
Recurrent Neural Network Based Language Model Personalization by Social
Network Crowdsourcing

Tsung-Hsien Wen1,Aaron Heidel1, Hung-yi Lee2, Yu Tsao2, and Lin-Shan Lee1

1National Taiwan University,
2Academic Sinica, Taipei, Taiwan

r00921033@ntu.edu.tw, lslee@gate.sinica.edu.tw

Abstract
Speech recognition has become an important feature in

smartphones in recent years. Different from traditional au-
tomatic speech recognition, the speech recognition on smart-
phones can take advantage of personalized language models to
model the linguistic patterns and wording habits of a particu-
lar smartphone owner better. Owing to the popularity of social
networks in recent years, personal texts and messages are no
longer inaccessible. However, data sparseness is still an un-
solved problem. In this paper, we propose a three-step adapta-
tion approach to personalize recurrent neural network language
models (RNNLMs). We believe that its capability to model
word histories as distributed representations of arbitrary length
can help mitigate the data sparseness problem. Furthermore, we
also propose additional user-oriented features to empower the
RNNLMs with stronger capabilities for personalization. The
experiments on a Facebook dataset showed that the proposed
method not only drastically reduced the model perplexity in
preliminary experiments, but also moderately reduced the word
error rate in n-best rescoring tests.
Index Terms: Recurrent Neural Network, Personalized Lan-
guage Modeling, Social Network, LM adaptation

1. Introduction
Personalization, which is an indispensable aspect in several real
world applications nowadays, has been studied in a wide range
of research fields, such as personalized web search [1, 2] and
recommendation systems [3, 4, 5, 6]. In the speech research
community, acoustic model (AM) adaptation [7, 8, 9], which
has been proven to provide an impressive word error rate re-
duction, can be viewed as one of the major efforts made for
personalization in this field. However, although the person-
alized AM has been well studied, there is little work done
on language models (LM) personalization. Traditionally, LM
adaptation [10, 11, 12] stressed the problem of cross-domain
linguistic mismatch, in which the cross-individual linguistic
mismatch is often ignored. Likely due to the lack of suffi-
cient personal corpora at the time, it was difficult to realize the
idea. Therefore, we have to aggregate the corpora produced
by many different individuals but on similar domains to per-
form a domain-oriented LM adaptation. There are two major
trends that strongly push the progress of LM personalization.
First, owing to the mass production and rapid proliferation of
smartphones in recent years, each individual has the capability
of possessing a smartphone, which makes its use a very personal
experience [13, 14, 15]. Therefore, only a speaker-dependent
recognizer is needed. Second, large quantities of texts are avail-
able over the social networks with known authors and given re-
lations among the authors. It is possible to train personalized
LMs because it may be reasonable to assume that users with
close relationships may share common subject topics, wording
habits, and linguistic patterns.

N-gram-based LMs [10, 16, 17], including various adapta-
tion techniques, have been proven to work very well for many
applications. In our previous work, we adapted an N-gram-
based LM toward one particular user’s wording patterns by in-
corporating the social texts that the target user and other users
had posted considering different aspects of similarities between
users [18]. However, the lack of natural strategy to model long-
range dependencies [19, 20, 21], and the potentially error-prone
back-off behaviors [22] seem to limit the prediction power of
N-gram models. Recently, several studies have shown that
neural-network-based LMs (NNLM) [23, 24, 25] are an im-
provement over the N-gram-based models by taking advan-
tage of the learned distributed representations of word histo-
ries. Moreover, RNNLMs [26, 27, 28], which memorizes ar-
bitrary length of histories in a recurrent structure, can model
long range dependencies in an elegant way. Considering our
LM personalization task, we think that it is beneficial to adopt
RNNLMs for the following three reasons: (1) the number of so-
cial posts we can obtain from each individual are still relatively
sparse compared to the number to which we can robustly apply
an N-gram LM adaptation. However, the distributed representa-
tion of word histories can extenuate this problem by addressing
the similarities of a combinatorial number of originally disjoint
sentences in the new continuous space. (2) Online messages or
social posts tend to be relatively casual, and thus, do not usu-
ally obey traditional grammar rules strongly. As a consequence,
short-term dependencies may not be evident enough for predict-
ing the next word anymore. The recurrent structure may help
mitigate this issue since it memorizes longer dependencies than
N-gram LMs. (3) Besides posts and messages, social networks
also maintain a significant amount of information such as user
profiles, relationships, interactions, preferences, and interests.
These are all valuable information we can use while predicting
one’s linguistic habits. As mentioned in some previous works
[28, 29], adding additional auxiliary features into RNNLMs is
relatively easy and intuitive. As a result, we value the meet of
LM personalization and RNNLMs as an indispensable attempt.

