Towards Spoken Knowledge Structuring and Organization When Speech Processing Technology meets MOOCs

Speaker: Hung-yi Lee

Introduction

- 2012 is the year of the massive open online course (MOOC)
 - Instructors post recorded video/audio of their lectures on online lecture platforms.
 - Learners worldwide can easily access the curricula.

□ More learning materials

videolectures **net**

exchange ideas & share knowledge

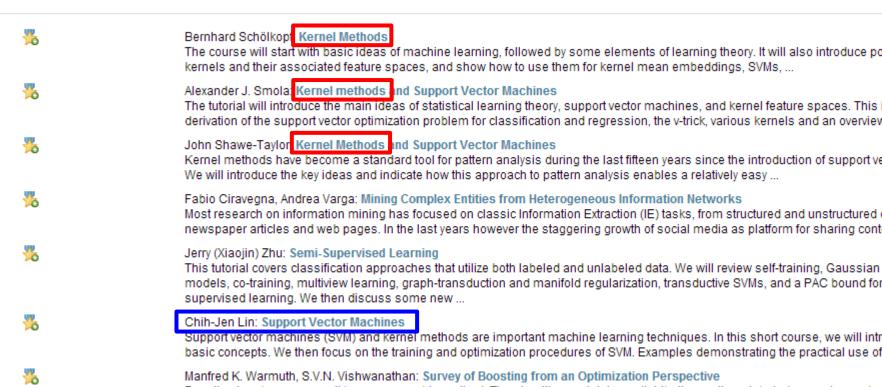
Too much materials

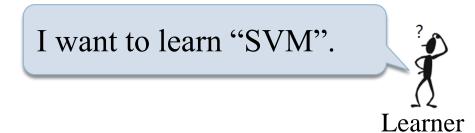
videolectures**enet**

exchange ideas & share knowledge

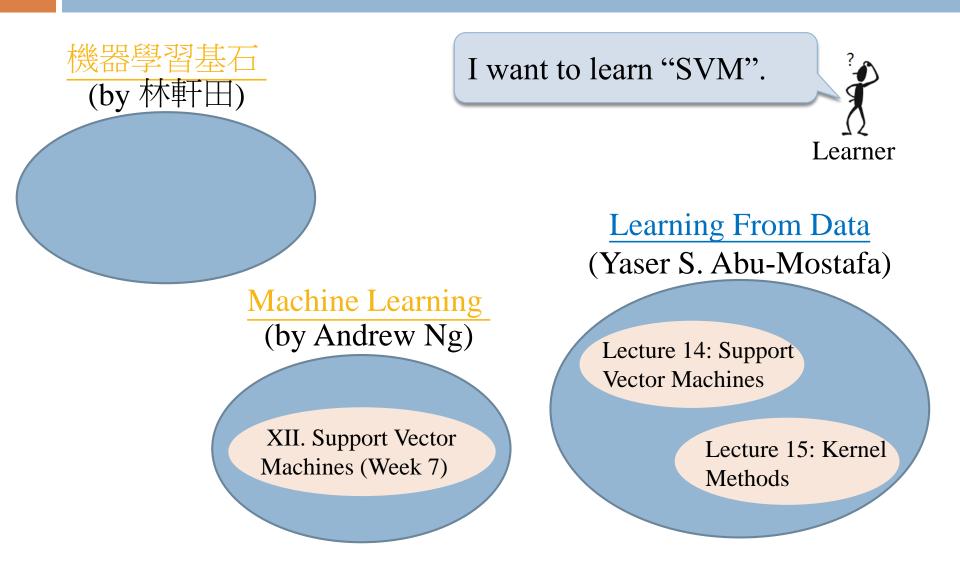
Search: SVM - Matches: 212

Tutorials:





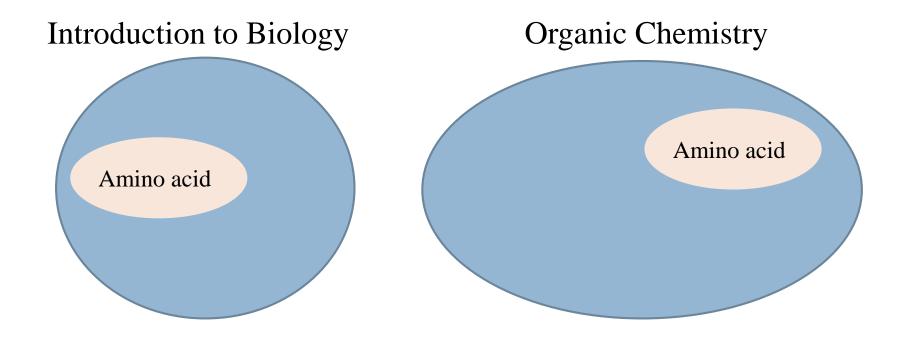
A course is too much



A course is not enough

□ Inter-discipline

I want to learn "amino acid".



Vision: Personalized Courses

on-line learning material \succ I want to learn "XXX".

- I am a graduate student of computer science.
- > I can spend 10 hours.



I open a course for you.

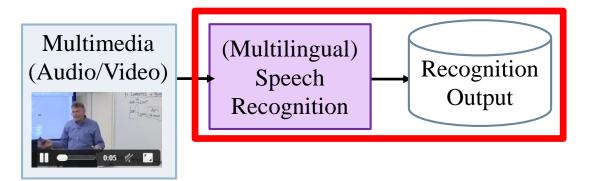
Spoken Language Processing techniques can be very helpful.

The spoken content in courses plays the most important role in conveying the knowledge.

Outline

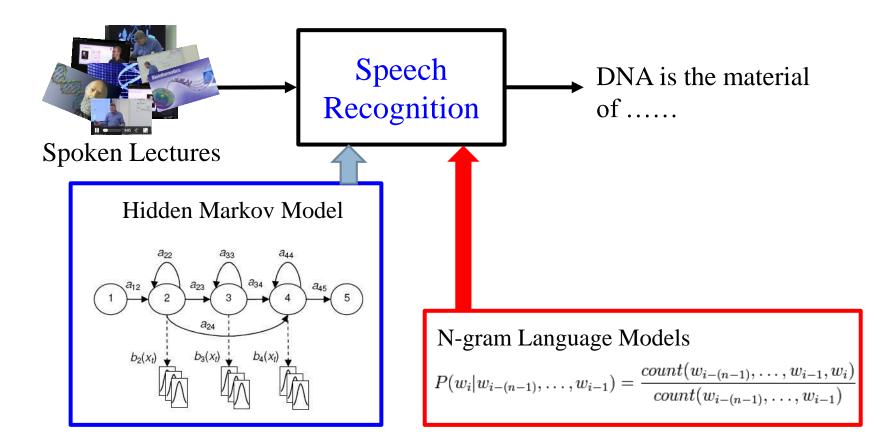
- Part I: Overview each block in spoken knowledge structuring and organization
 - Speech Recognition
 - Temporal Structure
 - Spoken content retrieval
 - Linking related lectures
 - Speech summarization
 - Knowledge graph construction
 - Inferring prerequisite and advanced concepts
- Part II: Spoken Content Retrieval
- Part III: Speech Summarization
- Part IV: Demo

Part I: Overview

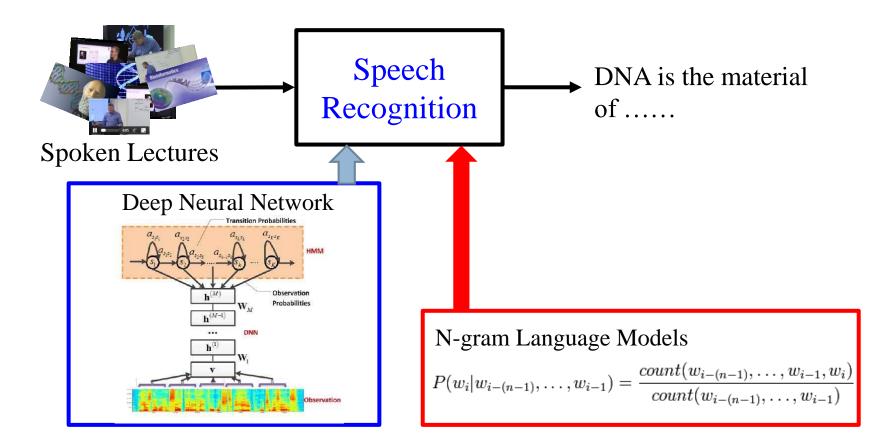


- Lectures on Coursera and edX has manual transcriptions
- Most lectures on the Internet do not have transcriptions
 - Speech recognition!

