION

While the key terms represent the fundamental semantic ele-
ments in the knowledge covered by the course and the key term
graph represents the backbone of the global semantic structure,
summaries can be obtained for the model in the multi-layer tem-
poral structure (paragraphs, sections and chapters), which are
significantly reduced temporal spoken knowledge based on the
local semantic structure of the paragraphs, sections and chap-
ters. They offer efficient ways in browsing the lectures. There-
fore, here extractive summarization was performed on all para-
graphs, sections and chapters. That is, given a set of utterance-
level segments X' (a paragraph, a section or a chapter), some
segments z € X are selected to form the summary X, of
X'. Supervised summarization approaches [36], [37] have been
successfully developed and used in lecture browsing systems
based on sets of audio data and their reference summaries [7].
However, because the course content is usually on some spe-
cialized area, it is not easy to collect enough audio data in re-
lated domain, not to mention hiring experts understanding the
content to produce reference summaries. Therefore, we assume
unsupervised approaches are preferred for summarizing course
lectures. Here a two-layer graph-based approach is used to sum-
marize the segment sets by jointly considering the audio content
and the corresponding slides. Similar two-layer graph-based ap-
proach has been proposed on multi-party meeting summariza-
tion [38], but it is used in a completely different way here. The
original graph-based summarization approach [39] is described
in Subsection VIII-A, and in Subsection VIII-B we introduce
the two-layer approach.

A. Original Graph-based Approach

The basic idea of graph-based approach is that the segments
similar to more segments in X is important, and the segments
similar to the important segments are tend to be important as
well. This can be formulated as a problem on a graph, in which
all the segments = in A are nodes on the graph. The weights
T(x,a") of the directional edges from nodes « to ' (x — «”) are
the Okapi similarity between the transcriptions® of them [40].
Note that T'(x, z') = T(2', ), so there are two directional links
with equal weights between each node pair z — =’ and 2’ —
x, and only the node pairs with non-zero Okapi similarity are
connected.

An importance score M () is then assigned to each segment
2 based on the graph structure with the following equation:

M(w) = (1=Xs)Mo(z)+As Y, M@E)T'(x',2), (15)
x' €lx (x)

where Iy () is the set of nodes in X' connected to node x via
incoming edges, and T'(z', ) is the weight of the directional
edge (r' — =) normalized by the total weights over the out-
going edges of z’:

(16)

where Oy (z') are the set of nodes in X" connected by outgoing
edges of z’. Here (16) implies the score of node #’ is distributed
to all nodes ="’ via the outgoing edges, so normalized by all out-
going edges; while the second term on the right of (15) implies
the scores of all such nodes z’ with an incoming edge linked to
the node z flow to z. My(z) in (15) are biases for segments

8The function words are removed.
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Fig. 6. Two-layer Graph-based Approach.

z, which can be either uniform or obtained from some prior
knowledge. A5 is an interpolation weight between the two terms
on the right of (15). Based on (15), the more 2’ is similar to z
(or the higher the edge weight T(z’, 1) is), the larger M {x) is.
We then used Maximum Marginal Relevance (MMR) to gen-
erate the summaries [41]. This approach selects in each itera-
tion one utterance-level segment x from the segment set A’ to
be added to the summary Xj,,,,, at the current iteration, which
is the segment with the highest importance score M (), while
adding minimum redundancy to the current summary Xy, .

B. Two-layer Graph-based Approach

The slides of lecture courses are usually available. Compared
with the content of the audio, the slides of lecture courses are
succinct and well-structured, so they are very good resources
to enhance the summarization of the lecture courses. Here the
two-layer graph-based approach is used to jointly consider the
utterance-level segments with their corresponding slides. As
shown in Fig. 6, the graph has two layers of nodes. One layer
of nodes is segments z in the segment set X', and the other one
is sentences s in the corresponding slides S. The segments or
sentences with Okapi similarity larger than zero are connected
to each other. The basic idea of the two-layer approach is that
the segments connect to the important sentences on the graph
are important, and on the other hand, the sentences connecting
to important segments are important as well. With the two-layer
graph-based approach, the importance estimations of segments
and sentences in slides are jointly considered and can reinforce
each other.