In this paper, we propose a new paradigm for personalized
LMs where we use the RNNLMs as our base model. The system
is built on a voice access of cloud application [18]. A crowd-
sourcing mechanism is designed to collect texts and other in-
formation on social networks from users. We also propose a
three-step training for personalized RNNLMs considering the
feasibility and complexity of the training process. Some user-
oriented features were incorporated into the model for better
word prediction capabilities. The experiments showed that the
proposed method not only drastically reduced the model per-
plexity in preliminary experiments, but also moderately reduced
the word error rate in n-best rescoring tests.

2. The Crowdsourcing Platform
In order to obtain personal acoustic and language data, we im-
plemented a cloud-based application that can help users access

Copyright © 2013 ISCA 25-29 August 2013, Lyon, France

INTERSPEECH 2013

2703

their social network via voice, as shown in Fig. 1. Conse-
quently, this cloud-based application can also be viewed as a
crowdsourcing platform for collecting personal data. Crowd-
sourcing [30, 31] has been applied for several purposes in many
different fields. For example, a crowdsourcing approach [32]
was proposed to collect queries in an information retrieval
system considering temporal information. The MIT movie
browser [33, 34] relied on Amazon Mechanical Turk, the most
famous crowdsourcing platform, to build a crowd-supervised
spoken language system. The definition of crowdsourcing
varies depending on the scenario. In our case, an implicit
crowdsourcing [31] is at play: the user logs into his/her Face-
book account and grants our application the authority to collect
his/her acoustic and linguistic data for adaptation for our voice
access service. At the same time, the user enjoys the benefits of
better accuracy brought by the personalized recognizer that we
build from the crawled data.

Figure 1: The ecosystem of our crowdsourcing-based voice ac-
cess of cloud application. A speaker-dependent recognizer is
obtained by AM and LM personalization. A web crawler was
implemented for collecting social posts from users for LM per-
sonalization.

3. Proposed Approach
As shown in Fig. 2, the RNNLM [26] comprises three layers:
the input layer, the hidden layer, and the output layer. The input
word vector w(t) represents the word at time t using a 1-of-N
encoding. The context vector s(t) uses the distributed repre-
sentation for arbitrary length histories at time t, with a recurrent
connection considering the time-delayed context vector s(t−1).
The output layer y(t) then generates the probability distribu-
tion of the next word. In order to provide complementary in-
formation such as part-of-speech tags, topic information, or
morphological information to the input vector w(t), a context-
dependent RNNLM variant [28] adds an additional feature layer
f(t) to the network through which it connects to both the hid-
den and output layers. Therefore, the network weights that must
be learned are the matrices W , F , S, G, and O. The learning
process maximizes the likelihood of the training data using the
back-propagation through time (BPTT) algorithm. Typically,
a validation set is also used to control the training epochs and
learning rates.

3.1. RNNLM Personalization

Considering the fact that the collected personal corpora are
small, it is impossible to train a standalone RNNLM using only
this small amount of training data. As a result, we fall back to
the idea of LM adaptation [10]. The basic framework for LM

Figure 2: The structure of context-dependent recurrent neural
network LMs.

adaptation considers two text corpora: the first is the adaptation
corpus A, which is “in-domain” or updated with respect to the
target recognition task, but possibly too small to train a robust
standalone LM; the other is a large background corpus B, which
may not be sufficiently related to the target task or may perhaps
be outdated. In traditional N-gram models, the two corpora are
interpolated; various methods are used to estimate their interpo-
lation weights [35, 36, 37, 38]. However, for NN-based LMs,
there is still little focus on the problem of adaptation. Unlike
previous works [24, 39], which proposed adding an additional
adaptation layer between the projection and input layers in feed-
forward NNLMs, we propose directly fine-tuning the network
weights using the adaptation corpus A on an RNN-based back-
ground LM. model structure as simple as possible. Moreover,
instead of considering only the user’s personal corpus A and
background corpus B, we also take into account the corpora of
his/her friends, C. The following three steps describe the train-
ing and adaptation of the personalized RNNLMs:

1. Train a general-domain RNNLM using the background
corpus B, which is split into a training set and a vali-
dation set such that the training set likelihood is maxi-
mized and the validation set is used to control the train-
ing epochs. An initial set of model parametersW0, F0,
S0, G0, and O0 are obtained here.