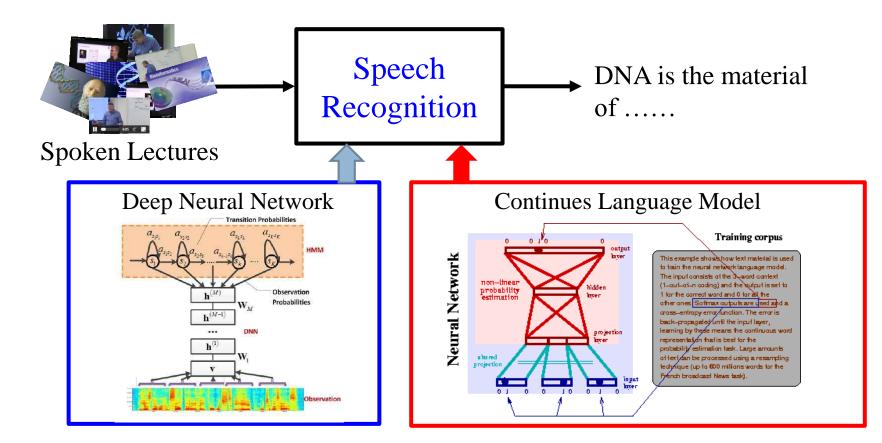
• Speech Recognition is the foundation of the following speech techniques



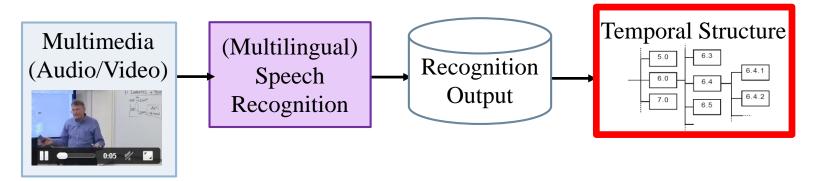
• Speech Recognition is the foundation of the following speech techniques



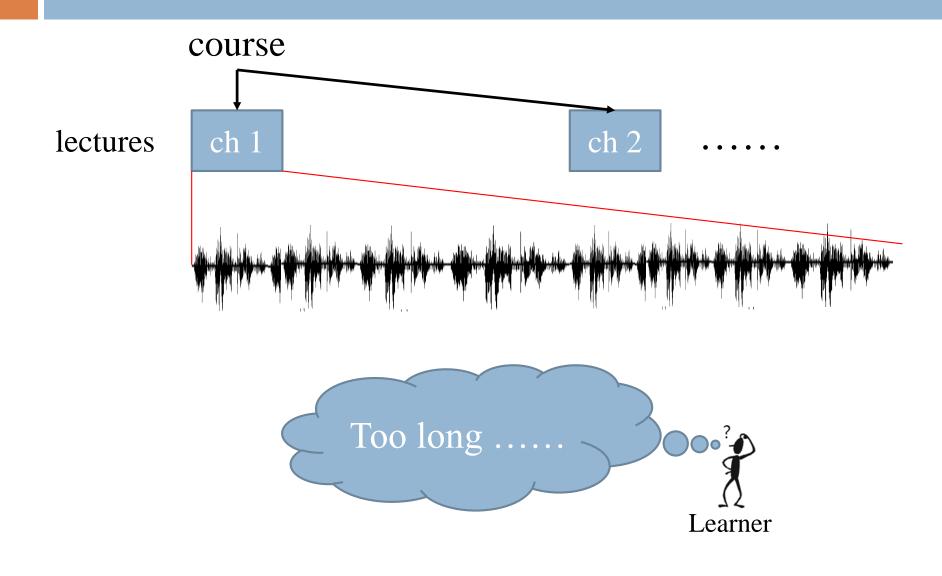
• Speech Recognition is the foundation of the following speech techniques



Multi-layer Temporal Structure



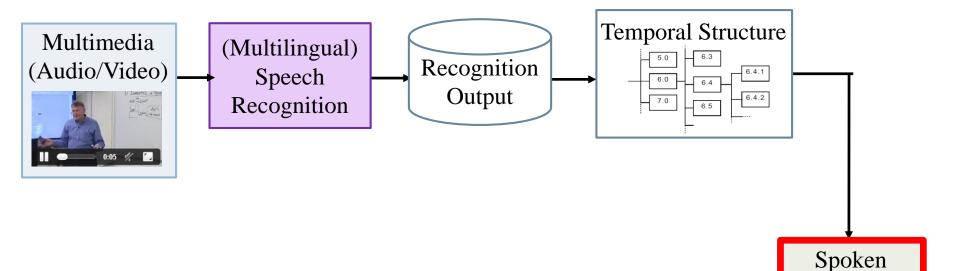
Multi-layer temporal structure



Multi-layer temporal structure



Spoken Content Retrieval

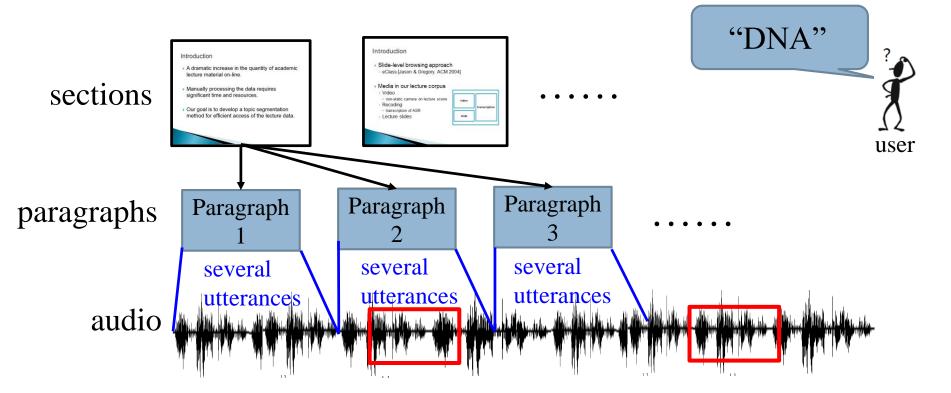


Content

Retrieval

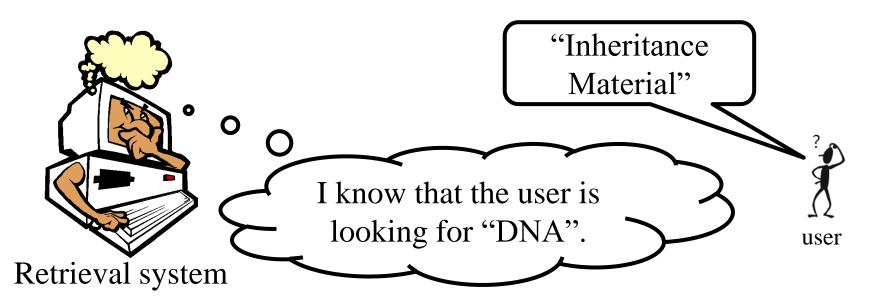
Spoken Content Retrieval – Goal

- Basic goal: return paragraphs or sections containing keywords
 - This is called "Spoken Term Detection" (口語詞彙偵測)

