
Recurrent Neural Network Based Personalized Language Modeling by Social
Network Crowdsourcing

Tsung-Hsien Wen1,Aaron Heidel1, Hung-Yi Lee1, Yu Tsao2, and Lin-Shan Lee1.2

1National Taiwan University,
2Academic Sinica, Taipei, Taiwan

r00921033@ntu.edu.tw, lslee@gate.sinica.edu.tw

Abstract
Voice interface on smartphones has been accepted and used by
many people nowadays, which boosts the need for a personal-
ized language model to better model the linguistic patterns and
wording habits of that particular smartphone owner. Thanks to
the popularity of social networks in recent years, personal texts
and messages are no more unaccessible. However, data sparse-
ness is still a unsolved problem. In this paper, we propose a
three-step adaptation approach to personalize recurrent neural
network language models (RNNLMs). We believe its capability
of modeling word histories as distributed representation and ar-
bitrary length can help to mitigate the data sparseness problem.
Furthermore, additional user oriented features were also pro-
posed to empower RNNLMs stronger capabilities for personal-
ization. The experiments on Facebook dataset showed that the
proposed method not only drastically reduced the model per-
plexity in preliminaries, but also moderately reduced the word
error rate in n-best rescoring tests.
Index Terms: Recurrent Neural Network, Personalized Lan-
guage Modeling, Social Network, LM adaptation

1. Introduction
Personalization, which is an indispensable aspect in several real
world applications nowadays, has been studied in a wide range
of research fields, such as personalized web search [1, 2] and
recommendation systems [3, 4, 5, 6]. In speech community,
acoustic model adaptation [7, 8, 9], which has been proven to
give an impressive word error rate reduction, can be viewed as
the major efforts made for personalization in this field. How-
ever, although acoustic model personalization has been well
studied, there’s little works on personalized language modeling.
Traditionally, language model adaptation [10, 11, 12] stressed
on the problem of cross-domain linguistic mismatch in which
cross-individual linguistic mismatch is often ignored. Proba-
bly because of the lack of large enough personal corpora in
early days, it was hard to realize the idea, and therefore we
have to aggregate the corpora produced by many different in-
dividuals but on similar domains to perform domain-oriented
language model adaptation. But now, there’re two major trends
that strongly push the progress of personalized language mod-
els: First, thanks to the mass production and rapid prolifera-
tion of smartphones in recent years, everyone can have one,
which makes the use of smartphones a very personal experi-
ence [13, 14, 15]. As a consequence, only a speaker depen-
dent recognizer is needed. Secondly, large quantities of texts
are available over the social networks with known authors and
given relations among the authors. It is possible to train person-
alized language models because it may be reasonable to assume
that users with close relationships may share common subject
topics, wording habits and linguistic patterns.

N-gram-based language models [10, 16, 17] including var-
ious adaptation techniques have been proven to work very well

for many applications. In our previous work, an N-gram-based
language model was adapted toward one particular user’s word-
ing patterns by incorporating social texts the target user and
other users had posted considering different aspects of similar-
ities between users [18]. However, the lack of natural strat-
egy to model long range dependencies [19, 20, 21] and the po-
tentially error-prone back-off behaviors [22] seem to limit the
prediction power of N-gram models. Recently, several studies
had shown that the neural network-based (NN) language mod-
els [23, 24, 25] improved over N-gram-based models by taking
the advantage of the learned distributed representations of word
histories. Moreover, RNNLMs [26, 27, 28], by memorizing ar-
bitrary length of histories in a recurrent structure, modeled long
range dependencies in an elegant way. Considering our lan-
guage model personalization task, we think it is beneficial to
adopt RNNLMs due to the following three reasons: First, the
amount of social posts we can obtain from each individual are
still relatively sparse compared to the amount that we can ro-
bustly apply N-gram model adaptation, but the distributed rep-
resentation of word histories can extenuate this problem by ad-
dressing the similarities of combinatorial number of originally
disjoint sentences in the continuous space. Secondly, online
messages or social posts tend to be relatively casual thus usu-
ally not strongly obey traditional grammar rules in which short-
term dependencies may not be evident enough for predicting
the next word anymore. The recurrent structure may help to
mitigate it since it memorizes more dependencies than N-gram
does. Last but not least, besides posts and messages, the social
network also maintains a lot of information such as user pro-
files, relationships, interactions, tastes, and interests. These are
all valuable information we can use while predicting one’s lin-
guistic habits. As mentioned in some previous works [28, 29],
adding additional auxiliary features into RNNLMs is relatively
easy and intuitive. As a result, we value the meet of LM per-
sonalization task and RNNLMs as an indispensable attempt.