Based on the two-layer graph, segments = and sentences s are
assigned a set of new importance scores M’(x) and M'(s). The
importance scores M’(x) for segments z satisfy the following
equation:

M'(2) = (1 — As)My(x) + As Z M" (2T (2, 2),
z'€lx(z)
(17)
which is parallel to (15), except that in the second term at the
right hand side, another scores M"(x’) are used rather than

M'(z"). The score M"(z') of segment ' depends on the im-
portance scores M'(s) of the sentences s in the slides:

M"(z") = Z M'(s)T'(s, '),

s€lg(a’)

(18)

where Is(z’) is the set of sentences in slides S connected to
segment 2’ via incoming edges. 7”(s, ') is the weight of the
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directional edge (s — z') normalized by the total weights over
the outgoing edges of s connecting to nodes belonging to X'

T(s,x")

T'(s,2") = ;
ZE”EOX () T(S, 'T‘J/)

19)

where T'(s,z”) is the Okapi similarity between the sentence s
and the transcription of ', and O »-(s) are the set of segments in
X connected by outgoing edges of sentence s. Based on (17) and
(18), a segment can have large M’(z) if connected by other seg-
ments with large M (2'), and a segment 2’ have large M"' (z')
when connected by important sentences s with large M’ (s). The
importance of sentences M'(s) is defined in a similar way as
M'(z) in (17).

M'(s)=(1-As)Mo(s) +As > M"(sYT'(s,5),
s'€ls(s)
(20)

M'(s= > M(2)T'(x,s) @20

z€lx(s")

Equations (20) and (21) are parallel with (17) and (18), ex-
cept that the roles of segments and sentences are reversed. By
searching for a set of M’(x) and M’(s) satisfying (17), (18),
(20) and (21), the importance of the utterance-level segments
and sentences in the slides are jointly estimated. MMR is finally
used to select the segments to form the summaries based on the
importance scores M’(z) in (17).

C. Experiments

To evaluate the performance of the automatically generated
summaries, the ROUGE-N (V = 1,2,3) and ROUGE-L
F-measures from the package ROUGE [42] were used. The
results for the 40 sections with references in Section III were
reported here. Ag in (15), (17) and (20) was set to be 0.85.
In all the experiments, we simply set the prior My(z) in (15)
and (17) to be 1/|X|, where |X| is the number of segments
in the segment set X to be summarized, while AMy(s) in (20)
was set to be 1/|S|, where 1/|S| is the number of sentences
in the corresponding slides. We used the baseline speaker
adaptive models (row Baseline in the upper part of Table II)
to transcribe the audio of the 40 sections. Fig. 7(a) to (d) re-
spectively shows the results of ROUGE-1, 2, 3 and ROUGE-L
F-measures for the 40 sections with references. In each case
the two groups of bars are for the results of short (10% summa-
rization ratio) and long summaries (30% summarization ratio),
and in each group the blue bar is for original graph-based ap-
proach in Subsection VIII-A, while the green bar for two-layer
graph-based approach in Subsection VIII-B. In all cases in
Fig. 7, we see the two-layer graph-based approach improved
the performance over the original approach regardless of the
evaluation measures and summarization types.

IX. SPOKEN CONTENT RETRIEVAL

Given the semantic structure, key term graph and summaries,
efficient and accurate retrieval of the spoken content in the lec-
tures is finally the key element enabling the users to navigate
across the course content for personalized learning. Here we
focus on a specific task, in which the query is a term in text,
and the system in to return utterance-level segments including
the query term. The approaches presented below can be equally
applied on retrieving paragraphs, sections and chapters, but here
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we only mention those for the utterance-level segments for sim-
plicity. The discussions below may also be generalized to other
spoken content retrieval tasks such as spoken queries or se-
mantic retrieval, but they are out of the scope here.

Most conventional spoken content retrieval techniques were
applied on top of ASR output such as lattices with performance
inevitably depending on ASR accuracy. Because it is difficult to
obtain acoustic and language models robust enough for recog-
nizing spontaneous course lectures on specific subject domains,
here we present different techniques for retrieving course lec-
tures which are less constrained by recognition accuracy with
the framework shown in Fig. 8 [43], [44]. When a query term
is entered, the system generates first-pass retrieved results from
the lattices. Two pseudo-relevance feedback (PRF) approaches
are then applied, the one based on SVM in the middle of the
figure, and the one based on graphs in the lower part of the
figure. The results of the two approaches are then integrated.

A. First-pass Retrieval

Each utterance-level segment x in the course lecture archive
is transcribed into a lattice off-line. When the query @) is en-
tered, all segments = in the archive are ranked based on the
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Fig. 9. Feature vector representations. Left half: the definition of a “hypothe-
sized region” in the lattice of segment » for the query term (. Right half: the
feature vector f(x).

el/

widely used relevance score S((), z), or the expected occur-
rence count of query () obtained based on the acoustic and
language model scores in the lattice of = [45]-[49]. This gen-
erates the first-pass retrieval results as in the middle left of
Fig. 8. This list is not shown to the user. For simplicity, we
assume the query (7 is a single word, and the arcs in the lattices
are word hypotheses. Extension to longer queries and subword
lattices is trivial [44].