2. Given a target user’s corpus A, split it into training set Ta

and validation set Va. Copy one background RNNLM
and use BPTT to fine-tune parametersW0, F0, S0, G0,
and O0 by maximizing the likelihood of the training set
Ta while controlling the epochs using the validation set
Va. Fine-tuning yields the adapted model parameters
W ′, F ′, S ′, G′, and O′.

3. Given corpora C, we directly treat C as a complete train-
ing set again maximizing its likelihood but still control-
ling the epochs by Va. This yieldsW ′′, F ′′, S ′′, G′′, and
O′′.

There are several benefits of this three-step RNNLM person-
alization: First, due to the common computational overhead
found in RNNLMs, the background RNNLM forms a solid
foundation for future model fine-tuning where it learns some
general domain histories beforehand. Secondly, although the
amount of training data is small, it is believed that the dis-
tributed representation of RNNLMs can amplify the training ef-
ficiency since one training sentence can inform the model about

2704

a combinatorial number of other sentences in the continuous
space. Unlike our previous approach [18], which computes sim-
ilarities as interpolation weights while incorporating the corpora
of multiple friends, the use of personal validation set Va in Step
3 makes the approach completely data-driven. We are no longer
worried about how to select and weigh those friends, but only
about how to maximize the training data we can see, while at
the same time, use the personal validation set Va to point the
adaptation in the right direction. Lastly, considering that the re-
current connection and the additional feature layer have already
made the RNNLM structure more complex, we keep the model
as simple as possible without adding any additional layers.

3.2. User-Oriented Features

As shown previously in Fig. 2, an additional feature layer f(t)
was added to the context-dependent RNNLM [28] in order to
provide complementary information for the input word vector.
In a previous study [29], adding complementary features such
as part-of-speech tags, word lemmas, and topics, reduced both
the model perplexity and word error rate. Besides the features
mentioned above, the use of language is usually influenced by
the demographic characteristics of the individual, his/her pref-
erences, interests, or even the role he/she plays in a community.
For example, male users may mention superhero movies more
often than female users. People who often work together may
share the same jargon. These kinds of user-oriented features are
hard to obtain in traditional text corpora, but are relatively easy
to glean from social networks.

3.2.1. Demographic information

Consider demographic information that can separate p users
into K clusters. We compute the word distribution P (w|Ck)
over those K clusters by

P (w|Ck) =

∑
p∈Ck

n(w, p)∑
k

∑
p∈Ck

n(w, p)
(1)

where n(w, p) is the number of occurrences of word w in the
corpus of p users. The resulting word distribution P (w|Ck)
over clusters is then fed into the feature layer f(t), as shown in
Fig. 2. We simply compute and cascade several demographic
feature vectors in the same way to obtain richer information.

3.2.2. Latent user group

Often, the use of language is not directly related to the demo-
graphic characteristics of a person. Instead, his/her interests,
habits, idols, community, friends, etc. play an even more im-
portant role [40, 41]. However, modeling all these phenomena
is difficult not only because too many aspects make the feature
dimension too large to efficiently train the RNNLMs, but also
because they are elusive, making explicit modeling impractical.
In order to model these elusive aspects implicitly, we use the
method called latent factor model method [4, 42]. First, we con-
struct a user-word matrix M from the user corpora that we have
collected. For simplicity, we consider only unigrams. Then
we conduct singular value decomposition (SVD) to identify the
latent factors in the matrix. Retaining only the top-K eigen-
values, we project both users and words onto a latent space of
dimension K, where each dimension represents one latent fac-
tor that the user or word possesses. These latent factor features
of words are then fed into the feature layer. Note that although
our method is similar to latent semantic analysis [42], there is
one fundamental difference. LSA factorizes a document-word
matrix to identify latent topics in the documents, whereas our
method factorizes the user-word matrix to identify any possible
correlations among them.