In this paper, we propose a new paradigm for personal-
ized language modeling in which we use RNNLMs as our base
model. The system is built on a voice access of cloud applica-
tion [18]. A crowdsourcing mechanism is designed to collect-
ing texts and other information on social networks from users.
A three-step training for personalized RNNLMs was also pro-
posed considering the feasibility and complexity of the training
process. Some user oriented features were incorporated into the
model for better word prediction capabilities. The experiments
showed that the proposed method not only drastically reduced
the model perplexity in preliminaries, but also moderately re-
duced the word error rate in n-best rescoring tests.

2. The Crowdsourcing Platform
In order to obtain personal acoustic and language data, we had
implemented a cloud-based application in which it can help
user to access his social network via voice, which was shown

in Fig. 1. As a consequence, this cloud-based application can
also be viewed as a crowdsourcing platform for collecting per-
sonal data. The idea of crowdsourcing [30, 31] had been applied
for several purposes in many different fields. For example, a
crowdsourcing approach [32] was proposed to collect queries
in an information retrieval system considering temporal infor-
mation. MIT movie browser [33, 34] also relied on Amazon
Mechanical Turk, the most famous crowdsourcing platform, to
build a crowd-supervised spoken language system. The defini-
tion of crowdsourcing varied, in our case, an implicit crowd-
sourcing [31] is at play: the user login his Facebook account for
our voice access service by granting our application the author-
ity to collect his acoustic and linguistic data for adaptation. At
the same time, the user could enjoy the benefits of better accu-
racy brought by the personalized recognizer that we had built
from those crawled data.

Figure 1: The ecosystem of our crowdsourcing-based voice ac-
cess of cloud application. A speaker-dependent recognizer is
obtained by acoustic model and language model personaliza-
tion. A web crawler was implemented for collecting social posts
from users for language model personalization.

3. Proposed Approach
As shown in Fig. 2, the RNNLM [26] contain three layers: the
input layer, the hidden layer, and the output layer. The input
word vector w(t) represents the word at time t by an 1-of-N
encoding. The context vector s(t) uses distributed represen-
tation for arbitrary length histories at time t, with a recurrent
connection taking the time-delayed context vector s(t− 1) into
consideration. The output layer y(t) then generates the prob-
ability distribution of the next word. In order to provide com-
plementary information such as part-of-speech tags, topic infor-
mation, or morphological information to the input vector w(t),
a context-dependent RNNLM variant [28] adds an additional
feature layer f(t) to the network in which it connects to both
hidden and output layer. Therefore, all the weights needed to
be learned in the network are matrices W , F , S, G, and O.
The learning process maximizes the likelihood of training data
by backpropagation through time (BPTT) algorithm. Usually, a
validation set is also provided to control the training epochs and
learning rates.

3.1. RNNLM Personalization

Considering the fact that the collected personal corpora is small,
it is impossible to train a standalone RNNLM by using only
this small amount of training data. As a consequence, we fall
back to the idea of language model adaptation [10]. The basic
framework for language model adaptation takes two text cor-

Figure 2: The structure of context-dependent recurrent neural
network language models.

pora into consideration: the adaptation corpus A, which is in-
domain or updated with respect to the target recognition task,
but probably small and insufficient to train a robust standalone
LM; the other is a large background corpus B which may not
be sufficiently related to the target task or perhaps out-of-dated.
Then in traditional N-gram models, the two corpora are inter-
polated by some methods estimating the interpolation weights
between them [35, 36, 37, 38]. But for NN-based LMs, there’s
still not many literatures focus on the problem of adaptation.
Unlike previous works [24, 39] proposed to add an additional
adaptation layer between projection and input layer in feedfor-
ward NNLMs, we propose to directly fine-tune network weights
by the adaptation corpus A on a RNN-based background LM.
Moreover, instead of considering the user’s personal corpus A
and background corpus B only, we also take the corpora of his
friends’ C into consideration. The following three steps de-
scribe how we train and adapt the personalized RNNLMs:

1. Train a general domain RNNLM by the background cor-
pus B. The corpus B is split into training set and valida-
tion set such that the training set likelihood is maximized
and validation set is used to control the training epochs.
An initial set of model parametersW0, F0, S0, G0, and
O0 are obtained here.