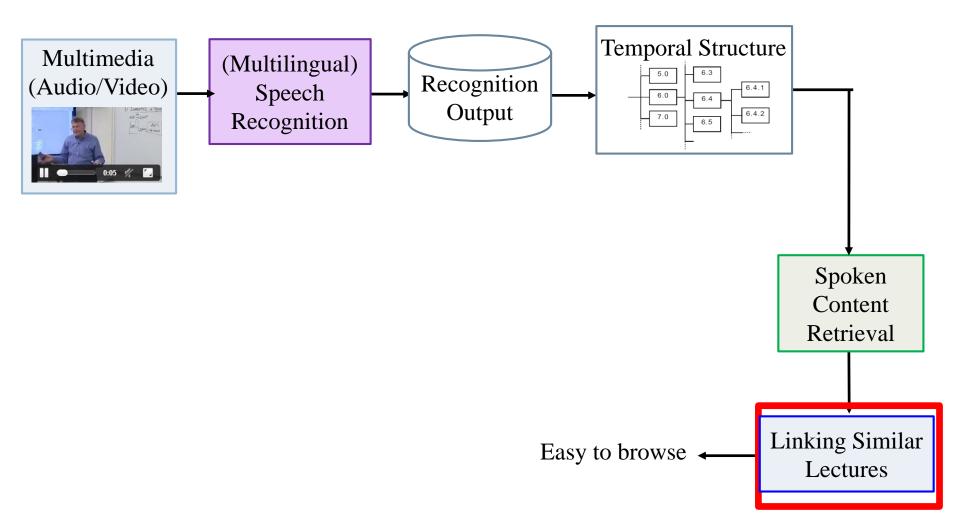


Spoken Content Retrieval – Goal

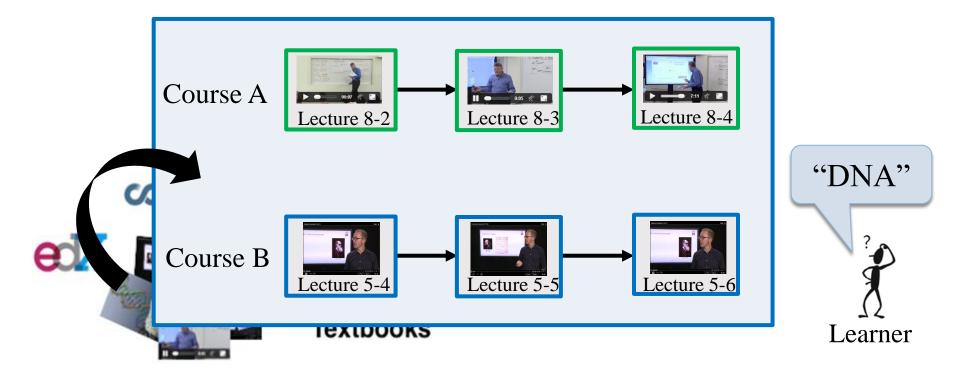
- Basic goal: return paragraphs or sections containing keywords
 - This is called "Spoken Term Detection" (口語詞彙偵測)
- Advanced goal: Semantic retrieval of spoken content



Visualizing Search Results



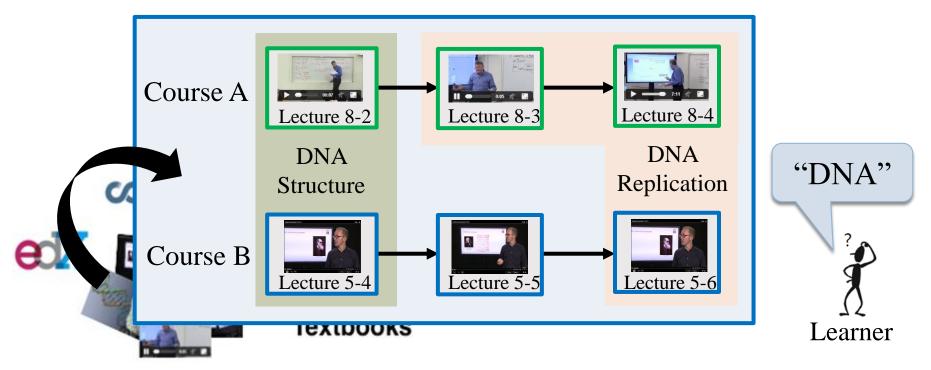
With spoken content retrieval, we can use keywords to search related lectures