4. Experiments
4.1. Experimental Setup

4.1.1. Corpus & LMs

Our experiments are conducted on a crawled Facebook dataset.
A total of 42 users logged in and authorized this project to col-
lect their messages and basic information for the purpose of
academic research. These 42 users were treated as our target
users, and we attempted to build a personalized LM for each of
them. For each target user, 3/5 of his/her corpus was taken as
the training set, 1/5 as the validation set, and the remaining 1/5
as testing data to compute perplexity from. Furthermore, with
their consent, the observable public data of these 42 target users
were also made available to our system. Through this process,
besides the personal corpora for the 42 target users, we also had
an entire set of publicly observable data. These were, primar-
ily, the data of those individuals linked to the 42 users on the
network. Thus, we had 93,000 anonymous personal corpora,
and we collected 3.3 million sentences. After preprocessing
and filtering, the number of sentences used in the work was ap-
proximately 2.4 million. The number of sentences for each user
ranged from 1 to 8,566 with a mean of 25.7, comprising 10.6
words (Chinese, English, or mixed) per sentence in average.
On the network, each target user had an average of 238 friends.
For the background LM, 250 million sentences were collected
from another popular social networking site called Plurk. There
were both Chinese and English words in the Plurk data with a
mixing rate of 9:1. The modified Kneser-Ney algorithm [43]
was used for the N-gram LM smoothing. The most frequent
18,000 English words and 46,000 Chinese words appearing in
the corpus were selected to form the lexicon. The SRILM [44]
toolkit was used for the N-gram LM training and adaptation.
For RNNLMs, we utilized the RNNLM toolkit [45] for imple-
mentation. We used three different feature sets in our experi-
ment: POS tags (POS), demographic features (DE) reflecting
gender (male, female, unknown) and language settings (Tradi-
tion Chinese, Simplified Chinese, English, unknown), and la-
tent user groups (LUG) with 100 latent dimensions. We re-
ported the results of using these features independently as well
as a combination of feature sets.

4.1.2. N-best rescoring

For the n-best rescoring experiments, we used lattices pro-
duced using the HTK toolkit [46] to generate 1,000-best lists
for rescoring. The LMs we used to generate the n-best lists were
trigram models, adapted using the personal corpora as well as
friend corpora with Kneser-Ney smoothing (KN3). The Man-
darin triphone AMs used for first-pass decoding were trained on
the ASTMIC corpus with 37 Chinese phones, whereas the En-
glish triphone AMs were trained on the Sinica Taiwan English
corpus with 35 English phones. Both training sets included hun-
dreds of speakers. The AMs were also adapted by the unsuper-
vised MLLR speaker adaptation. We report the results both with
and without speaker adaptation on two different test sets: Set (I)
and Set (II). The users in Set (I) were a subset of the users in Set
(II), in which the 42 target users with richer data were selected.
Table 1 is a comparison of the two test sets. The word error rates
(WER) reported here were averaged over all sentences. The LM
and AM decode weights of 8.0 and 0.5, respectively, were set
empirically.

Table 1: Summary of two test sets for n-best rescoring.
of user speakers # of utt. record env.

Set (I) 12 Two 840 Clean
Set (II) 42 Multiple 948 Various

2705

Table 2: Perplexity results. Both RNNLMs and Kneser-Ney
3grams (KN3) trained with background corpus only (B), further
adapted with personal corpus (B+S), and even further adapted
with friend corpora (B+S+F) are shown. Several combination
of hidden layer sizes (100H, 200H, 500H) and feature settings
are also reported. Features used are defined in Sec. 4.1.1.

Model Perplexity

(a)
KN3, B 343.57
KN3, B+S 299.32
KN3, B+S+F 233.20

(b)
RNN 100H, B 309.50
RNN 200H, B 289.14
RNN 500H, B 267.38

(c)
RNN 500H, B+S 234.55
RNN 500H, B+S+F 209.56

(d)

