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Abstract

The increasing popularity of Massive Open Online Courses
(MOOC:s) has resulted in huge number of courses available over
the Internet. Typically, a learner can type a search query into
the look-up window of a MOOC platform and receive a set of
course suggestions. But it is difficult for the learner to select
lectures out of those suggested courses and learn the desired in-
formation efficiently. In this paper, we propose to structure the
lectures of the various suggested courses into a map (graph) for
each query entered by the learner, indicating the lectures with
very similar content and reasonable sequence order of learn-
ing. In this way the learner can define his own learning path on
the map based on his interests and backgrounds, and learn the
desired information from lectures in different courses without
too much difficulties in minimum time. We propose a series
of approaches for linking lectures of very similar content and
predicting the prerequisites for this purpose. Preliminary re-
sults show that the proposed approaches have the potential to
achieve the above goal.

Index Terms: Massive Open Online Courses (MOOCsSs)

1. Introduction

The increasing popularity of Massive Open Online Courses
(MOOC:s) [[1] has resulted in huge number of courses available
over the Internet under various MOOCs platforms such as edX
and Coursera. When a learner wishes to learn a certain subject,
he can simply type a search query on the look-up window of
a MOOC platform and receive a series of course suggestions
for him to select. But a course may not cover all the topics
important for him. Even if he spends time to take one course,
he may still miss some information important for him taught in
other courses or lose the global picture for the whole subject
he wishes to learn. On the other hand, going through all re-
lated courses is impossible for a learner, and especially waste-
ful when the courses have a good portion of overlap. Also, very
often it will be easier to learn a lecture after some other lec-
tures because the content of the former is based on the concepts
mentioned in the latter.

With the thoughts mentioned above, it may be much more
efficient if the learner can choose from a whole set of lectures
collected from different courses, shown on a map (graph) for
the global picture of the subject indicating the lectures with
overlapped content and reasonable sequence order of learning.
Such a graph would pave the roads towards efficient person-
alized learning, because different learners may select different
learning paths over the same graph due to different interests
and backgrounds. There are two key technologies necessary
for constructing such a graph, i.e., linking lectures with over-
lapped or very similar content, and predicting prerequisites be-
tween lectures so as to give them a good sequence order. This
paper presents a series of approaches towards these directions
and some initial results obtained. A MOOC interface towards
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the above goal is currently being developed. It is a prototype
system called Cangjie, which organizes the lectures from more
than 50 courses on edX and Coursera. The video demonstration
of the prototype system can be found at [2]. Although there are
already many approaches proposed for helping learners browse
on-line courses including retrieving relevant lectures [3H7], key
term extraction [5l|7]], summarizing the audio/video record-
ings [7,/8]] and visualizing interaction history [9]], they primarily
aimed at managing the information from a single course, in-
stead of considering the relationships among the content of lec-
tures of different courses as considered here. Moreover, some
previous works proposed for automatically linking objects to
help people navigate unfamiliar territory [[10,{11]] and observing
prerequisite relations among courses to learn a directed univer-
sal concept graph [12][13]]. However, constructing a map for
the lectures to enhance MOOC learning as in this paper has not
been widely studied yet.

2. Structuring Lectures with a Map

Fig. [T(a) is an example of the retrieval results after the
learner enters a query for the subject he wishes to learn, in-
cluding 3 courses X', ) and Z each with 5 lectures in sequence
order as {;, i = 1,2, ...,5} and so on. Fig.[I[b) indicates that
the approaches proposed in this paper may find out that lecture
2 of X (x2) has content very similar to that of lecture 3 of )
(y3), while 27 is the prerequisite of y2 and y4 is the prerequisite
of z5. This produces the map (or a graph) as shown in Fig.[T[b).
A learner may then choose the learning path as shown red in
Fig.C), {21 — Y2 —> (y3,1'2) — XT3 — Y4 —> 2’5}, SO as to
learn the selected parts of three courses without too much diffi-
culties in minimum time. The approaches used to link lectures
in different courses but with very similar content is introduced
in Section 3] The approaches for predicting the prerequisite re-
lationships between lectures is introduced in Section[d These
approaches make it possible to produce a lecture map for each
query entered by a learner, so the learner can easily design his
personalized learning path accordingly and learn efficiently.