2. Given a target user’s corpus A, we split it into train-
ing set Ta and validation set Va. Copy one background
RNNLM, use BPTT to fine-tune parametersW0,F0, S0,
G0, and O0 by maximizing the likelihood of the training
set Ta while again controlling the epochs by the valida-
tion set Va. After fine-tuning, the adapted model param-
etersW ′, F ′, S ′, G′, and O′ can be attained.

3. Given friends’ corpora C, we directly treat C as a com-
pete training set. Again maximizing its likelihood but
still controlling the epochs by Va. The final modelW ′′,
F ′′, S ′′, G′′, and O′′ are outputted afterwards.

There’re several benefits by adopting this three-step RNNLM
personalization: First, due to the common computational over-
head found in RNNLMs, the background RNNLM forms a solid
foundation for future model fine-tuning in which it learns some
general domain histories beforehand. Secondly, although the
amount of training data is small, it is believed that the dis-
tributed representation of NNLMs can amplify the training ef-
ficiency since one training sentence can inform the model com-
binatorial number of other sentences in the continuous space.

Thirdly, unlike our previous approach [18] computes simi-
larities as interpolation weights when incorporating multiple
friends’ corpora, the use of personal validation set Va in Step. 3
makes the approach completely data-driven. We no more wor-
ried about how to select and weight those friends but only max-
imize the training data we can see while at the same time use
the personal validation set Va to guarantee the adaptation ori-
ents toward the right direction. Lastly, considering the recurrent
connection and the additional feature layer have already made
the RNNLM structure complex, we keep the model as simple as
possible without adding any additional layers.

3.2. User Oriented Features

As shown previously in Fig. 2, an additional feature layer f(t)
was added into the context-dependent RNNLM [28] in order
to provide complementary information for the input word vec-
tor. In a previous study [29], adding complementary features
such as part-of-speech tags, word lemmas, and topics, can re-
duce both the model perplexity and word error rate. Besides the
features mentioned above, the use of language is usually influ-
enced by the demographic characteristics of the individual, his
preferences, interests, or even the role he played in a commu-
nity. For example, a male user may mention more about super
hero movies than a female user. People who often work together
may share same jargons. This kind of user oriented features are
hard to obtain in traditional text corpus, but is relatively easy
from social networks.

3.2.1. Demographic information

Consider one particular demographic information that can sep-
arate users p into K clusters, we can then compute the word
distribution P (w|Ck) over those K clusters by

P (w|Ck) =

∑
p∈Ck

n(w, p)∑
k

∑
p∈Ck

n(w, p)
(1)

where n(w, p) is the number of occurence for word w in the
corpus of user p. The resulting word distribution P (w|Ck) is
then fed into the feature layer f(t) as shown in Fig. 2. We
can simply compute and cascade several demographic feature
vectors in the same way to obtain richer information.

3.2.2. Latent user group

Often times, the use of language is not so directly related to the
demographic characteristics of a person. Instead, his interests,
habits, idols he admired, the community he joined, the friends
he linked with ... etc. play an even important role [40, 41].
However, modeling all these phenomenons is difficult not only
because that so many aspects make the feature dimension too
big to efficiently train the RNNLMs, but also due to they are
elusive so that explicit modeling is impractical. In order to
efficiently model these elusive aspects implicitly, we use the
method called latent factor models [4, 42]. First, we construct
a user-word matrix M from those user corpora that we have
collected. For simplicity, we consider only unigrams. Then, a
singular value decomposition is conducted to find latent factors
in the matrix. By keeping only the top-K eigenvalues, we can
project both users and words into a latent space of dimension
K with each dimension represents one latent factor the user or
word possesses. Those latent factor feature of words are then
fed into the feature layer. Note that although our method is
similar to latent semantic analysis [42], there’s one fundamen-
tal difference that LSA factorizes document-word matrix to find
latent topics in the documents while our method factorizes user-
word matrix to find any possible correlations among them.