B. Pseudo-relevance Feedback based on SVM

As shown in the middle of Fig. 8, we select some segments in
the first-pass retrieval results, assume they are pseudo-relevant
and -irrelevant, and take them as positive and negative examples
in training a support vector machine (SVM), with which the
segments in the first-pass results are re-ranked [43].

To train an SVM model, each segment = should be repre-
sented by a feature vector f(z). We first define the “hypoth-
esized region” for a spoken segment z and a query () to be
the part of the acoustic vector (e.g., MFCC) sequence corre-
sponding to a word arc in the lattice whose hypothesis is ex-
actly @ with the highest posterior probability, as shown in the
left half of Fig. 9. In the right half of Fig. 9, this hypothesized re-
gion is divided into a sequence of divisions based on the HMM
state boundaries obtained during the lattice construction. Each
division is then represented by the average of the acoustic vec-
tors in it. All these averaged vectors in a hypothesized region are
then concatenated to form the feature f (). For {-state phoneme
HMMs and a query term @ including m phonemes, the dimen-
sionality of such a feature vector f(z) is m x [ times the dimen-
sionality of the acoustic vectors. The feature vector f(z) thus
capsules the acoustic characteristics of the hypothesized region
of x.

Then as shown in the middle of Fig. 8, some segments in
the first-pass retrieved list are respectively taken as positive and
negative examples to train an SVM model. Each segment z in
the list is first compared with the groups of top- and bottom-
ranked segments and obtains a confidence measure for con-
taining the query () (those similar to many top segments and dis-
similar to more bottom segments have higher confidence mea-
sures). In this way, we select positive and negative examples
based on these confidence measures with such selected example
having an estimated confidence [43].

The SVM training is slightly modified to consider the above
confidence measure, so examples with higher confidence are
weighted higher [43]. This SVM then classifies all segments in
the first-pass results by giving each segment = a value which
tends to be larger when 2 is relevant and vice versa. This value

is then linearly normalized into a real number R(x) between
0 and 1. The new relevance score S1(Q, z) for re-ranking the
segment z is then obtained by integrating the original relevance
score S(Q, z) in Subsection IX-A with R(z),

51(Q.z) = S(Q,z)' ~°r R(x)*" (22)

where 0g is a weight parameter.

C. Pseudo-relevance Feedback based on Graphs

The basic idea here is very similar to segment scoring using
graphs for summarization in Section VIII-A. If the hypothe-
sized region of a segment is very similar to many other segments
judged to include the query (? in the first-pass retrieval, it may
have a higher probability to include the query }. Therefore, we
construct a graph with each segment x in the first pass results
being a node. The similarity T (z, ") between two segments
and 2’ (the weight for edge z — ) can be estimated based on
the DTW distance between the hypothesized regions (defined on
the left of Fig. 9) of them plus a transformation (larger distance
implying smaller similarity). Then the graph is pruned such that
each node (segment) x is connected to only K » segments «’
with the highest incoming edge weight T (x, z).

The rest is similar to Section VIII-A. Each segment z is as-
signed a new score S (z),

Y+ Ar Z S G

z'€IN ()

§%(x) = (1 - Ar)S(Q,

(23)
where Tf, (2, ) is the edge weight Tg(z’, ) normalized over
the outgoing edges of segment z’:

Tr{2', x)
Z =" €QOUT(z") TR(., ..;//) .

Th'z) = (24)

Equations (23) and (24) are exactly in parallel with (15) and
(16). Ag in (23) is an interpolation weight. Here (23) implies
S%(x) depends on two factors, the original scores S(Q, ) in
the first term and the scores propagated from similar segments
in the second term. S (x) is then integrated with the original
relevance score S((J, z) for re-ranking as

$2(Q, %) = S(Q, x)" PR §C (2)°x (25)

where 87, is a weight parameter.

D. Integration

The approaches in the Subsection IX-B and IX-C can be in-
tegrated as
83(Q.2) = $1(Q.x)! K Sy(Q. x)°%, (26)
where 0% is another weight parameter. The final results shown
to the users are ranked according to S3((Q, ).