RNN 500H, B+S+F, POS 196.50
RNN 500H, B+S+F, DE 199.23
RNN 500H, B+S+F, LUG 195.59
RNN 500H, B+S+F, ALL 192.83

(e) RNN 500H, B+S+F, ALL + KN3 155.40

4.2. Experimental Results

4.2.1. Perplexity

Table 2 shows the preliminary results of the perplexity ex-
periments using our proposed approach. Both RNNLMs and
Kneser-Ney 3grams (KN3) trained with background corpus
only (B), further adapted with personal corpus (B+S), and even
further adapted with friend corpora (B+S+F) are shown. Sev-
eral combination of hidden layer sizes (100H, 200H, 500H) and
feature settings are also reported. It is not surprising that the
adaptation works well both on RNNLMs and N-grams (B+S+F
< B+S < B in (a)(c)) considering the mismatch between the
background corpus and each individual. RNNLMs with three
different hidden layer sizes and different feature settings are
also reported. Generally speaking, RNNLMs with larger hid-
den layers perform better than smaller ones (500H < 200H <
100H in (b)) due to their ability to represent richer histories.
Adding additional features resulted in better perplexity perfor-
mance ((d) < (c)). Although different features seem to pro-
vide the model with different capabilities of predicting the next
word, but they doesn’t vary too much in perplexity either using
only one set of feature solely or combination of them. This may
due to the fact that models with large hidden layers can learn
to compensate for those information contained in different set
of features by their stronger context. Lastly, as many previous
studies have shown, RNNLMs, in general, outperform N-grams
in perplexity, but perform even better when combined together (
(e) < (a)(d)). For our best model (RNN 500H, B+S+F, ALL +
KN3), we reduced the perplexity by 54.7% compared to back-
ground N-grams (KN3, B), around 41.8% compared to its sim-
plest RNNLM version (RNN 500H, B).

4.2.2. Rescoring

Table 3 reports the selected n-best rescoring results using our
proposed methods on two different test sets, Set (I) and Set (II),
with and without AM adaptation, respectively. We decoded our
first-pass recognition results using three different trigram LMs.
They were models trained on the background corpus only (KN3
B), adapted by personal corpus (KN3 B+S), and further adapted
by friend corpora (KN3 B+S+F). We find that, as expected, the

Table 3: The selected n-best rescoring results conducted on two
different test sets, Set (I) and Set (II), with/without adapted AM
(MLLR/AM) respectively.

WER(%)
Set (I) Set (II)

AM MLLR AM MLLR

Fi
rs

t-
pa

ss KN3 B 40.98 38.75 49.19 43.80

KN3 B+S 40.31 38.08 48.63 43.39

KN3 B+S+F 33.45 30.13 46.81 41.95

R
N

N
50

0H

RNN None 32.59 29.80 44.87 40.10

RNN POS 32.51 29.50 44.84 40.06

RNN DE 32.65 29.95 44.94 40.18

RNN LUG 32.95 29.36 44.78 40.17

RNN POS+LUG 32.46 29.58 44.86 40.17

R
N

N
50

0H
+K

N
3 RNN None 32.49 29.37 45.31 40.57

RNN POS 32.53 29.26 45.23 40.38

RNN DE 32.37 29.91 45.47 40.40

RNN LUG 32.51 29.26 45.35 40.53

RNN POS+LUG 32.75 29.75 45.32 40.52

adapted models performed better (KN3 B+S+F < KN3 B+S <
B). We used the best adapted N-gram models (KN3 B+S+F) to
generate lattices, and 1000-best lists were extracted from the
lattices, which were then used in the n-best rescoring experi-
ments. The RNNLMs used for rescoring were all configured
to 500 hidden layers while adding different types of features.
The interpolation weight between RNNLM and KN3 were em-
pirically set to 0.75. Generally, all rescoring results were bet-
ter than the first-pass results (RNN KN3, RNN < First-pass),
which indicates that the personalized RNNLMs perform better
than personalized N-grams. However, as to the combination
of RNNLMs with N-grams, Set (I) and Set (II) yielded differ-
ent conclusions. We obtained better results on Set (I) when we
combined them together, but got worse results for the combina-
tion on Set (II). This may be due to RNNLMs can better handle
noisy conditions where shorter context seems to be not reliable
anymore, by its capability of modeling longer context. We also
found that more features does not necessarily yield better results
(RNN POS+LUG) given that the back-off information provided
by auxiliary features maybe overlap or interfere with each other
when the feature layer is oversize. In our experiments, gen-
erally speaking, a single use of POS or LUG features yielded
more improvements compared to other settings.