Figure 1: Structuring lectures in multiple courses with a map
: (a) retrieved lectures in courses X', ) and Z, (b) linking lec-
tures with similar content and predicting the prerequisite rela-
tionship, (c) personalized learning path chosen by a learner.
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3. Linking Lectures with Similar Content
3.1. Individual Pair Similarity

A simple approach is to compute the similarity S(z;,y;) be-
tween the lectures x; and y; for courses X and ) as in Fig. E]
based on their audio transcriptions or lecture titles, and then
choose the pairs with similarity exceeding a threshold.

The similarity S(z;,y;) based on audio transcriptions can
be simply obtained by the feature vectors in the vector space
model with tf-idf weighting and the cosine similarity. This can
also be performed on all the key terms extracted [14] from the
course transcriptions, rather than on all words in the lexicon.
On the other hand, we can also perform latent topic analysis and
obtain a topic distribution vector for a lecture x, { P(tx|z), k =

., T}, in which P(¢5|x) is the probability of observing topic
tr from x, and T is the number of latent topics. The topic
similarity between two 1ectures z; and y; is then,

S(xi,y;) ZP tilai) Ptely;)- 0

Lecture titles usually carry key information so should also be
carefully used. In addition to similarly computing S(z;,y;)
based on the titles just as based on audio transcriptions men-
tioned above, we can also leverage the grammatical information
obtained from the syntactic parsing tree of each title, represent-
ing each title by a feature vector of grammatical rules used [15]]
(each dimension is a rule, and it is 1 if used and O otherwise),
based on which cosine similarity can be evaluated. If two ti-
tles have very similar parsing trees and very similar words, the
lectures usually have very similar content.

3.2. Global Lecture Structure Considerations

There always exists sequence orders for lectures in a course
because usually one concept follows another. As a result, when

lectures with similar content in different courses are linked,

these links should not cross over each other frequently because

they should follow a certain order in their own courses. In

Fig. for (z;,y;) and (x /,y /) are two pairs of linked lec-
i 7

tures in two courses X and Y and ¢ > 4 and j > 5’ as in

Fig.Pa). These two links seem reasonable because x; follows
s in X and y; follows y +in Y. On the other hand, if ¢ > 7’

but] < j’asin Fig. lb) thls is a crossover and less likely to be
correct, because if x; is similar to y;, « / before x; is less likely
K3
to be similar to y , after y;. This leads to the consideration for
J
global lecture structures.

Let £ represent a set of linked similar lecture pairs for
courses X and ),

L= {(wn 5 yj1)7 ceey (wik7yjk)7 ceey (wi\c‘ ) yj\g\ )}7 (2)
where (z;, , y;, ) represents the k-th pair of similar lectures

with z;, in X and y;, in J). We can define an objective function

(@) X Y ) X Y

Figure 2: (a) Reasonable links for similar lectures and (b)
crossover links.

F(L) to be maximized,

F(L)= > Siy)—nC(L) =-rlLl, O
(z;,y5)€EL
C(‘C’) = C((xivyj)r (zi/»yj’))v (4)
(®i,y5), (250,950 )€EL
o _Jli—4|+]j — 4’|, crossover,
C((Izv y])v (xz’ > y]’)) = {07 otherwise. (©)

where A1 and A2 are parameters to be determined by a devel-
opment set. The first term on the right hand side of (3) is to
accumulate the similarity values obtained in Section [3.1]for all
linked pairs in £. From @(@), the second term on the right
hand side of (3) represents “accumulated degree of crossover”
in the set £ because the larger the value of |¢ — ¢'|+|j — j'|,
the more serious the crossover for this pair of links, and these
values are accumulated in (@). The last term in (3), —A2|L],
prevents from including too many links, since any linked pair
(zi,y;) may contribute to the first term in (3) as long as
S(zi,y;) is positive.

A greedy algorithm can be used to solve the problem of
maximizing (). In each iteration, the system links the pair of
lectures that increases the most. Although this algorithm
can only find an approximate solution, it works reasonably well
in our experiments.

4. Prerequisite Prediction

The goal here is to determine which of the two given lectures
in the same domain should be taken first.

4.1. Feature vector extraction

The purpose here is to construct a feature vector u for each
lecture.

4.1.1. Framework based on Keywords

We select the top-n most frequently used words (with stop
words deleted first) as the keywords [[14f]. This gives a set of
n keywords for a course u, W = {w1, wa, ..., w, }, based on
which the feature vectors can be built.

4.1.2. Semantic Weights for Keywords

We wish to develop some weights for the keywords,
{s(w1), s(w2), ..., s(wrn)}, indicating their importance in se-
mantics, where s(wr) is the weight for w;.