4. Experiments
4.1. Experimental Setup

4.1.1. Corpus & LMs

Our experiments are conducted on a crawled Facebook dataset.
There are a total of 42 users who logged in and authorized this
project to collecting their messages and basic information for
the purpose of academic research. These 42 users were treated
as our target users and we tried to build a personalized language
model for each of them. For each target user, 3/5 of his corpus
is taken as the training set, 1/5 as the validation set, and the rest
1/5 as testing data for computing the perplexity. Furthermore,
with their consents, the public data that are observable to these
42 target users are also available to our system. Through this
process, besides the personal corpora for the 42 target users,
we also had a whole set of publicly observable data, which are
primarily data for those individuals linked with the 42 users on
the network. In this way, we had 93K anonymous personal cor-
pora, totally 3.3M sentences collected. But after preprocessing
and filtering the number of sentences used in the work was ap-
proximately 2.4M. The number of sentences for each user range
from 1 to 8566 with mean 25.66, with 10.59 words (Chinese or
English or mixed) per sentence in average. On the network,
each target user has an average of 238 friends. For the back-
ground language model, 250M sentences were collected from
another popular social network site called Plurk. There were
both Chinese and English words in the Plurk data with mix-
ing rate 9:1. Modified Kneser-Ney algorithm [43] was used for
N-gram language model smoothing. 46K Chinese words and
the most frequent 18K English words appearing in the corpus
were selected to form the lexicon. The SRILM [44] toolkit was
used for N-gram LM training and adaptation. For RNNLMs,
we use rnnlm toolkit [45] for implementation. We used three
different feature sets in our experiment, they’re pos tags (POS),
demographic features (DE) considering gender (male, female,
unknown) and language settings (Tradition Chinese, Simplified
Chinese, English, unknown), and latent user groups (LUG) with
100 latent dimensions. We reported not only the results of using
them independently but combination of them.

4.1.2. N-best rescoring

For n-best rescoring experiments, we used lattices produced by
HTK toolkit [46] to generate 1000-best lists for rescoring. The
LMs we used to generate n-best lists were 3-gram models also
adapted by personal corpus and friend corpora with Kneser-
Ney smoothing (KN3). The Mandarin tri-phone acoustic mod-
els used for first-pass decoding were trained on the ASTMIC
corpus with 37 Chinese phone set, while the English tri-phone
acoustic models were trained on the Sinica Taiwan English cor-
pus with 35 English phone set, both training sets including hun-
dreds of speakers. The acoustic models were also adapted by
unsupervised MLLR speaker adaptation. We report both the re-
sults with/without speaker adaptation on two different test sets,
Set (I) and Set (II). The users in Set (I) were a subset of users
in Set (II) in which the 42 target users with richer data were
selected. Table. 1 summarized the comparison of the two test
sets. Word error rates reported below was averaged over all
sentences. The decode weights of 8.0 and 0.5 for language and
acoustic models respectively were set empirically.

Table 1: Summary of two test sets for n-best rescoring.
of user speakers # of utt. record env.

Set (I) 12 Two 840 Clean
Set (II) 42 Multiple 948 Various

Table 2: Perplexity results. Both RNNLMs and Kneser-Ney
3grams (KN3) trained with background corpus only (Back.),
further adapted with personal corpus (B+S), and even further
adapted with friend corpora (B+S+F) are shown. Several com-
bination of hidden layer sizes (100H, 200H, 500H) and feature
settings are also reported. Feature used are defined in Sec. 4.1.1.

Model Perplexity

(a)
KN3, Back. 343.57
KN3, B+S 299.32
KN3, B+S+F 233.20

(b)
RNN 100H, Back. 309.50
RNN 200H, Back. 289.14
RNN 500H, Back. 267.38

(c)
RNN 500H, B+S 234.55
RNN 500H, B+S+F 209.56

(d)

RNN 500H, B+S+F, POS 196.50
RNN 500H, B+S+F, DE 199.23
RNN 500H, B+S+F, LUG 195.59
RNN 500H, B+S+F, POS+DE 195.76
RNN 500H, B+S+F, POS+LUG 192.85
RNN 500H, B+S+F, ALL 192.83