5. Conclusion

In this paper, we proposed a new framework for RNNLM per-
sonalization in which the social network data was crawled from
a crowdsourcing platform as adaptation resources. A three-
step adaptation mechanism considering the feasibility and com-
plexity was also proposed. Some user-oriented features were
also incorporated into the model for better word prediction
capabilities. Experiments showed that by using personalized
RNNLMs while adding user-oriented features, the perplexity
can be reduced up to 54.7% compared to background N-grams
and 41.8% compared to original RNNLM. Moreover, n-best
rescoring experiments also yielded 2.9% to 4.5% relative word
error rate reductions on different experimental settings.

2706

6. References
[1] G. Zweig and C. Shuang yu, “Personalizing model m for voice-

search,” in Proc. on InterSpeech, 2011.

[2] M. Speretta and S. Gauch, “Personalized search based on user
search histories,” in Proc. on Web Intelligence, 2005.

[3] Y. H. Cho, J. K. Kim, and S. H. Kim, “A personalized recom-
mender system based on web usage mining and decision tree in-
duction,” Expert Systems with Applications, 2002.

[4] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization tech-
niques for recommender systems,” Computer, 2009.

[5] F. Walter, S. Battiston, and F. Schweitzer, “A model of a trust-
based recommendation system on a social network,” Autonomous
Agents and Multi-Agent Systems, 2008.

[6] M.-H. Park, J.-H. Hong, and S.-B. Cho, “Location-based recom-
mendation system using bayesian users preference model in mo-
bile devices,” in Ubiquitous Intelligence and Computing, 2007.

[7] C. J. Leggetter and P. C. Woodland, “Maximum likelihood lin-
ear regression for speaker adaptation of continuous density hidden
markov models,” Computer Speech and Language, 1995.

[8] P. C. Woodland, “Speaker adaptation for continuous density
hmms: A review,” in Proc. on ITRW on Adaptation Methods for
Speech Recognition, 2001.

[9] l. G. Jean and C.-H. Lee, “Maximum a posteriori estimation for
multivariate gaussian mixture observations of markov chains,”
IEEE Transactions on Speech and Audio Processing, 1994.

[10] J. R. Bellegarda, “Statistical language model adaptation: review
and perspectives,” Speech Communication, 2004.

[11] A. Heidel and L.-S. Lee, “Robust topic inference for latent seman-
tic language model adaptation,” in Proc. on ASRU, 2007.

[12] H. Bo-June and J. Glass, “Style and topic language model adapta-
tion using hmm-lda,” in Proc. on EMNLP, 2006.

[13] D. Hakkani-Tur, G. Tur, and L. Heck, “Research challenges and
opportunities in mobile applications,” Signal Processing Maga-
zine, IEEE, 2011.

[14] X. Sun and A. May, “The role of spatial contextual factors in mo-
bile personalization at large sports events,” Personal and Ubiqui-
tous Computing, 2009.

[15] S. Arbanowski, P. Ballon, K. David, O. Droegehorn, H. Eertink,
W. Kellerer, H. van Kranenburg, K. Raatikainen, and R. Popescu-
Zeletin, “I-centric communications: personalization, ambient
awareness, and adaptability for future mobile services,” Commu-
nications Magazine, 2004.

[16] P. F. Brown, P. V. deSouza, R. L. Mercer, V. J. D. Pietra, and J. C.
Lai, “Class-based n-gram models of natural language,” Computa-
tional Linguistics, 1992.

[17] A. Stolcke, “Entropy-based pruning of backoff language models,”
in Proc. of the DARPA Broadcast News Transcription and Under-
standing Workshop, 2000.

[18] T.-H. Wen, H.-Y. Lee, T.-Y. Chen, and L.-S. Lee, “Personalized
language modeling by crowd sourcing with social network data
for voice access of cloud applications,” in Proc. on IEEE SLT
workshop, 2012.

[19] J. Wu and S. Khudanpur, “Combining nonlocal, syntactic and
n-gram dependencies in language modeling,” in Proc. on Eu-
roSpeech, 1999.

[20] S. Khudanpur and J. Wu, “Maximum entropy techniques for ex-
ploiting syntactic, semantic and collocational dependencies in lan-
guage modeling,” Computer Speech and Language, 2000.

[21] H. S. Le, A. Allauzen, and Y. Fran, “Measuring the influence of
long range dependencies with neural network language models,”
in Proc. on NAACL-HLT Workshop, 2012.

[22] I. Oparin, M. Sundermeyer, H. Ney, and J. Gauvain, “Performance
analysis of neural networks in combination with n-gram language
models,” in Proc. on ICASSP, 2012.

