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Abstract—This paper reports a new approach to improving
spoken term detection that uses support vector machine (SVM)
with acoustic and linguistic features. As SVM is a good technique
for discriminating different features in vector space, we recently
proposed to use pseudo-relevance feedback to automatically
generate training data for SVM training and use SVM to re-
rank the first-pass results considering the context consistency in
the lattices. In this paper, we further extend this concept by con-
sidering acoustic features at word, phone and HMM state levels
and linguistic features of different order. Extensive experiments
under various recognition environments demonstrate significant
improvements in all cases. In particular, the acoustic features at
the HMM state level offered the most significant improvements,
and the improvements achieved by acoustic and linguistic features
are shown to be additive.

I. INTRODUCTION

Spoken term detection (STD) refers to the retrieval from

a large spoken document archive and returning a list of

spoken segments containing the term requested by the user.

This technology is crucial to accessing multimedia content,

including audio signals. Many different approaches have been

proposed for enhancing STD [1], [2], [3]. In general, there are

two stages in STD [4]. The audio content is first recognized

and transformed into transcriptions or lattices using a set of

acoustic and language models. The retrieval engine searches

through the recognition results and then based on the query re-

turns to the user a list of potentially relevant spoken segments.

The returned segments are usually ranked by the relevance

scores derived from the recognition output. As a result, the

performance of STD depends heavily on the acoustic and

language models used in recognition. However, in practice

the relatively poor performance of STD is due to the limited

robustness of the available acoustic and language models, in

particular with respect to the various topics represented in the

audio content on the Internet, as well as the variety of speakers

under different acoustic conditions in varying environments.

There have been many previous works [5], [6], [7], [8]

taking advantage of the discriminative capability of machine

learning methods such as support vector machines (SVM)

or multi-layer perceptrons (MLP) to facilitate STD. A SVM

or MLP classifier is trained to identify if a spoken segment

contains the entered query term or not. To train the machine

learning classifiers, the training data must be reasonably

matched to the audio corpus to be retrieved. However, such

data is usually not available.

To fulfill the training data required for machine learning

methods, pseudo-relevance feedback (PRF), which has been

used to improve performance on text retrieval [9], [10] as

well as STD [11], [12], can be used to automatically generate

labelled data. For PRF, the system assumes that the spoken

segments with high lattice-derived relevance scores contain

the query term and hence denotes them as pseudo-relevant
segments; segments with low relevance scores are likewise

denoted as pseudo-irrelevant segments. These pseudo-relevant

and irrelevant segment sets are then taken as the training data

for machine learning. In this way the system is still able to

take advantage of machine learning approaches without using

any real labelled data.

We recently proposed to use the query context, that is,

the contexts of the query terms in the recognition results, in

the above PRF framework using SVM [13]. Although query

context only includes linguistic-level information, information

in the acoustic feature space may be also useful for STD.

Ranking performance can also be improved by increasing the

relevance scores of the segments that are acoustically similar

to pseudo-relevant segments, based on the segment similarities

from the MFCC sequences corresponding to query hypothe-

ses [12]. Here in this paper we further propose taking into

account features with both linguistic and acoustic information

in SVM model training within the PRF framework, and test

this approach with recognition results of varying qualities. To

use SVM to take into account acoustic information, which is

represented as a sequence of features, the MFCC sequence

corresponding to the query hypothesis is represented as a

single feature vector; here we investigate various ways to

construct this feature vector.
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Fig. 1: The framework for pseudo-relevance feedback using

SVM.

II. FRAMEWORK

Fig. 1 shows the framework of pseudo-relevance feedback

with SVM. In first-pass retrieval (Section II-A), conventional

STD technologies rank the spoken segments X based on the

relevance scores derived from the recognition lattices with

respect to query Q. On the left in the figure is shown the list of

first-pass retrieval results. As described in Section II-B, every

spoken segment in the list is represented by a feature vector,

and the top N and bottom N spoken segments are selected

as the pseudo-relevant or irrelevant spoken segments for SVM

model training. In Section II-C, we use SVM as a classifier to

classify spoken segments and derive confidence scores accord-

ing to classification results. Section II-D describes segment

re-ranking, which can be performed iteratively.