* Semantic depth in WordNet: A “hypernym” is a word whose
semantic field includes another word. For every keyword w;
found above in W, we find it in the hypernymy tree from
WordNet and traverse back to the root [[16H20]. Number of
steps needed to arrive at the root can be taken as s(w;) since
it represents the semantic depth of w;. Larger s(w;) implies
w; is more specific.

* Late occurrence ratio: For a course of m lectures, if a key-
word w; in W appears the first time in the [-th lecture, we
have s(w;) = L, so s(w;) is between [0,1]. Larger values
of i imply w; first appears later in the course, or it is more

specific in the respective domain.

4.1.3. Feature Vector Representation Schemes

Different schemes are proposed here to construct the feature

vectors u for the lectures based on the keyword set V¥V and
the corresponding semantic weights for keywords mentioned
above.

* Bag-of-word representation (BOW):

u=[tf(wi) tf(w2) tf(wn)], (6)



where w is the feature vector for the lecture, and ¢ f(w;) is
the term-frequency of the keyword w; in the lecture.

o Weighted BOW: Each term-frequency tf(w;) in @ is
weighted by s(w;) mentioned in Subsection[4.1.2]

u=[s(w)tf(wi) s(w2)tf(w2) s(wn)tf(wn)l], (7)

Since we propose two different weights s(w;) in Subsec-
tion 1.2} there are two different weighted BOW represen-
tation schemes here.

e Word embedding representation: We train the domain-
specific word embedding model [21H24] with corpora col-
lected from Wikipedia. We first extract key terms [14] from
the course transcriptions, and use the obtained key terms as
queries to retrieve all related articles in Wikipedia. All these
articles including others linked to these articles in Wikipedia
are taken as the training corpora for training the word em-
bedding model for the course. With this model, we represent
each keyword w; as a word vector v;. The new keyword set
is then, V = {v1,va,...,vn}, where v; € R?, d is the di-
mension of the word embedding model. Finally, we accumu-
late and average the word vectors for the keywords ever men-
tioned in the given lecture, similarity weighted, to be taken
as the feature vector,

u= N% ; s(wi)tf (wi)vi, (8)

where N,, is the total count of all keywords in the set W
appearing in the given lecture. This feature vector v in (8)
is in fact very similar to the weighted BOW representation
mentioned above in (7), except for weighted BOW each di-
mension of w is for a keyword, while here each dimension of
v is a dimension for the word embedding model.

4.2. Support Vector Machine (SVM) Classification

Below u; and u; are the feature vectors of the lectures being
considered as mentioned above, a;; is the corresponding pre-
requisite relationship, i.e., a;; > 0 if u; is the prerequisite of
u; and a;; < 0 otherwise. M is a weight matrix and also the
set of parameters to be learned. With M trained, we can then
predict the prerequisite relations between lectures ¢ and j. Two
different weight schemes are considered:

o Directional Matrix: M € RP, where D is the dimension-

ality of wu, either n in (B)(7) or d in B):
aij = M - (u; — uy), )

o Transformation Matrix: M € R3*4
&ij = u:{MU]', (10)

Which assigns a weight to each component of u,; multiplied
by each component of u;. The criterion for optimizing matrix
M is then defined as:
. . 2
min Y [1 = aij (@i +0)], +AIMIP, D
2]
where ||-|| is the matrix Forbenius norm,(1 — v)y =
max(0, 1 — v) denotes the hinge function, b is the bias, (1) is
actually the formula for SVM. Given a set of training lectures
and their labeled prerequisite relationships (a;; = +1 or —1),
(T1) can be trained with SVM algorithms [2527].

S. Experimental Results

5.1. Course Material Description

We chose to focus on the courses on two areas, Natural Lan-
guage Processing (NLP) and General Chemistry, each with two

Precision | Recall F1

(%) (%) (%)
Audio (a) all terms 13.8 24.6 17.3
= | Transcripts | (b) key terms 33.8 26.5 28.8
2 (c) topics 489 302 | 372
2 Title (d) all terms 52.7 20.7 | 297
= (e) syntax 56.5 18.9 | 27.9
®): (@)+(b)+(c)+(d)+(e) 429 527 | 472
Global (g) 53.6 54.6 | 541

Table 1: The results of linking lectures with similar content.
The upper part (rows (a) to (f) in “Individual”) are those us-
ing different individual pair similarity measures in Section 3.1}
while the lower part (row (g) in “Global”) is the results consid-
ering global structure in Section[?;z]‘

courses. The two NLP courses are offered by Stanford Univer-
sity [28] and Columbia University [[29] lectures, having average
lengths of 465.8 and 243.2 seconds each respectively consisting
of 121 and 101 lectures, while the two Chemistry courses were
from University of Kentucky [30] and Rice University [31,32]]
respectively containing 132 and 72 lectures, having average
length of 463.9 and 877.8 seconds each. These courses are on
the Coursera platform. The manual transcriptions for the au-
dio and the title of each lecture were available and used in the
experiments.