E. Experiments

Mean average precision (MAP) was used as the performance
measure. Pair-wise t-test with significance level at 0.05 was
used for significance test for improvements. dg, 67, and &% in
(22), (25) and (26) were respectively set to be 0.9, 0.9 and 0.5,
and all the remaining parameters were determined by 4-fold
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Fig. 10. Example screenshots of the prototype system (a) Spoken content retrieval with input query “triphone” (b) Slide, summary and keyterms for section “5-7
Classification and Regression Tree (CART)” linked from the first item in (a) (¢) Example learning path for the key term “Entropy” recommended by the system.

cross validation. The testing queries were separated into 4 parts. TABLE VI
In each trial, one part was used as the development query set for ~ EXPERIMENTAL RESULTS YIELDED BY PSEUDO-RELEVANCE FEEDBACK (PRF)
parameter tuning while the other three parts tested. IN TERMS OF MEAN AVERAGE PRECISION (MAP). THE SUPERSCRIPTS *, T aND

The experimental results are shown in Table VI. We used 1 RESPECTIVELY INDICATE SIGNIFICANTLY BETTER THAN THE FIRST-PASS
the baseline speaker adaptive models (row Baseline in the RESULTS, SVM AND THE GRAPH-BASED APPROACH
upper part of Table II) and baseline speaker dependent models | | SA | SD |
(row Baseline in the lower part of Table II) to transcribe all

utterance-level segments in Testing set in Table I into two (Dfirst pass 0'7962* 0.8520
sets of lattices with beam width 50. The results based on the (2)SVM 0.8153 0.8648
two sets of lattices are respectively in columns SA (speaker (3)graph 0.8357*1 0.8719*
adaptive) and SD (speaker dependent) in Table VI. In Table VI, (4)SVM-+graph | 0.8439*1% | 0.8783*T*

row (1) is the MAP scores of the first-pass retrieval results

(Subsection IX-A), while those using SVM (Subsection [X-B), results, SVM and the graphs. We find that both SVM and

graphs ) (Subsection IX-C) and both (Subsectiog IX;D\? ar®  graphs improved the performance (rows (2),(3) vs (1)). Each of
{respectlvely in rows (2), (3) and (4). The superscripts *, | and  them showed strengths over the other. SVM took advantages
t indicate respectively significantly better than the first-pass  of the discriminative capabilities of SVM, whereas the graphs



896 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 22, NO. 5, MAY 2014

TABLE VII
THE AMOUNT OF TIME (SECONDS) REQUIRED TO ANSWER THE QUESTIONS USING BASELINE AND PROTOTYPE SYSTEMS

| Questions | Baseline system \ Prototype system
1. List three HMM basic problems. 47 53
2. List three speaker adaptation approaches. 114 68
3. List five language model smoothing approaches. 41 29
4. What does “CART” stand for? 217 8
5. When and which conference was the first paper of PLSI published? 310 143
6. List the numbers of Mandarin syllables, initials and finals. 83 67
7. List three DSR models. 93 12
8. List two evaluation measures for information retrieval. 99 35
9. What does “MFCC” stand for? 35 33
10. When was the first paper of Spectrum Subtraction published? 299 46
| Average | 134 \ 49 |

considered the global acoustic similarities among all segments
rather than the individuals. Hence, the integration in row (4)
yielded further improvement over the individuals.

X. PROTOTYPE SYSTEM

A preliminary prototype system has been successfully devel-
oped at National Taiwan University (NTU), referred to as NTU
Virtual Instructor [10]. The first version of the system was com-
pleted in 2009 [9], while this paper presents the technologies
used in its latest version. It is based on a course of “Digital
Speech Processing” offered in NTU in 2006. Fig. 10 are ex-
ample screenshots for learner/system interactions.

In Fig. 10(a), the learner typed the query “triphone” in the
blank at the upper right corner. As shown at the upper left corner,
the spoken content retrieval system found 163 utterance-level
segments containing the query term “triphone,” ranked by con-
fidences (only top three shown here). The first segment was
shown to belong to the section with slide title “5-7 Classification
and Regression Tree (CART)” (“5-7” means the 7-th section in
chapter 5), and the key terms in this section (such as CART, en-
tropy, etc.) were also listed to help the learner judge if he was
interested and able to understand this section. The learner could
click the button “Play” and listen to the course starting from the
returned segment, or click the link “5-7 Classification and...... ”
(in the green frame) to jump to the section 5-7 as the screenshot
in Fig. 10(b).