A. The First Pass

The whole audio archive to be detected is first divided

into approximately utterance-length spoken segments X . Then

each spoken segment is transcribed to a lattice of word

hypotheses and posterior probabilities for each word. The

relevance score SQ(X) of each spoken segment X with

respect to the query term Q is defined as

SQ(X) =
∑

{a|word(a)=Q}
P (a|X), (1)

where a is any arc in the lattice and word(a) is the word

hypothesis of that arc. Only for lattices with word hypotheses

that match the query term do we accumulate the relevance

score from the hypothesis’s posterior probability P (a|X).
After obtaining the list of spoken segments that contains the

query term and their associated relevance scores SQ(X), we

rank the segments according to their relevance scores. This

completes the first pass. Similar relevance score approaches

are widely used in other STD techniques.

B. Feature Extraction and Pseudo-relevance Feedback

Given the result of the first pass, each retrieved spoken seg-

ment is represented as a feature vector. The features used here

describe the acoustic and linguistic information of each spoken

segment, which will be used in SVM training to discriminate

relevant and irrelevant segments. Feature representations are

described further in Section III.

As shown in Fig. 1, the top N and bottom N first-pass

retrieved spoken segments are taken as the pseudo-relevant

and irrelevant spoken segments, respectively.

C. Support Vector Machines

For each query, in order to classify all spoken segments,

pseudo-relevant and irrelevant spoken segments are used to

train an SVM model. Thus a hyperplane is trained for each

query term Q according to the PRF training data. This hy-

perplane is then used to classify all of the spoken segments

returned in the first pass. Based on these classification results,

each spoken segment is given a value dQ(X) derived from

the distance between the hyperplane and its feature point

position: dQ(X) is positive when X is classified as relevant,

and negative when irrelevant. The absolute value of dQ(X)
represents the distance from the SVM hyperplane. To derive

the confidence score SVMQ(X) for spoken segment X with

respect to query Q, dQ(X) is linearly normalized as

SVMQ(X) =
dQ(X)− dmin

dmax − dmin
, (2)

where dmax and dmin are respectively the maximum and min-

imum distances to the hyperplane from all spoken segments

in a single query.

D. Re-ranking and Iterative Re-ranking

The new segment relevance score ŜQ(X) is obtained by

integrating the original relevance score SQ(X) in (1) with the

confidence score SVMQ(X) in (2) as

ŜQ(X) = SQ(X)SVMQ(X)α, (3)

where α is a parameter emphasizing the importance of confi-

dence score SVMQ(X). A new ranking list is thus generated

based on these new relevance scores.

This process can be conducted iteratively by taking those

re-ranked by ŜQ(X) in (3) as the first-pass retrieval results,

and repeating the PRF, SVM, and re-ranking procedures over

these new results.

III. FEATURE REPRESENTATIONS

In order to train an SVM model for each query term, each

spoken segment is represented by a feature vector. In the

following, we propose seven different feature representations:

three from the acoustic domain and four from the linguistic

domain.

A. Acoustic Feature Representations

A “hypothesized region” is the most probable occurrence

of query Q in the segment, that is, the word arc whose

hypothesis corresponds exactly to the query term, with the

highest posterior probability in the lattice. The left top of Fig. 2

is an example of a hypothesized region. Different occurrences

of the same term are usually represented by similar MFCC
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Fig. 2: Different acoustic feature representations for the hy-

pothesized region in the lattice of segment X with respect to

query term Q.

sequences; likewise, markedly different MFCC sequences usu-

ally correspond to different terms [12]. Thus it is possible to

discriminate relevant and irrelevant spoken segments based on

the corresponding MFCC sequences in hypothesized regions.

Although the hypothesized region is represented by a sequence

of MFCC feature vectors, when using SVM for training and

testing, the region should be represented as a single feature

vector. Fig. 2 illustrates the three methods used to accomplish

this. These feature representations are:

• Fword
Q (X): the mean MFCC vector for the hypothesized

region, that is, the average of all MFCC frames in the

hypothesized region. Hence its dimension is the same as

an MFCC vector, and the value of each dimension is the

average of all of the corresponding components of the

MFCC vectors for all frames in the hypothesized region.

This is shown in the upper right corner of Fig. 2.

• F phone
Q (X): using forced alignment, the hypothesized

region is segmented into a sequence of phone segments

based on the phone sequence of the query term; each

phone segment is represented by its mean MFCC feature

vector. F phone
Q (X) is hence the concatenation of the

phone feature vectors. For example, for a ten-phone query

term, the resulting dimensionality is ten times the length

of a single MFCC feature vector. This is shown in the

lower right corner of Fig. 2.

• F state
Q (X): each phone segment is further segmented into

a sequence of state segments by forced alignment, each

of which is represented by its average, after which the

feature vectors of the state segments in a hypothesized

region are concatenated. Thus for three-state phones

the dimensionality of F state
Q (X) is three times that of

F phone
Q (X). This is shown in the lower left corner of

Fig. 2.