5.2. Linking Lectures with Very Similar Content

Three experts (two researchers and one graduate student)
with NLP background were recruited to label whether two lec-
tures (each in one of the two NLP courses) have very similar
content. The average kappa values among the three experts
were 82%. The ground truth was obtained by expert voting.
Precision, recall and Fl-measure were used as the evaluation
measures. Precision is the percentage of lecture pairs linked
by the computer to have similar content which were consistent
with the ground truth, while recall is the percentage of lecture
pairs considered to have very similar content in the ground truth
which were similarly identified by the system. Two-fold cross
validation were performed in the tests. The results are reported
in Table [T} The upper part of Table [I] (labeled “Individual”)
reports the results of using the individual pair similarity in Sec-
tion The rows (a) to (e) are the results of the different
similarity measures mentioned in Section [3.1] with rows (a) to
(c) based on the manual transcripts of the audio in the lectures,
while (d)(e) on the titles. The key terms in (b) were extracted
by the key term extraction toolkit, topia.termextracﬂ which
picked the nouns and noun phrases as key terms by POS tag-
ging and some heuristic rules. LDA in (c) was implemented
with MALLETE] with 128 topics. We see the key terms yielded
better results than considering all words (rows (b) vs (a)). Also,
the latent topic based similarity yielded the best results among
all the similarity measures based on the audio transcripts (rows
(c) vs (a), (b)), obviously because the latent topics can handle
the synonym problems to some extent.

The results for the lexical similarity and syntactic parsing
treeﬂ similarity of the titles are respectively shown in rows (d)
and (e). It is clear that syntactic parsing tree similarity outper-
formed the lexical similarity (rows (e) vs (d)). The titles were
usually brief without redundant words, as lectures having sim-
ilar titles usually have very similar content. This is why the

Uhttps://pypi.python.org/pypi/topia.termextract/1.1.0
Zhttp://mallet.cs.umass.edu/
3The parsing trees were generated by Stanford CoreNLP toolkit.



https://pypi.python.org/pypi/topia.termextract/1.1.0
http://mallet.cs.umass.edu/

Accuracy (%) NLP Chemistry
(a) Bag-of-word (BOW) 68.1 61.4
Weighted (b) Late-occur 65.5 62.8
Direct BOW (c) WordNet 70.0 63.3
Word (d) Late-occur 69.5 64.8
Embedding | (e) WordNet 73.3 65.2
Word (f) Late-occur 69.4 66.6
Transf| o bedding [ (2) WordNet 76.1 67.0

Table 2: The performance of predicting prerequisite relation-
ships. The upper part (Direct) is for the Directional matrix in
(E[), with rows (a) to (e) for different feature vector representa-
tions and weights. The lower part (Transf) is for the Transfor-
mation matrix in @) instead.

results based on the titles had higher precision than those based
on the audio transcriptions (rows (d), (e) vs (a), (b), (c) for “Pre-
cision”). On the other hand, because the titles may be too brief
to cover all concepts mentioned in the lectures, sometimes lec-
tures with very similar content were considered different if their
common concepts were not implied by the titles, which led to
lower recall (rows (d), (e) vs (a), (b), (c) for “Recall”’). Row (f)
are the results using the average of the five similarity measures
in rows (a) to (e), giving a precision not as high as the best ones
(rows (f) vs (c) (d), (e) for “Precision”), but the highest recall
and Fl-measure among all (rows (f) vs (a) to (e) for “Recall”
and “F17).

The last row (g) of Table |I| (labeled “Global”) is for the
approach considering global structure as in Section [3.2] The
similarity measure S(z;,y;) in is the average of the five
measures used in row (f). Compared to row (f) with the same
S(z:,y;), considering the global structure in addition was sig-
nificantly better in both precision and recall (rows (g) vs (f)).
Clearly, the global structure is very helpful. Also, in row (g) all
the precision, recall and F1 were significantly higher than 50%.