(e)
RNN 500H, B+S+F, POS + KN3 158.45
RNN 500H, B+S+F, LUG + KN3 157.23
RNN 500H, B+S+F, ALL + KN3 155.40

4.2. Experimental Results

4.2.1. Perplexity

Table. 2 shows the preliminary perplexity experiments on our
proposed approach. Both RNNLMs and Kneser-Ney 3grams
(KN3) trained with background corpus only (Back.), further
adapted with personal corpus (B+S), and even further adapted
with friend corpora (B+S+F) are shown. Several combination
of hidden layer sizes (100H, 200H, 500H) and feature settings
are also reported. It’s not so surprising that the adaptation works
well both on RNNLMs and N-grams (B+S+F < B+S < Back.
in (a)(c)) considering the mismatch between the background
corpus and each individual. RNNLMs with three different hid-
den layer sizes and different feature settings are also reported.
Generally speaking, RNNLMs with larger hidden layer perform
better than smaller ones (500H < 200H < 100H in (b)) due to
its power of representing richer histories. Adding additional
features can get better perplexity performance ((d) < (c)). Al-
though different features seem to provide the model different
capabilities of predicting next word, but they doesn’t vary too
much in perplexity measure either using only one set of feature
solely or combining them. This may due to the fact that models
with large hidden layer can learn to compensate those infor-
mation contained in different set of features by its stronger con-
text. Lastly, as many previous studies had addressed, RNNLMs,
in general, outperforms N-grams in perplexity, but will perform
even better if we combine them together ((e) < (a)(d)). For our
best model (RNN 500H, B+S+F, ALL + KN3), we reduce the
perplexity by 54.7% compared to background N-grams (KN3,
Back.), around 41.8% compared to its simplest RNNLM ver-
sion (RNN 500H, Back., 500H).

4.2.2. Rescoring

Table. 3 reports the selected n-best rescoring results using our
proposed methods on two different test sets, Set (I) and Set(II),

Table 3: The selected n-best rescoring results conducted on
two different test sets, Set (I) and Set (II), with/without adapted
acoustic model (MLLR/AM) respectively.

WER(%)
Set (I) Set (II)

AM MLLR AM MLLR

Fi
rs

t-
pa

ss KN3 Back. 40.98 38.75 49.19 43.80
KN3 B+S 40.31 38.08 48.63 43.39
KN3 B+S+F 33.45 30.13 46.81 41.95

R
N

N
50

0H

RNN None 32.59 29.80 44.87 40.10
RNN POS 32.51 29.50 44.84 40.06
RNN DE 32.65 29.95 44.94 40.18
RNN LUG 32.95 29.36 44.78 40.17
RNN POS-LUG 32.46 29.58 44.86 40.17

R
N

N
50

0H
+K

N
3 RNN None 32.49 29.37 45.31 40.57

RNN POS 32.53 29.26 45.23 40.38
RNN DE 32.37 29.91 45.47 40.40
RNN LUG 32.51 29.26 45.35 40.53
RNN POS-LUG 32.75 29.75 45.32 40.52

with/without acoustic model adaptation respectively. We de-
coded our first-pass recognition results by three different 3-
gram LMs, they were models trained on background corpus
only (KN3 Back.), adapted by personal corpus (KN3 B+S), and
further adapted by friend corpora (KN3 B+S+F). We can find
that undoubtedly, the adapted models performed better (KN3
B+S+F < KN3 B+S < Back.). We used the best adapted N-
gram models (KN3 B+S+F) to generate lattices, and 1000-best
lists were extracted from the lattices, which were then used
in the n-best rescoring experiments. The RNNLMs used for
rescoring were all configured to 500 hidden layers while adding
different types of features. The interpolation weight between
RNNLM and KN3 were empirically set to 0.75. Generally, all
rescoring results were better than the first-pass results (RNN
KN3, RNN < First-pass), which indicated that the personalized
RNNLMs perform better than personalized N-grams. How-
ever, when talking about whether to combine RNNLMs with
N-grams, Set (I) and Set (II) showed different opinions in which
we got better results on Set (I) when combining them together
but got worse when evaluated on Set (II). This may be due to
the weight 0.75 is not suitable for Set (II), which indicated that
a better weight selection mechanism should be carefully sur-
veyed. We also found out that more features doesn’t necessarily
give better results (others < RNN POS-LUG). Usually, single
use of pos tags (POS) and latent user group (LUG) features gave
more improvements compare to other settings.

5. Conclusion

In this paper, we propose a new paradigm for RNNLM per-
sonalization in which social network data were crawled from a
crowdsourcing platform as adaptation resources. A three-step
adaptation mechanism considering feasibility and complexity
was also proposed. Some user oriented features were also in-
corporated into the model for better word prediction capabili-
ties. Experiments showed that by personalized RNNLMs while
adding user oriented features, the perplexity can be reduced up
to 54.7% compared to background N-grams and 41.8% com-
pared to original RNNLM. Moreover, the 1000-best rescoring
experiments also reported 2.9% to 4.5% relative word error rate
reductions on different experimental settings.