In Fig. 10(b), the learner found that this section was 10 min-
utes and 23 seconds long (in the green frame), but he could click
the bottom “Play Summary” (with the red edges) to listen to a
summary of only 1 minute and 2 seconds long. In addition to
the slide, the learner also saw a list of key terms extracted in this
section in a yellow bar including “Classification and Regression
Tree” and “Machine learning.” Other key terms below each key
term in the yellow bar were those connected to the key term
in the yellow bar on the key term graph (e.g. “entropy,” “tri-
phone,” etc. below “Classification and Regression Tree” were
those connected to “Classification and Regression Tree™?). If the
learner clicked the key term “entropy,” the system then showed
all sections in the temporal structure containing this key term
including where the key term appeared the first time as an ex-
ample learning path recommended by the system as shown in
Fig. 10(c). Therefore, the learner can choose to learn more about

9Classification and regression tree is used to tie triphones here, and entropy
was used as the criterion for node splitting.

“entropy” sequentially from the beginning or towards more ad-
vanced topics if needed.

The subjective user tests were conducted to gauge the ef-
ficiency of the proposed spoken knowledge organization ap-
proaches for course lectures. Each subject was asked to an-
swer ten questions specifically designed based on the content
of the target course, which are listed in Table VII. The subjects
used either the prototype system in Fig. 10 or a baseline system
to help them find the answers (but they could not consult any
other materials). The baseline system simply put the course on
the internet without spoken knowledge organization as normal
MOOC platforms or course warchouses. The interface of the
baseline system was exactly the same as Fig. 10(b), except that
there were no key terms, summaries and search blank. Ten grad-
uate students of National Taiwan University who had taken the
target course participated in the test. To remove the bias from
the users, the users were arranged into two groups. The users in
group one answered questions number one to five by interacting
with the baseline system and answered questions number six to
ten by the prototype system, while the users in group two did the
opposite. In this way, each user used both the baseline and proto-
type systems when answering the ten questions. The amount of
time (seconds) required to answer each question is in Table VII.
We found that the users can answer all of the questions faster
when using the prototype system, except question number one
(“List three HMM basic problems”). Because question number
one is a very basic question for the target course, some of the
users can answer this question directly without consulting the
systems. This is why the prototype system was not very helpful
for this question. The last row in Table VII shows the average
amount of time required to answer the questions. The users took
134 seconds in average to answer a question with the baseline
system, but only 49 seconds with the prototype system. The pro-
totype system helped the users to answer the questions more
than two times faster.

XI. CONCLUSION

This paper presents a new approach of organizing the spoken
knowledge covered by course lectures for efficient personalized
learning with multiple ways of learner/content interactions. Key
terms for the course content are automatically extracted and
connected into a key term graph to form the backbone of the
global semantic structure of the course. Summaries are gener-
ated for each paragraph, section and chapter forming the multi-
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layer temporal structure interconnected with the above struc-
ture. Spoken content retrieval together with the above struc-
tured knowledge jointly offer an efficient way for the learner
to navigate across the course content and develop personal-
ized learning paths. A preliminary prototype system is success-
fully developed based on a course offered in Mandarin-English
code-mixed speech.

REFERENCES

[1] G. Tur and R. DeMori, Spoken Language Understanding: Systems for
Extracting Semantic Information from Speech. New York, NY, USA:
Wiley, 2011, ch. 15, pp. 417-446.

[2] M. Larson and G. J. F. Jones, “Spoken content retrieval: A survey
of techniques and technologies,” Found. Trends Inf. Retr., vol. 5, pp.
235422, 2012.

[3] J. Glass, T. J. Hazen, S. Cyphers, 1. Malioutov, D. Huynh, and R.
Barzilay, “Recent progress in the MIT spoken lecture processing
project,” in Proc. Interspeech, 2007.

[4] 1. Szoke, J. Cernocky, M. Fapso, and J. Zizka, “Speech@FIT lecture
browser,” in Proc. IEEE Spoken Lang. Technol. Workshop, 2010, pp.
169-170.

[5] K. Riedhammer, M. Gropp, and E. Noth, “The FAU video lecture
browser system,” in Proc. IEEE Spoken Lang. Technol. Workshop,
2012, pp. 392-397.

[6] R. Rose, A. Norouzian, A. Reddy, A. Coy, V. Gupta, and M. Karafiat,
“Subword-based spoken term detection in audio course lectures,” in
Proc. ICASSP, 2010, pp. 5282-5285.