5.3. Prerequisite prediction

The two sets of parallel courses in NLP and Chemistry were
both used. We simply assume that for two lectures in the same
chapter of the same course, the one given earlier is the prerequi-
site of the other one given later. So for the two courses in each
field, we took the lecture sequence order for one course as train-
ing data to learn the model to predict the prerequisite relation-
ships of the lectures in the other course in the same field, while
the sequence order for the latter was taken as the ground truth
in testing. Although here we only used the model to predict
the prerequisite relationships for lectures in courses in the same
field, it it believed that the model learned should be equally ap-
plied on lectures in courses in other fields as well.

The accuracy of the prerequisite prediction was used as the
measurement. The results are in Table[2] The two columns la-
beled with NLP and Chemistry in Table 2] are respectively for
the results on the NLP and Chemistry courses. The upper part
of Table |Z| (labeled as “Directional”) is for the Directional Ma-
trix in @), with rows (a) to (e) for different feature vector rep-
resentation schemes (Section m and two semantic weights
(Section T2). Row (a) is for Bag-of-word vector in (6)), and
rows (b) and (c) for weighted BOW in (IZ[) using late occurrence
ratio (row (b)) and WordNet (row (c)) respectively. We noted
that the late occurrence ratio was not helpful for NLP courses
(rows (b) vs (a) foe NLP), probably because different lectur-
ers have different habits in using words, so the late occurrence
ratios doesn’t necessarily carry prerequisite relation informa-
tion across courses. On the other hand, semantic depth from
WordNet improved the performance on both NLP and Chem-

istry (rows (c) vs (a)(b)), or the hypernym tree structure is help-
ful in predicting the prerequisite relationships.

The results of semantic weighs for distributed word em-
bedding representations are in rows (d) and (e). We found that
word-embedding representation outperformed weighted BOW
in all cases (rows (d)(e) vs (b)(c)). Although late occurrence ra-
tio messed up the results while using weighted BOW schemes,
it actually performed better with word embedding representa-
tion (rows (d) vs (a)). Moreover, semantic depth from WordNet
with word embedding representations outperformed all the pre-
vious methods (rows (e) vs (a)(b)(c)(d)), probably because with
using word embedding representations, lectures using very dif-
ferent words to describe very similar concepts can be properly
represented in the continuous space.

We then used the Transformation matrix in (I0) with the
top-2 results obtained above (word embedding with weights
in rows (d) and (e)). The results are in the lower part of Ta-
ble|Z|(rows (f)(g) under). We see more parameters learned with
@) yielded better results with the same features (rows (f)(g) vs
(d)(e)), or considering the interaction between different feature
dimensions is helpful.

5.4. User study

To verify that the proposed approaches are beneficial for learn-
ing, we conducted user study to compare the MOOCsS user in-
terface as proposed in Fig.[T{c) (Proposed) with two baselines.
The first baseline displayed the originally retrieved lectures in
sequences as in Fig.[T[a) (Original), while the second one first
linked the lectures with similar content using the proposed ap-
proach and then ordered them randomly (Half Random). We
entered three queries in NLP domain and showed the three cor-
responding interfaces mentioned above to 13 users, all having
NLP background, and asked if they agreed that these interfaces
helped in learning. There are 5 selections for them to choose,
from “strongly disagree”(1 point) to “strongly agree”(5 points).
The results are in Fig.[] The average points for Original, Half
Random, and Proposed are respectively 3.31, 1.56, and 4.52.
Moreover, around 53.8% of the users strongly agreed that the
proposed approaches help in learning, while much less did so
for the original interface (Fig. EKC) vs (a)). The much worse sit-
uation in Fig. B[b) implies the importance of lecture sequence
order even given similar lectures linked. This verified the pro-
posed approaches are beneficial for learning.

6. Conclusions

We propose to structure related lectures in different courses
retrieved from a query into a learning map by linking lectures of
very similar content and predicting the prerequisites. Learners
can then define their personalized learning path on the map and
learn the desired information efficiently. In addition to objective
evaluations, the user study show that 97.4% of users agree that
such a map is helpful in learning.

(A) Parallel (Ave = 3.31)

%Eu@

(B) Half Random (Ave =1.56)  (C) Proposed (Ave = 4.52)

° al.3% 03.8% \ESIETG

Strongly Disagree (1) Ml Disagree (2) Neither agree nor disagree(3) [l Agree (4) ll Strongly Agree (5)

>

45270

Figure 3: User study : Users were asked if they agreed these
interfaces help in learning, (a) Original, (b) Half Random, (c)
Proposed.
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