6. References
[1] G. Zweig and C. Shuang yu, “Personalizing model m for voice-

search,” in Proc. on InterSpeech, 2011.

[2] M. Speretta and S. Gauch, “Personalized search based on user
search histories,” in Proc. on Web Intelligence, 2005.

[3] Y. H. Cho, J. K. Kim, and S. H. Kim, “A personalized recom-
mender system based on web usage mining and decision tree in-
duction,” Expert Systems with Applications, 2002.

[4] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization tech-
niques for recommender systems,” Computer, 2009.

[5] F. Walter, S. Battiston, and F. Schweitzer, “A model of a trust-
based recommendation system on a social network,” Autonomous
Agents and Multi-Agent Systems, 2008.

[6] M.-H. Park, J.-H. Hong, and S.-B. Cho, “Location-based recom-
mendation system using bayesian users preference model in mo-
bile devices,” in Ubiquitous Intelligence and Computing, 2007.

[7] C. J. Leggetter and P. C. Woodland, “Maximum likelihood lin-
ear regression for speaker adaptation of continuous density hidden
markov models,” Computer Speech and Language, 1995.

[8] P. C. Woodland, “Speaker adaptation for continuous density
hmms: A review,” in Proc. on ITRW on Adaptation Methods for
Speech Recognition, 2001.

[9] l. G. Jean and C.-H. Lee, “Maximum a posteriori estimation for
multivariate gaussian mixture observations of markov chains,”
IEEE Transactions on Speech and Audio Processing, 1994.

[10] J. R. Bellegarda, “Statistical language model adaptation: review
and perspectives,” Speech Communication, 2004.

[11] A. Heidel and L.-S. Lee, “Robust topic inference for latent seman-
tic language model adaptation,” in Proc. on ASRU, 2007.

[12] H. Bo-June and J. Glass, “Style and topic language model adapta-
tion using hmm-lda,” in Proc. on EMNLP, 2006.

[13] D. Hakkani-Tur, G. Tur, and L. Heck, “Research challenges and
opportunities in mobile applications,” Signal Processing Maga-
zine, IEEE, 2011.

[14] X. Sun and A. May, “The role of spatial contextual factors in mo-
bile personalization at large sports events,” Personal and Ubiqui-
tous Computing, 2009.

[15] S. Arbanowski, P. Ballon, K. David, O. Droegehorn, H. Eertink,
W. Kellerer, H. van Kranenburg, K. Raatikainen, and R. Popescu-
Zeletin, “I-centric communications: personalization, ambient
awareness, and adaptability for future mobile services,” Commu-
nications Magazine, 2004.

[16] P. F. Brown, P. V. deSouza, R. L. Mercer, V. J. D. Pietra, and J. C.
Lai, “Class-based n-gram models of natural language,” Computa-
tional Linguistics, 1992.

[17] A. Stolcke, “Entropy-based pruning of backoff language models,”
in Proc. of the DARPA Broadcast News Transcription and Under-
standing Workshop, 2000.

[18] T.-H. Wen, H.-Y. Lee, T.-Y. Chen, and L.-S. Lee, “Personalized
language modeling by crowd sourcing with social network data
for voice access of cloud applications,” in Proc. on IEEE SLT
workshop, 2012.

[19] J. Wu and S. Khudanpur, “Combining nonlocal, syntactic and
n-gram dependencies in language modeling,” in Proc. on Eu-
roSpeech, 1999.

[20] S. Khudanpur and J. Wu, “Maximum entropy techniques for ex-
ploiting syntactic, semantic and collocational dependencies in lan-
guage modeling,” Computer Speech and Language, 2000.

[21] H. S. Le, A. Allauzen, and Y. Fran, “Measuring the influence of
long range dependencies with neural network language models,”
in Proc. on NAACL-HLT Workshop, 2012.

[22] I. Oparin, M. Sundermeyer, H. Ney, and J. Gauvain, “Performance
analysis of neural networks in combination with n-gram language
models,” in Proc. on ICASSP, 2012.

[23] Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin, “A neural
probabilistic language model,” Journal of Machine Learning Re-
search, 2003.