[7] Y. Fujii, K. Yamamoto, N. Kitaoka, and S. Nakagawa, “Class lecture
summarization taking into account consecutiveness of important sen-
tences,” in Proc. Interspeech, 2008.

[8] S.Togashiand S. Nakagawa, “A browsing system for classroom lecture
speech,” in Proc. Interspeech, 2008.

[9] S.-Y. Kong, M.-R. Wu, C.-K. Lin, Y.-S. Fu, and L.-S. Lee, “Learning
on demand—course lecture distillation by information extraction and
semantic structuring for spoken documents,” in Proc. ICASSP, 2009,
pp. 4709-4712.

[10] [Online]. Available: http://speech.ee.ntu.edu.tw/~RA/lecture/

[11] A. Park, T.J. Hazen, and J. R. Glass, “Automatic processing of audio
lectures for information retrieval: Vocabulary selection and language
modeling,” in Proc. ICASSP, 2005, pp. 497-500.

[12] T. Kawahara, N. Katsumaru, Y. Akita, and S. Mori, “Classroom note-
taking system for hearing impaired students using automatic speech
recognition adapted to lectures,” in Proc. Interspeech, 2010.

[13] Y. Fujii, K. Yamamoto, and S. Nakagawa, “Improving the readability
of class lecture ASR results using a confusion network,” in Proc. In-
terspeech, 2010.

[14] H. Yamazaki, K. Iwano, K. Shinoda, S. Furui, and H. Yokota, “Dy-
namic language model adaptation using presentation slides for lecture
speech recognition,” in Proc. Interspeech, 2007.

[15] J. Miranda, J. P. Neto, and A. W. Black, “Improving ASR by in-
tegrating lecture audio and slides,” in Proc. ICASSP, 2013, pp.
8131-8135.

[16] S.-C. Hsu, “Topic segmentation on lecture corpus and its application,”
Master’s thesis, National Taiwan Univ., Taipei, Taiwan, 2008.

[17] X. Gao, B. Xiao, D. Tao, and X. Li, “A survey of graph edit distance,”
Pattern Anal. Appl., vol. 13, pp. 113-129, 2010.

[18] N. T. Vu, D.-C. Lyu, J. Weiner, D. nic Telaar, T. Schlippe, F. Blaicher,
E.-S. Chng, T. Schultz, and H. Li, “A first speech recognition system
for Mandarin-English code-switch conversational speech,” in Proc.
ICASSP, 2012, pp. 4889-4992.

[19] T. Niesler, “Language-dependent state clustering for multilingual
acoustic modeling,” in Proc. Speech Commun., 2007.

[20] C.-F. Yeh, L.-C. Sun, C.-Y. Huang, and L.-S. Lee, “Bilingual acoustic
modeling with state mapping and three-stage adaptation for tran-
scribing unbalanced code-mixed lectures,” in Proc. ICASSP, 2011, pp.
5020-5023.

[21] Y. Qian and J. Liu, “Phone modeling and combining discriminative
training for Mandarin-English bilingual speech recognition,” in Proc.
ICASSP, 2010, pp. 4918-4921.

[22] H. Cao, T. Lee, and P. Ching, “Cross-lingual speaker adaptation via
Gaussian component mapping,” in Proc. Interspeech, 2010.

[23] C.-F. Yeh, A. Heidel, H.-Y. Lee, and L.-S. Lee, “Recognition of highly
imbalanced code-mixed bilingual speech with frame-level language
detection based on blurred posteriorgram,” in Proc. ICASSP, 2012, pp.
4873-4876.

897

[24] C.-F. Yeh, C.-Y. Huang, L.-C. Sun, and L. Lee, “An integrated frame-
work for transcribing Mandarin-English code-mixed lectures with im-
proved acoustic and language modeling,” in Proc. ISCSLP, 2010, pp.
214-219.

[25] T. Hofmann, “Probabilistic latent semantic analysis,” in Proc. Uncer-
tainty Artif. Intell. (UAI’99), 1999.

[26] S.-Y. Kong and L.-S. Lee, “Semantic analysis and organization of
spoken documents based on parameters derived from latent topics,”
IEEE Trans. Audio, Speech, Lang. Process., vol. 19, no. 7, pp.
1875-1889, Sep. 2011.

[27] Y.-N. Chen, Y. Huang, S.-Y. Kong, and L.-S. Lee, “Automatic key
term extraction from spoken course lectures using branching entropy
and prosodic/semantic features,” in Proc. IEEE Spoken Lang. Technol.
Workshop, 2010, pp. 265-270.