B. Linguistic Feature Representations

In the previous work [13], we have proposed the use of

query context deriving from the assumption that the same term
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Fig. 3: Different linguistic feature representations for the

lattice of segment X lattice with respect to query term Q.

usually occurs in similar contexts, and that markedly different

contexts are indicative of different terms. We thus use the

context of the query terms in the recognition results to refine

the relevance score of the spoken segments. Four different

query context features for the spoken segment with respect to

the query term are shown in Fig. 3 and summarized below:

• FC1
Q (X): takes into account only the immediate context

of the query. As each dimension of the feature vector

corresponds to a lexical word, the vector dimensionality

is the number of words in the lexicon. The value of each

vector component is the posterior probability summed

over all corresponding word arcs immediately connected

to the query in the lattice.

• FC2
Q (X): similar to FC1

Q (X), except that all words ap-

pearing in the lattice are included, not only those adjacent

to the query. Thus it contains the context information for

the query throughout the entire segment.

• FC3
Q (X): separates the left and right immediate contexts

of the query and hence has twice the dimensionality of

FC1
Q (X).

• FC4
Q (X): the concatenation of FC2

Q (X) and FC3
Q (X),

this vector is three times the size of of FC1
Q (X).

IV. COMBINATION OF DIFFERENT FEATURES

In Sections III-A and III-B we proposed various feature

representations. However, the re-ranking process uses only a

single feature representation. Although we would like to inte-

grate features from different domains to improve performance,

the large differences in dimensionalities between the feature

representations may result in poor results when cascading

different features directly, as long features could dominate

the results. Hence we instead integrate their confidence scores

from SVM classification when combining different features.

ŜQ(X) = SQ(X)(SVMA
Q(X) + SVM L

Q(X))α, (4)

where SVMA
Q(X) and SVM L

Q(X) represent confidence

scores of one type of acoustic and linguistic feature repre-

sentation, respectively.
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Fig. 4: Performance yielded with acoustic features under different feedback numbers and different recognition environments.

V. EXPERIMENTAL SETUP

In our experiments, we used a corpus of recorded lectures

composed of forty-five hours of a course offered at National

Taiwan University produced by a single instructor. Thirty-three

hours of the corpus were used as the testing archive to be

detected, and the other twelve hours of the corpus were used to

train the acoustic model. The speech is quite spontaneous and

relatively noisy. It is uttered in the host language of Mandarin

Chinese, but embedded with many technical terms produced

in the guest language of English. A lexicon with about 10.7K

words was used, and a trigram language model was trained on

a 600M-word news corpus. We used mean average precision

(MAP) as the measure for our performance evaluation. 162

Chinese queries were manually selected, each a single word.
In order to evaluate the performance of our proposed

approach under different recognition accuracies, we used four

different sets of acoustic models:

• Speaker Independent Model (SI): trained on 24.6 hours

of read speech produced by 100 male and 100 female

speakers.

• Speaker Adaptation Model 1 (ADP1): adapted from the

SI model with 500 utterances taken from the training set

of the lecture corpus. Applied only global MLLR.

• Speaker Adaptation Model 2 (ADP2): adapted from the

SI model with 500 utterances taken from the training set

of the lecture corpus. Applied cascaded global MLLR

with 256 classes and maximum a posterior estimation.

• Speaker Dependent Model (SD): trained on the 12-hour

training set of the lecture corpus.

The character accuracies of the 1-best transcriptions are

shown in Table I.

VI. EXPERIMENTAL RESULTS

A. Acoustic Features

Fig. 4 shows the MAP for the acoustic feature represen-

tations from Section III-A with the four different sets of

acoustic models. The vertical axis depicts the MAP, and the

horizontal axis is the feedback number N , set from 5 to 50

with intervals of 5. The SVM training set includes the top

N and bottom N first-pass spoken segments as the pseudo-

relevant and irrelevant sets. Note if in the first pass there are

detected fewer than 2N spoken segments in a single query, N
is simply set to half of the detection number. N = 0 represents

the original first-pass result. The parameter α in (3) is adjusted

TABLE I: Character accuracy (%) for different acoustic mod-

els

SI ADP1 ADP2 SD
Word accuracy 50.26 62.55 72.93 84.08
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Fig. 5: Performance yielded with linguistic features under different feedback numbers and different recognition environments.

using 4-fold cross-validation. For F phone
Q (X) and F state

Q (X),
the acoustic models used for forced alignment are the same

as those used to generate the lattices.