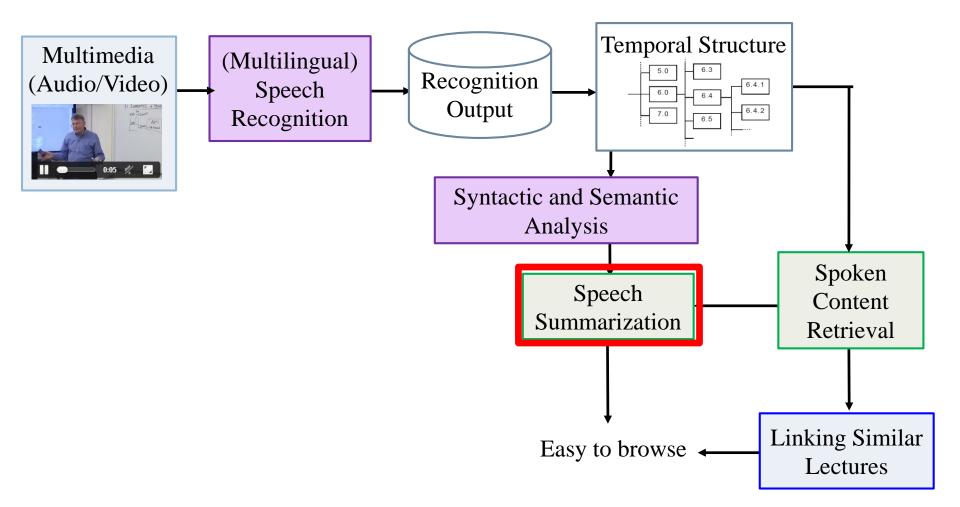
□ Linking lectures with similar content

Compute similarity between lectures in courses and sections in textbooks

• Merge the materials with high cosine similarity

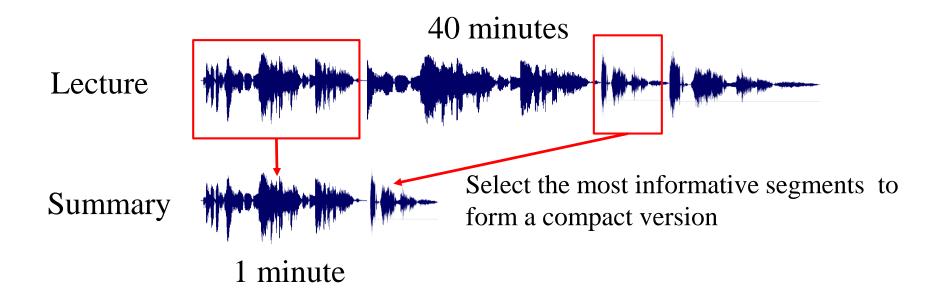


Speech Summarization

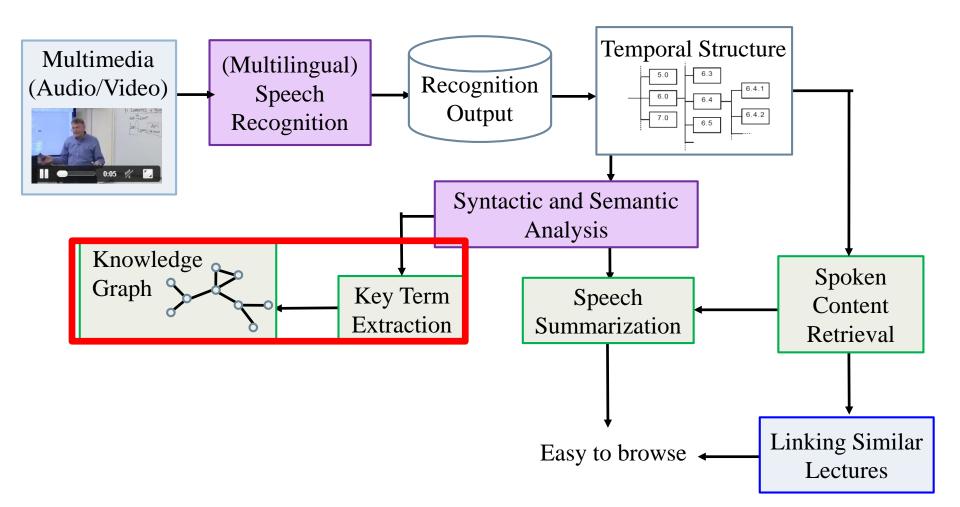


Speech Summarization

□ Audio is hard to browse

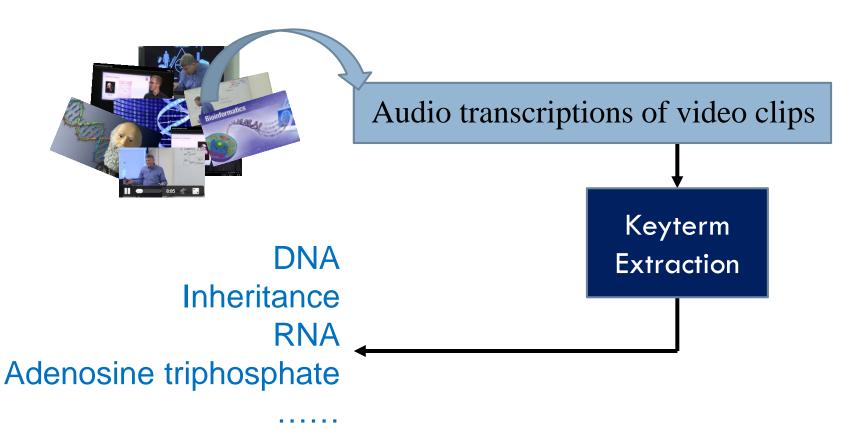


Knowledge Graph Construction

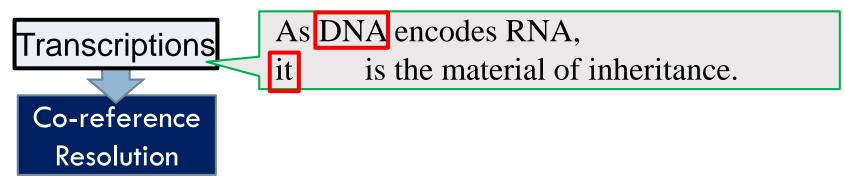


Knowledge Graph Construction - Keyterm Extraction

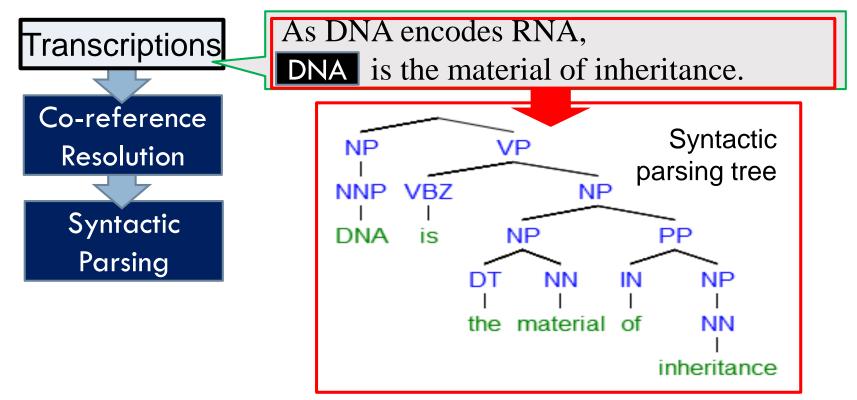
- □ Knowledge graph construction
 - Keyterm extraction



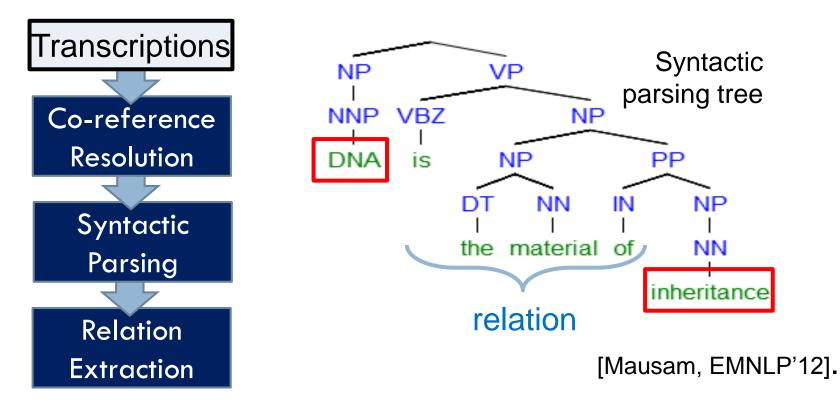
- □ Knowledge graph construction
 - Keyterm extraction
 - Find relation between keyterms



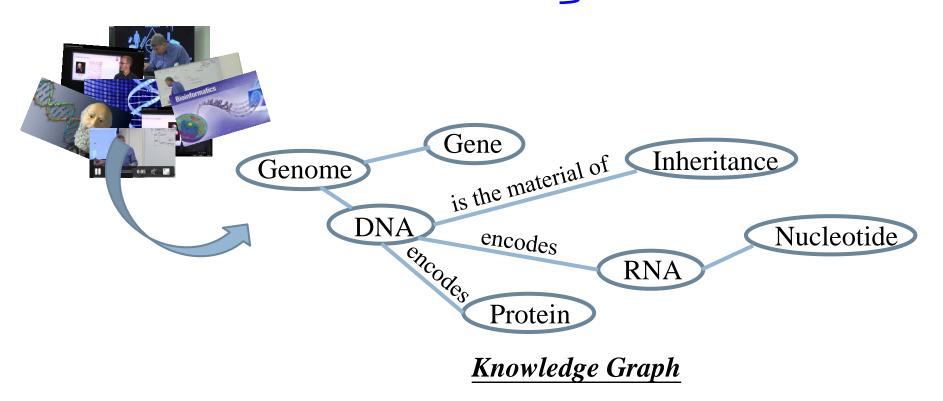
- □ Knowledge graph construction
 - Keyterm extraction
 - Find relation between keyterms



- □ Knowledge graph construction
 - Keyterm extraction
 - Find relation between keyterms



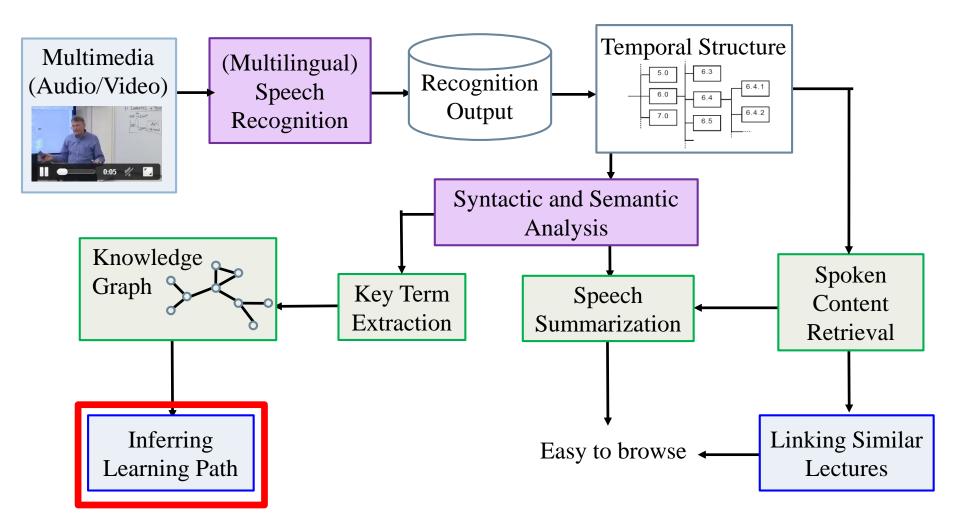
- □ Knowledge graph construction
 - Keyterm extraction
 - Find relation between keyterms