[28] F. Liu, D. Pennell, F. Liu, and Y. Liu, “Unsupervised approaches
for automatic keyword extraction using meeting transcripts,” in
Proc. Human Lang. Technol.: Annu. Conf. North Amer. Chap. Assoc.
Comput. Linguist., 2009.

[29] F. Liu, F. Liu, and Y. Liu, “Automatic keyword extraction for the
meeting corpus using supervised approach and bigram expansion,” in
Proc. IEEE Spoken Lang. Technol. Workshop, 2008, pp. 181-184.

[30] E. D’Avanzo, B. Magnini, and A. Vallin, “Keyphrase extraction for
summarization purposes: The LAKE system at DUC-2004,” in Proc.
Document Understand. Conf., 2004.

[31] X. Jiang, Y. Hu, and H. Li, “A ranking approach to keyphrase extrac-
tion,” in Proc. 32nd Int. ACM SIGIR Conf. Res. Develop. Inf. Retrieval,
20009.

[32] Y.-N. Chen, Y. Huang, H.-Y. Lee, and L.-S. Lee, “Unsupervised two-
stage keyword extraction from spoken documents by topic coherence
and support vector machine,” in Proc. ICASSP, 2012, pp. 1541-1544.

[33] Y.-N. Chen, Y. Huang, S.-Y. Kong, and L.-S. Lee, “Automatic key
term extraction from spoken course lectures using branching entropy
and prosodic/semantic features,” in Proc. IEEE Spoken Lang. Technol.
Workshop, 2010, pp. 265-270.

[34] Z.Liu, P.Li, Y. Zheng, and M. Sun, “Clustering to find exemplar terms
for keyphrase extraction,” in Proc. EMNLP, 2009, pp. 257-266.

[35] R. Cilibrasi and P. Vitanyi, “The Google similarity distance,” I[EEE
Trans. Knowl. Data Eng., vol. 19, pp. 370-383, 2007.

[36] J. Zhang, H. Y. Chan, P. Fung, and L. Cao, “A comparative study on
speech summarization of broadcast news and lecture speech,” in Proc.
Interspeech, 2007.

[37] S. Xie, D. Hakkani-Tur, B. Favre, and Y. Liu, “Integrating prosodic
features in extractive meeting summarization,” in Proc. ASRU, 2009.

[38] Y.-N. Chen and F. Metze, “Two-layer mutually reinforced random
walk for improved multi-party meeting summarization,” in Proc.
IEEE Spoken Lang. Technol. Workshop, 2012, pp. 461-466.

[39] Y.-N. Chen, Y. Huang, C.-F. Yeh, and L.-S. Lee, “Spoken lecture sum-
marization by random walk over a graph constructed with automati-
cally extracted key terms,” in Proc. Interspeech, 2011.

[40] S. Robertson, S. Walker, M. Beaulieu, and P. Willett, “Okapi at trec-7:
Automatic ad hoc, filtering, vlc and interactive track,” in Proc. 7th Text
REtrieval Conf. (TREC-7), 1999, vol. 21, pp. 253-264.

[41] S.XieandY. Liu, “Using corpus and knowledge-based similarity mea-
sure in maximum marginal relevance for meeting summarization,” in
Proc. ICASSP, 2008, pp. 4985-4988.

[42] C.-Y.Lin, “Rouge: A package for automatic evaluation of summaries,”
in Proc. Workshop Text Summarization Branches Out, 2004.

[43] H.-Y. Lee and L.-S. Lee, “Enhanced spoken term detection using sup-
port vector machines and weighted pseudo examples,” IEEE Trans.
Audio, Speech, Lang. Process., vol. 21, no. 6, pp. 1272-1284, Jun.
2013.

[44] H.-Y. Lee, P.-W. Chou, and L.-S. Lee, “Open-vocabulary retrieval of
spoken content with shorter/longer queries considering word/subword-
based acoustic feature similarity,” in Proc. Interspeech, 2012.

[45] D. Vergyri, I. Shafran, A. Stolcke, R. R. Gadde, M. Akbacak, B. Roark,
and W. Wang, “The SRI/OGI 2006spoken term detection system,” in
Proc. Interspeech, 2007.

[46] J. Mamou, B. Ramabhadran, and O. Siohan, “Vocabulary independent
spoken term detection,” in Proc. 30th Annu. Int. ACM SIGIR Conf. Res.
Develop. Inf. Retrieval, 2007.

[47] P. Yu, K. Chen, L. Lu, and F. Seide, “Searching the audio notebook:
Keyword search in recorded conversations,” in Proc. Conf. Human
Lang. Technol. Empirical Meth. Nat. Lang. Process., 2005.