The MAP of the first-pass result is clearly consistent with

the character accuracy shown in Table I. Although PRF yields

MAP improvements in all conditions, Fword
Q (X) yields little

improvement, because Fword
Q (X) is too coarse to represent

the hypothesized region. However, more sophisticated feature

representations such as F phone
Q (X) or F state

Q (X) do yield sig-

nificant improvements. In general, F state
Q (X) performs better

than F phone
Q (X) because it better represents the hypothesized

region.

As the acoustic model quality increases, the best feedback

number N decreases. This is shown in Table II. This is because

more robust acoustic models ensure that the pseudo-relevant

and irrelevant segments more closely correspond to the true

relevant and irrelevant segments and hence that fewer such

segments are needed, translating to a lower N . In contrast, if

TABLE II: N corresponding to the best MAP in acoustic

features

SI ADP1 ADP2 SD
N 25 20 20 15

MAP 59.39 71.39 81.63 85.12

poor acoustic models are used, a greater N can help to ensure

that the true relevant and irrelevant segments are contained in

the pseudo-relevant and irrelevant segments.

B. Linguistic Features

Linguistic features also benefit STD. The results are shown

in Fig. 5 with different sets of acoustic models. FC2
Q (X) out-

performs FC1
Q (X), which means that not only the immediate

neighbors of the query term help in STD; there is also useful

information within the whole context of a spoken segment.

FC3
Q (X) is more discriminative than FC1

Q (X), because it in-

cludes more detailed information about neighborhood on both

sides. FC4
Q (X), the concatenation of FC2

Q (X) and FC3
Q (X),

outperforms the other three context feature representations in

almost all cases.

The feedback number N with respect to the best MAP is

shown in Table III. The trend from Table II can be seen here

as well.

TABLE III: N corresponding to the best MAP in linguistic

features.

SI ADP1 ADP2 SD
N 40 40 35 20

MAP 56.28 69.81 81.44 84.81
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TABLE IV: The comparison of MAP (%) between iteratively re-ranking and combination features (N = 20).

SI ADP1 ADP2 SD
Baseline 45.47 55.54 71.20 80.48

Upper bound after re-ranking 76.08 86.32 90.54 90.31

F state
Q (X)

1 iteration 59.31 71.39 81.63 84.66
10 iterations 62.31 75.88 82.66 85.84

FC4
Q (X)

1 iteration 54.93 67.85 80.72 84.81
10 iterations 60.19 74.46 83.61 85.40

F state
Q (X) + FC4

Q (X)
1 iteration 59.92 73.38 83.74 85.73
10 iterations 65.31 78.42 86.26 86.89

Maximum relative improvement (%) 43.66 41.20 21.15 7.96

C. Feature Combinations and Iterative Training

In the above experiments, we used only one type of feature

representation in each experiment. Here we combine different

types of features, and find that acoustic and linguistic features

are in fact complementary. The combination is accomplished

as described in (4) and the results are shown in Table IV.

The second row of Table IV is the first-pass results and is

treated as the baseline. The third row is the upper bound

after re-ranking. Because we are considering re-ranking, the

segments that were not retrieved in the first pass will never be

retrieved. Hence, the upper bound is the best result obtainable

when using re-ranking (assuming we are able to re-rank the

first pass perfectly). To simplify analysis, F state
Q (X) and

FC4
Q (X) are chosen to represent the acoustic and linguistic

features respectively, and the feedback number N is set to

20. The fourth to sixth rows show the results of different

feature representations, each with two rows: one with only

one iteration and another with ten iterations.

F state
Q (X) outperforms FC4

Q (X) in all cases but the SD

model with one iteration. Moreover, by using the combination

of these two features, the MAP increases slightly in all recog-

nition environments. This implies that acoustic and linguistic

features are different domains of knowledge. In iterative

training, no matter which feature representation is applied,

the MAP improves dramatically compared to one iteration.

This includes the combination of F state
Q (X) and FC4

Q (X), for

which iterative training yields considerable improvements.

Fig. 6 shows the results of different numbers of iterations

using the combination of F state
Q (X) and FC4

Q (X). The MAP

improved strongly during the first three iterations, and then

seemed to saturate quickly after several iterations.

VII. CONCLUSION

We proposed multiple feature representations from the

acoustic and linguistic domains for SVM training which are

then used to re-rank the first-pass results of STD. Both the

combination of different features and iteratively re-ranking

yield significant improvements. We also considered STD under

different recognition environments and found very encourag-

ing results in all cases.
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