[24] J. Park, X. Liu, M. J. F. Gales, and P. C. Woodland, “Improved
neural network based language modeling and adaptation,” in Proc.
on InterSpeech, 2010.

[25] H.-S. Le, I. Oparin, A. Allauzen, J.-L. Gauvain, and F. Yvon,
“Structured Output Layer neural network language model,” in
Proc. on ICASSP, 2011.

[26] T. Mikolov, M. Karafit, L. Burget, J. Cernock, and S. Khudanpur,
“Recurrent neural network based language model,” in Proc. on
InterSpeech, 2010.

[27] T. Mikolov, S. Kombrink, L. Burget, J. Cernocky, and S. Khudan-
pur, “Extensions of recurrent neural network language model,” in
Proc. on ICASSP, 2011.

[28] T. Mikolov and G. Zweig, “Context dependent recurrent neural
network language model,” in Proc. on IEEE SLT workshop, 2012.

[29] Y. Shi, P. Wiggers, and C. M. Jonker, “Towards recurrent neu-
ral networks language models with linguistic and contextual fea-
tures,” in Proc. on InterSpeech, 2012.

[30] A. Doan, R. Ramakrishnan, and A. Y. Halevy, “Crowdsourcing
systems on the world-wide web,” Communications of the ACM,
2011.

[31] Munro and Robert, “Crowdsourcing and language studies: the
new generation of linguistic data,” in Proc. on NAACL, 2010.

[32] K. Berberich, S. Bedathur, O. Alonso, and G. Weikum, “A lan-
guage modeling approach for temporal information needs,” in Ad-
vances in Information Retrieval, 2010.

[33] J. Liu, S. Cyphers, P. Pasupat, I. McGraw, and J. Glass, “A conver-
sational movie search system based on conditional random field,”
in Proc. on InterSpeech, 2012.

[34] I. McGraw, S. Cyphers, P. Pasupat, J. Liu, and J. Glass, “Automat-
ing crowd-supervised learning for spoken language systems,” in
Proc. on InterSpeech, 2012.

[35] R. Iyer and M. Ostendorf, “Modeling long distance dependence
in language: topic mixtures versus dynamic cache models,” IEEE
Transactions on Speech and Audio Processing, 1999.

[36] A. Heidel, H.-A. Chang, and L.-S. Lee, “Language model adap-
tation using latent dirichlet allocation and an efficient topic infer-
ence algorithm,” in Proc. on InterSpeech, 2007.

[37] M. Federico, “Efficient language model adaptation through mdi
estimation,” in Proc. on EuroSpeech, 1999.

[38] C. Chelba and F. Jelinek, “Structured language modeling,” Com-
puter Speech and Language, 2000.

[39] X. Liu, M. J. F. Gales, and P. C. Woodland, “Improving lvcsr
system combination using neural network language model cross
adaptation,” in Proc. on InterSpeech, 2011.

[40] J. Paolillo, “The virtual speech community: Social network and
language variation on irc,” Journal of Computer-Mediated Com-
munication, 1999.

[41] D. Rosen and M. Corbit, “Social network analysis in virtual envi-
ronments,” in Proc. on ACM Hypertext, 2009.

[42] T. K. Landauer, P. W. Foltz, and D. Laham, “An Introduction to
Latent Semantic Analysis,” Discourse Processes, 1998.

[43] F. James, “Modified kneser-ney smoothing of n-gram models
modified kneser-ney smoothing of n-gram models,” Tech. Rep.,
2000.

[44] A. Stolcke, “Srilm - an extensible language modeling toolkit,” in
Proc. on Spoken Language Processing, 2002.

[45] T. Mikolov, S. Kombrink, A. Deoras, L. Burget, and J. Cernocky,
“Rnnlm - recurrent neural network language modeling toolkit,” in
Proc. on ASRU, 2011.

[46] S. J. Young, D. Kershaw, J. Odell, D. Ollason, V. Valtchev, and
P. Woodland, The HTK Book Version 3.4. Cambridge University
Press, 2006.

	 Introduction
	 The Crowdsourcing Platform
	 Proposed Approach
	 RNNLM Personalization
	 User Oriented Features
	 Demographic information
	 Latent user group

	 Experiments
	 Experimental Setup
	 Corpus & LMs
	 N-best rescoring

	 Experimental Results
	 Perplexity
	 Rescoring

	 Conclusion
	 References