[48] C.Chelbaand A. Acero, “Position specific posterior lattices for indexing
speech,” in Proc. 43rd Annu. Meeting Assoc. Comput. Linguist.,2005.

[49] S. Parlak and M. Saraclar, “Spoken term detection for Turkish broad-
cast news,” in Proc. ICASSP, 2008, pp. 5244-5247.



898 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 22, NO. 5, MAY 2014

Hung-yi Lee received the M.S. and Ph.D. degrees in
communication engineering from National Taiwan
University (NTU), Taipei, Taiwan, in 2010 and
2012, respectively. From September 2012 to August
2013, he was a postdoctoral fellow in Research
Center for Information Technology Innovation,
Academia Sinica. He is currently visiting the Spoken
Language Systems Group of MIT Computer Science
and Artificial Intelligence Laboratory (CSAIL). His
research focuses on spoken content retrieval and
spoken document summarization.

Sz-Rung Shiang was born in 1990. She received the
B.S. degrees in electrical engineering from National
Taiwan University (NTU) in 2012. She is currently a
Master student in the Graduate Institute of Electrical
Engineering, National Taiwan University, Taipei,
Taiwan. Her research focused on automatic speech
summarization.

Ching-feng Yeh was born in 1987. He received the
B.S. and M.S. degrees in electronic engineering and
communication engineering from National Taiwan
University (NTU), Taipei, Taiwan in 2009 and 2011,
respectively.

He is currently pursuing the Ph.D. degree in
the Department of Communication Engineering,
National Taiwan University, Taipei, Taiwan. His
research focused on automatic speech recognition.

Yun-Nung Chen is currently a Ph.D. student in
the Language Technologies Institute of School of
Computer Science at Carnegie Mellon University.
Her research interests include spoken dialogue
understanding, speech summarization, information
extraction, and machine learning. She received Best
Student Paper Awards from IEEE ASRU 2013 and
IEEE SLT 2010, and a Best Student Paper Nominee
from INTERSPEECH 2012. Chen earned the B.S.
and M.S. degrees in computer science and informa-
tion engineering from National Taiwan University,
Taipei, Taiwan, in 2009 and 2011 respectively, and the M.S. degree in language
technologies from Carnegie Mellon University, Pittsburgh, PA, in 2013.

Yu Huang was born in 1987. She received bachelor
and master degrees in computer science and infor-
mation engineering from National Taiwan University
(NTU), Taipei, in 2009 and 2011, respectively.

Her research has been focused on semantic
analysis, key term extraction and key term graph
generation. Her paper “Automatic Key Term Extrac-
tion from Spoken Course Lectures Using Branching
Entropy and Prosodic/Semantic Features” was
awarded “Best Student Paper Award” in the IEEE
Spoken Language Technology conference, 2010.

Sheng-yi Kong was born in 1981. He received the
B.S. and Ph.D. degrees in computer science and in-
formation engineering from National Taiwan Univer-
sity (NTU), Taipei, in 2004 and 2010, respectively.

From March 2010 to June 2010, he was a Research
Intern mentored by Dr. Yao Qian under the supervi-
sion of Prof. Frank Soong with Microsoft Research
Asia, Beijing, China. His research has been focused
on spoken document summarization, spoken docu-
ment clustering, semantic analysis, and information
retrieval.

Lin-shan Lee (F3) received the Ph.D. degree in
electrical engineering from Stanford University,
Stanford, CA.

He has been a Professor of electrical engineering
and computer science at the National Taiwan Uni-
versity, Taipei, Taiwan, since 1982 and holds a joint
appointment as a Research Fellow of Academia
Sinica, Taipei. His research interests include digital
communications and spoken language processing.
He developed several of the earliest versions of
Chinese spoken language processing systems in the
world including text-to-speech systems, natural language analyzers, dictation
systems, and voice information retrieval systems.

Dr. Lee was Vice President for International Affairs (1996-1997) and the
Awards Committee chair (1998-1999) of the IEEE Communications Society.
He was a member of the Board of International Speech Communication Asso-
ciation (ISCA 2002-2009), a Distinguished Lecture (2007-2008) and a member
of the Overview Paper Editorial Board (since 2009) of the IEEE Signal Pro-
cessing Society, and the general chair of ICASSP 2009 in Taipei. He is a fellow
of ISCA since 2010, and received the Meritorious Service Award from IEEE
Signal Processing Society in 2011.