[23] Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin, “A neural
probabilistic language model,” Journal of Machine Learning Re-
search, 2003.

[24] J. Park, X. Liu, M. J. F. Gales, and P. C. Woodland, “Improved
neural network based language modeling and adaptation,” in Proc.
on InterSpeech, 2010.

[25] H.-S. Le, I. Oparin, A. Allauzen, J.-L. Gauvain, and F. Yvon,
“Structured Output Layer neural network language model,” in
Proc. on ICASSP, 2011.

[26] T. Mikolov, M. Karafit, L. Burget, J. Cernock, and S. Khudanpur,
“Recurrent neural network based language model,” in Proc. on
InterSpeech, 2010.

[27] T. Mikolov, S. Kombrink, L. Burget, J. Cernocky, and S. Khudan-
pur, “Extensions of recurrent neural network language model,” in
Proc. on ICASSP, 2011.

[28] T. Mikolov and G. Zweig, “Context dependent recurrent neural
network language model,” in Proc. on IEEE SLT workshop, 2012.

[29] Y. Shi, P. Wiggers, and C. M. Jonker, “Towards recurrent neu-
ral networks language models with linguistic and contextual fea-
tures,” in Proc. on InterSpeech, 2012.

[30] A. Doan, R. Ramakrishnan, and A. Y. Halevy, “Crowdsourcing
systems on the world-wide web,” Communications of the ACM,
2011.

[31] Munro and Robert, “Crowdsourcing and language studies: the
new generation of linguistic data,” in Proc. on NAACL, 2010.

[32] K. Berberich, S. Bedathur, O. Alonso, and G. Weikum, “A lan-
guage modeling approach for temporal information needs,” in Ad-
vances in Information Retrieval, 2010.

[33] J. Liu, S. Cyphers, P. Pasupat, I. McGraw, and J. Glass, “A conver-
sational movie search system based on conditional random field,”
in Proc. on InterSpeech, 2012.

[34] I. McGraw, S. Cyphers, P. Pasupat, J. Liu, and J. Glass, “Automat-
ing crowd-supervised learning for spoken language systems,” in
Proc. on InterSpeech, 2012.

[35] R. Iyer and M. Ostendorf, “Modeling long distance dependence
in language: topic mixtures versus dynamic cache models,” IEEE
Transactions on Speech and Audio Processing, 1999.

[36] A. Heidel, H.-A. Chang, and L.-S. Lee, “Language model adap-
tation using latent dirichlet allocation and an efficient topic infer-
ence algorithm,” in Proc. on InterSpeech, 2007.

[37] M. Federico, “Efficient language model adaptation through mdi
estimation,” in Proc. on EuroSpeech, 1999.

[38] C. Chelba and F. Jelinek, “Structured language modeling,” Com-
puter Speech and Language, 2000.

[39] X. Liu, M. J. F. Gales, and P. C. Woodland, “Improving lvcsr
system combination using neural network language model cross
adaptation,” in Proc. on InterSpeech, 2011.

[40] J. Paolillo, “The virtual speech community: Social network and
language variation on irc,” Journal of Computer-Mediated Com-
munication, 1999.

[41] D. Rosen and M. Corbit, “Social network analysis in virtual envi-
ronments,” in Proc. on ACM Hypertext, 2009.

[42] T. K. Landauer, P. W. Foltz, and D. Laham, “An Introduction to
Latent Semantic Analysis,” Discourse Processes, 1998.

[43] F. James, “Modified kneser-ney smoothing of n-gram models
modified kneser-ney smoothing of n-gram models,” Tech. Rep.,
2000.

[44] A. Stolcke, “Srilm - an extensible language modeling toolkit,” in
Proc. on Spoken Language Processing, 2002.

[45] T. Mikolov, S. Kombrink, A. Deoras, L. Burget, and J. Cernocky,
“Rnnlm - recurrent neural network language modeling toolkit,” in
Proc. on ASRU, 2011.

[46] S. J. Young, D. Kershaw, J. Odell, D. Ollason, V. Valtchev, and
P. Woodland, The HTK Book Version 3.4. Cambridge University
Press, 2006.

2707

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Multimedia File Index

	Abstract Book
	Abstract Card for this Manuscript

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	Also by Tsung-Hsien Wen
	Also by Hung-yi Lee
	Also by Yu Tsao
	Also by Lin-shan Lee