Knowledge

Graph

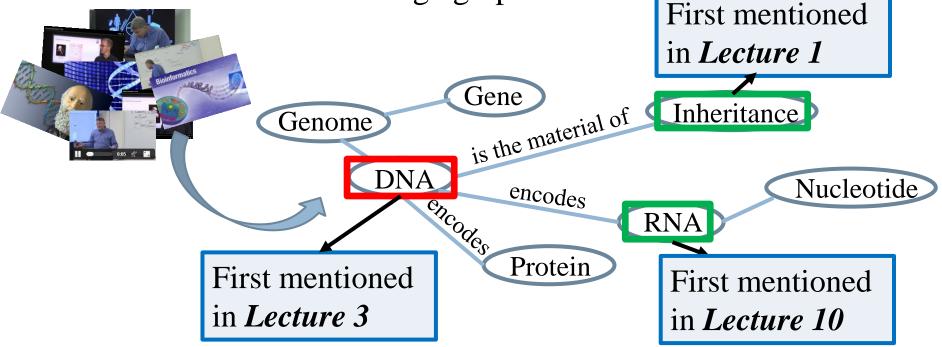
Inferring Learning Path



Inferring Learning Path

Inferring prerequisite and advanced concepts

Construct a knowledge graph

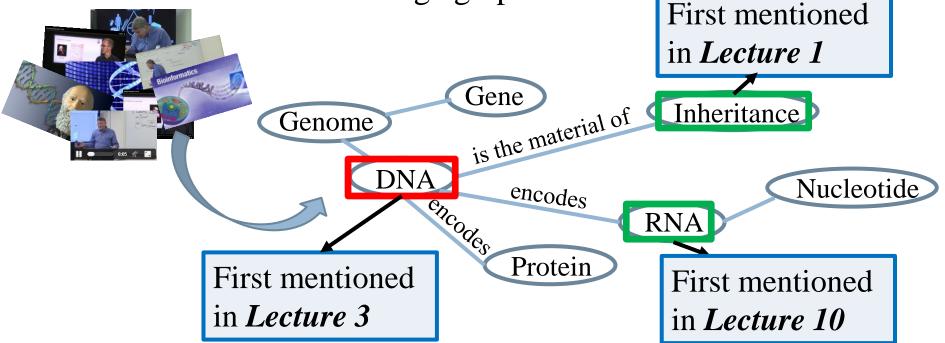


Analyze the positions where the concepts are mentioned the first time in a course

Inferring Learning Path

Inferring prerequisite and advanced concepts

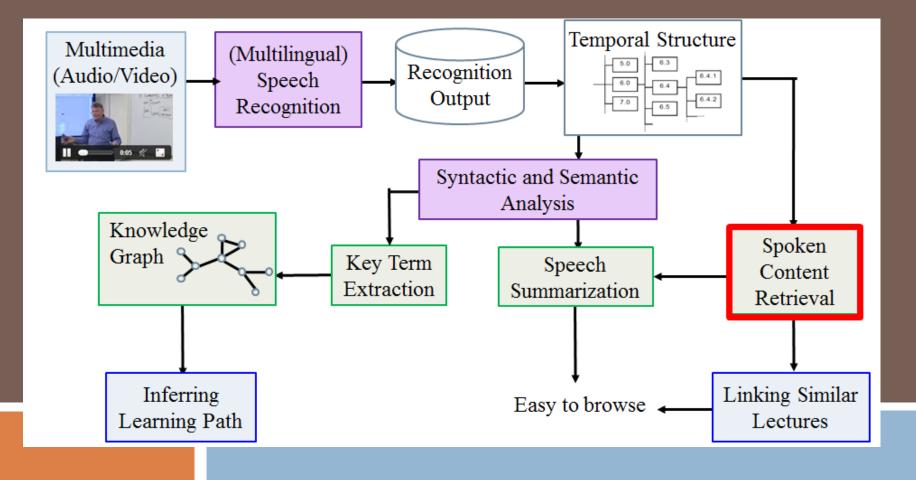
Construct a knowledge graph



"Inheritance" is the prerequisite concept of "DNA" "RNA" is the advanced concept of "DNA"

Part II:

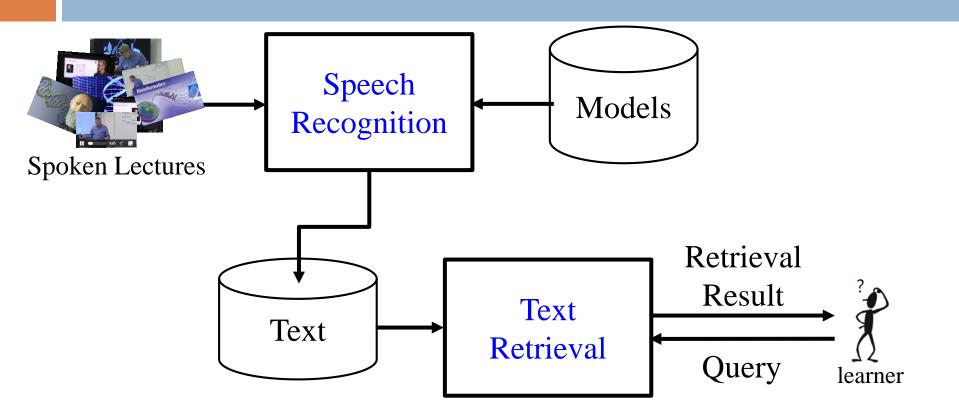
Spoken Content Retrieval



People think

Spoken Content Retrieval II Speech Recognition + Text Retrieval

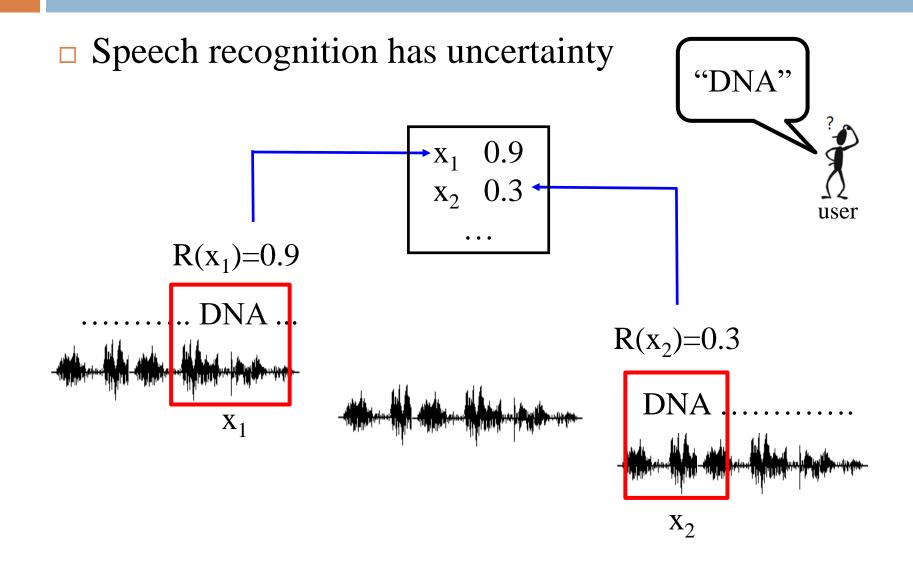
Speech Recognition + Text Retrieval



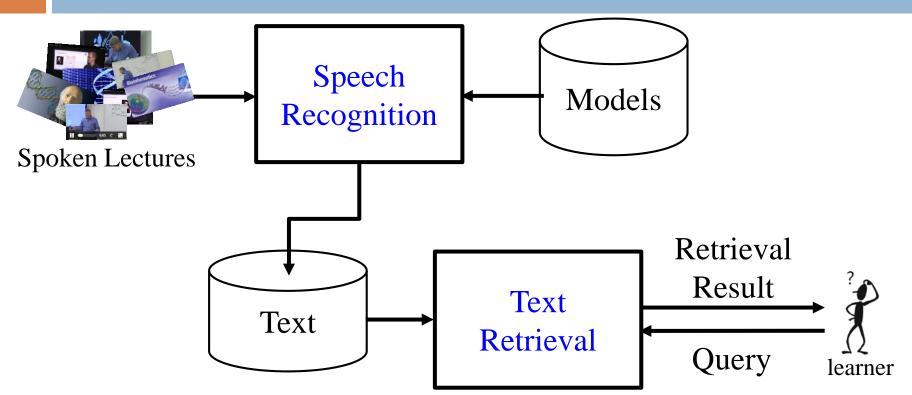
Spoken Content Retrieval

= Speech Recognition + Text Retrieval

Speech Recognition + Text Retrieval

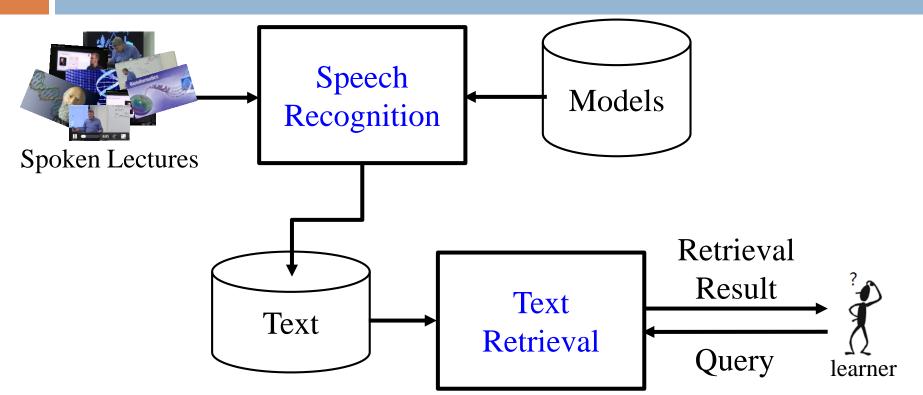


Is the problem solved?



- The retrieval performance seriously degrades with inevitable recognition errors.
- In real application, speech recognition accuracy can be low.

Is the problem solved?



- To make retrieval performance less limited by recognition errors
- We need new ideas beyond cascading speech recognition and text retrieval.

Spoken Content Retrieval Speech Recognition + Text Retrieval

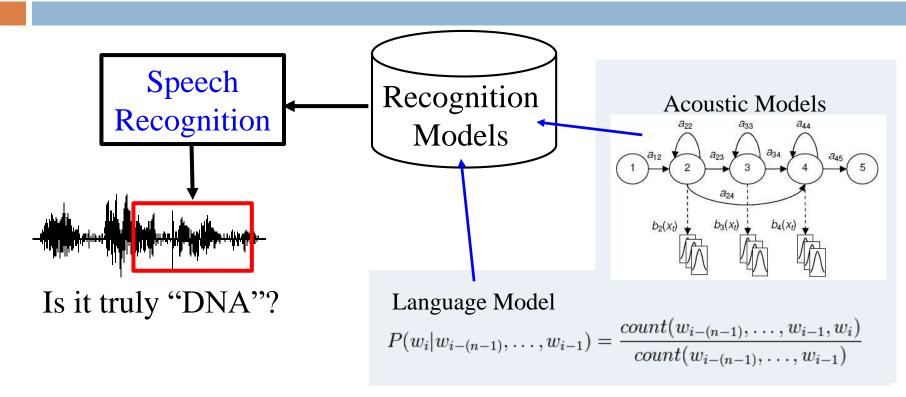
Beyond Cascading Speech Recognition and Text Retrieval

- Incorporating Information Lost in Standard Speech Recognition
- Improving Recognition Models by User Relevance feedback
- Query Expansion with Speech Signals
- Spoken Content Retrieval without Speech Recognition
- Interactive Retrieval

Beyond Cascading Speech Recognition and Text Retrieval

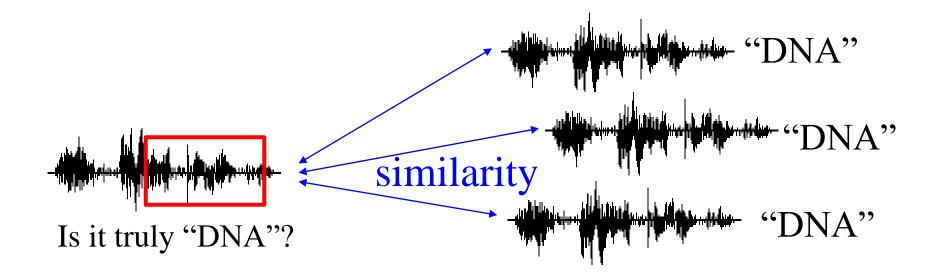
- Incorporating Information Lost in Standard Speech Recognition
- Improving Recognition Models by User Relevance feedback
- Query Expansion with Speech Signals
- Spoken Content Retrieval without Speech Recognition
- Interactive Retrieval

Similarity

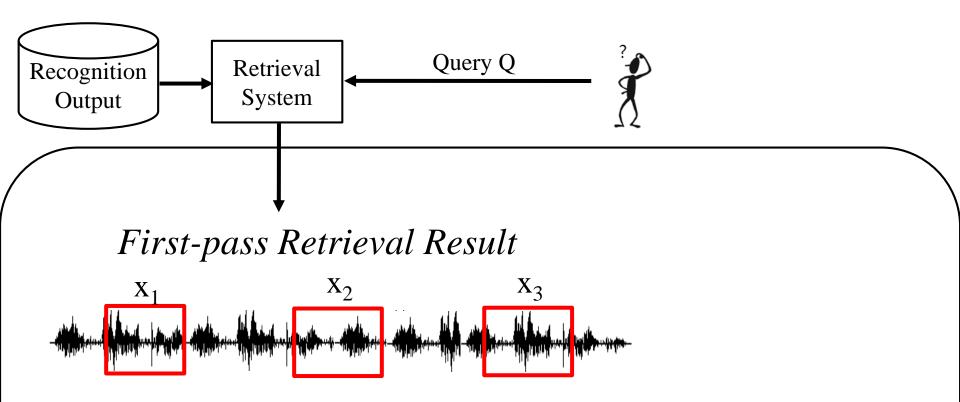


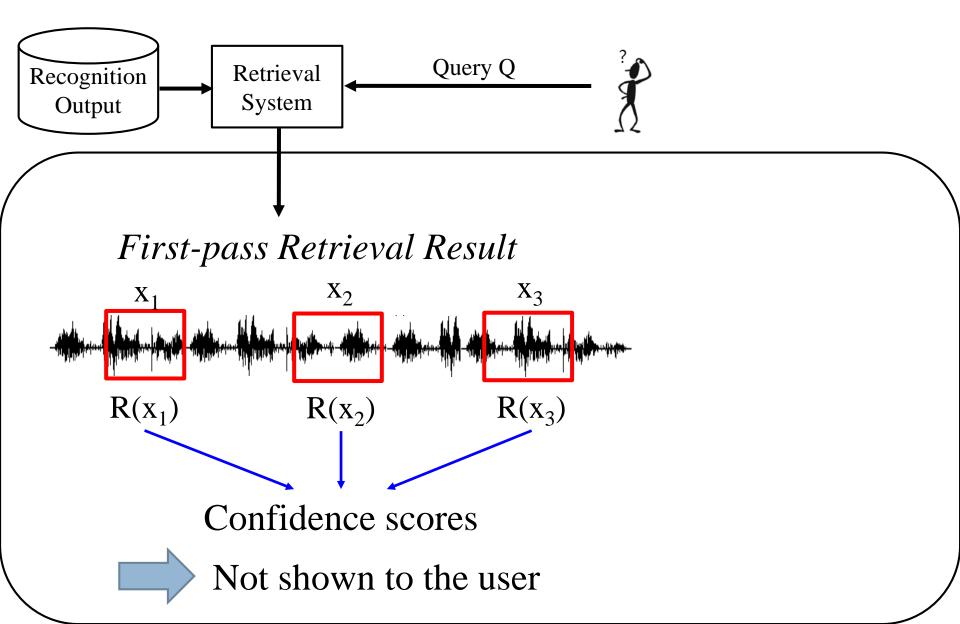
Lots of inaccurate assumption

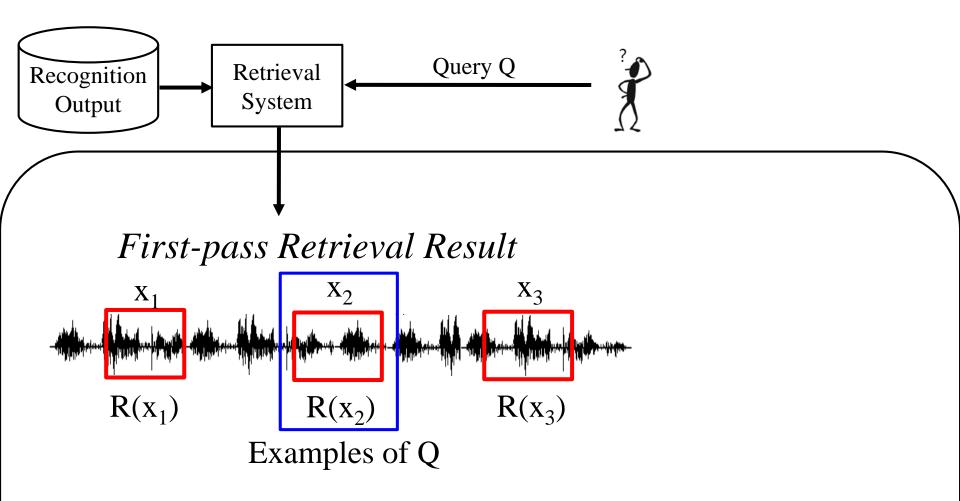
Similarity



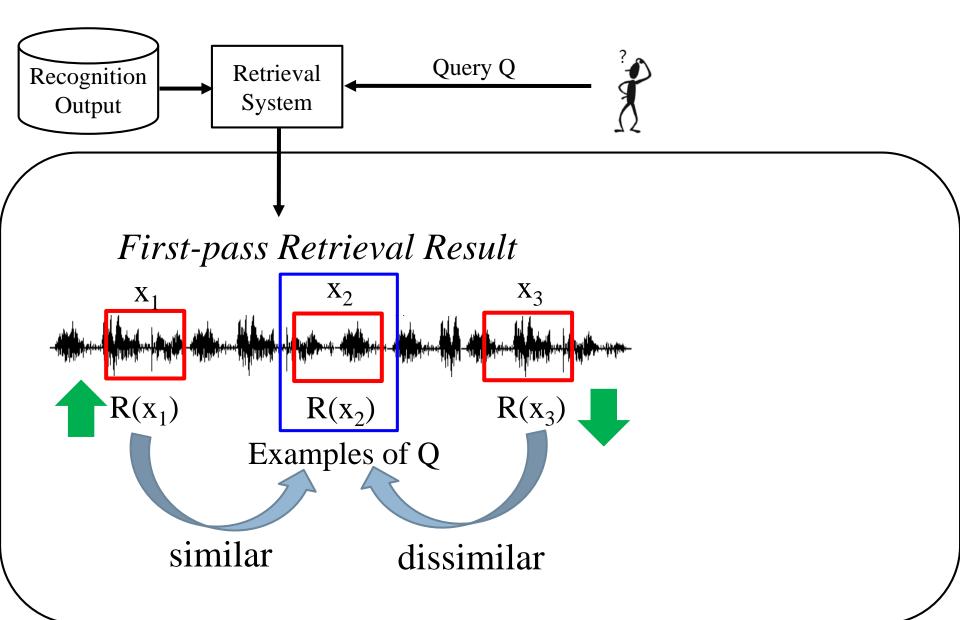
It is not realistic to find examples for all queries. Use Pseudo-relevance Feedback (PRF)

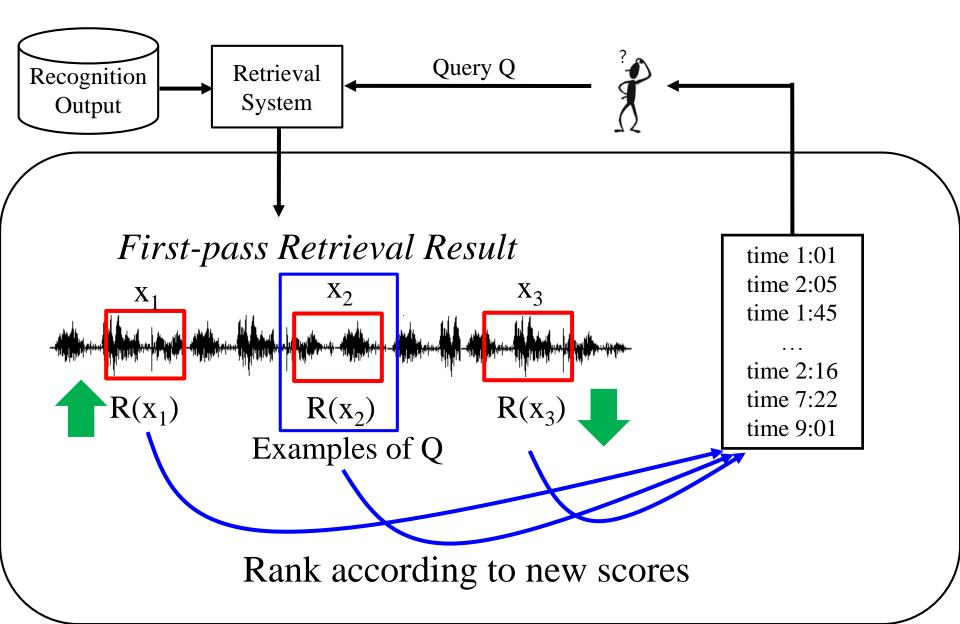






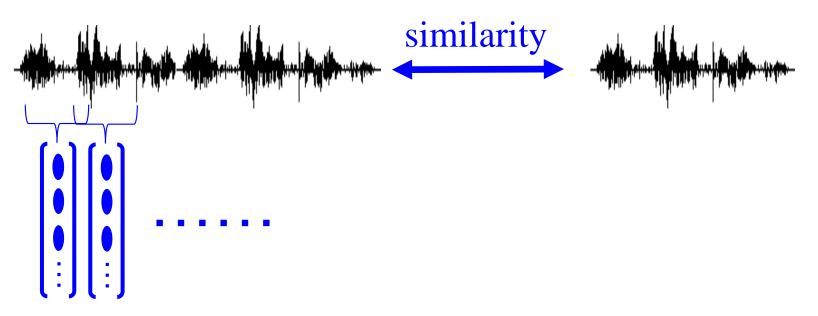
Assume the result with high confidence scores as correct Considered as examples of Q





Similarity between Audio Segments

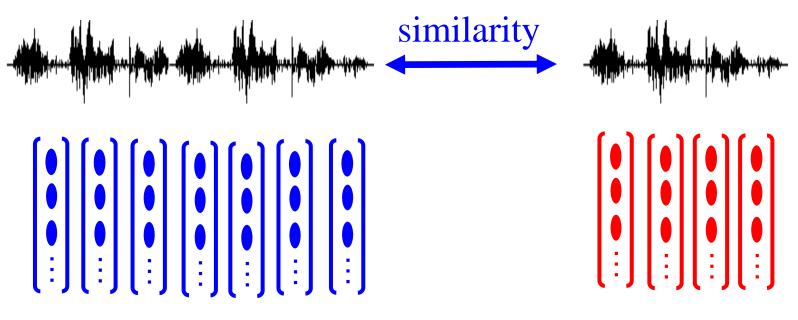
How to compute the similarity of two audio segments?



Use a feature vector to present a short time span.

Similarity between Audio Segments

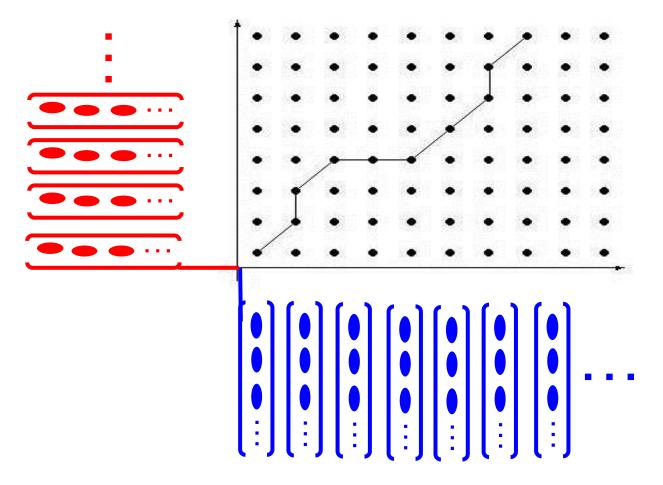
How to compute the similarity of two audio segments?



A audio segment is a sequence of feature vectors.

Similarity between Audio Segments

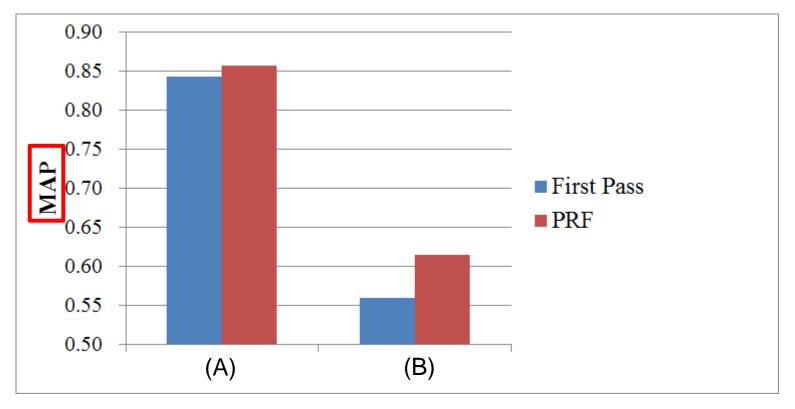
Dynamic Time Warping (DTW)



Pseudo Relevance Feedback (PRF)- Experiments

Digital Speech Processing (DSP) of NTU based on lattices

Evaluation Measure: MAP (Mean Average Precision)

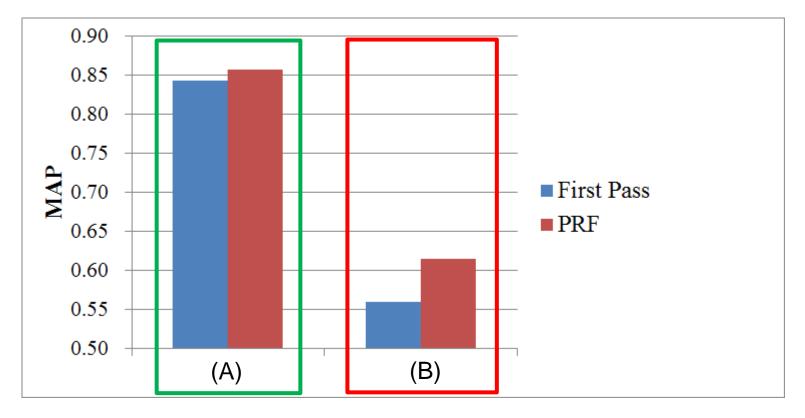


Pseudo Relevance Feedback (PRF)- Experiments

(A) and (B) use different speech recognition systems

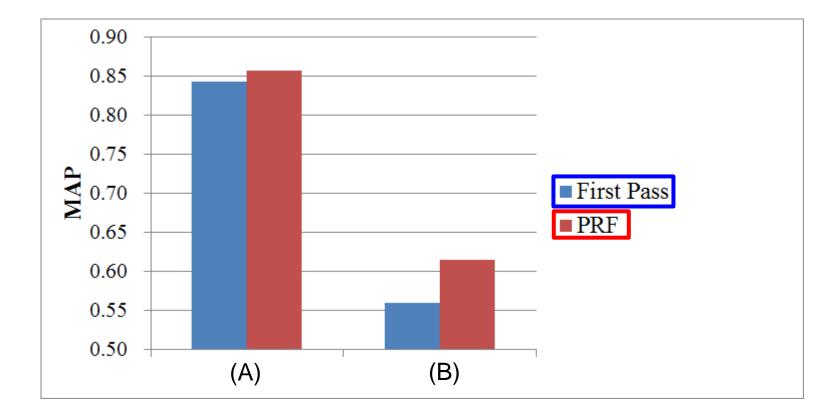
(A): speaker dependent (84% recognition accuracy)

(B): speaker independent (50% recognition accuracy)



Pseudo Relevance Feedback (PRF)- Experiments

PRF (red bars) improved the first-pass retrieval results with lattices (blue bars)

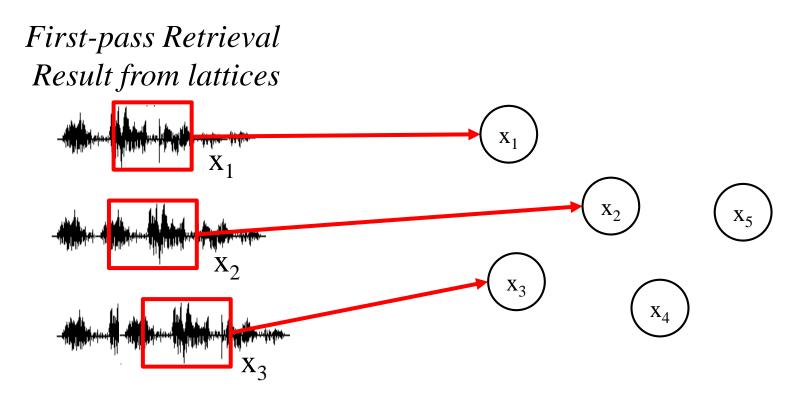


Graph-based Approach

- In PRF, each result considers the similarity to some examples
- □ Consider the similarity between all results
- □ Formulated as a problem on graph

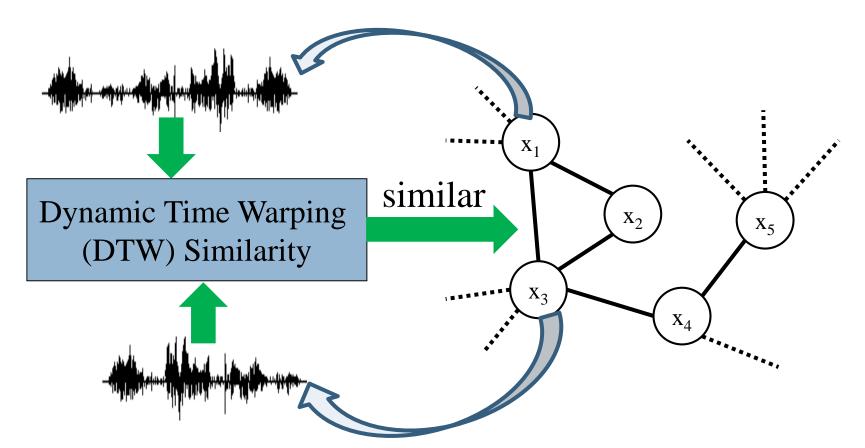
Graph Construction

The first-pass results is considered as a graph.
Each retrieval result is a node

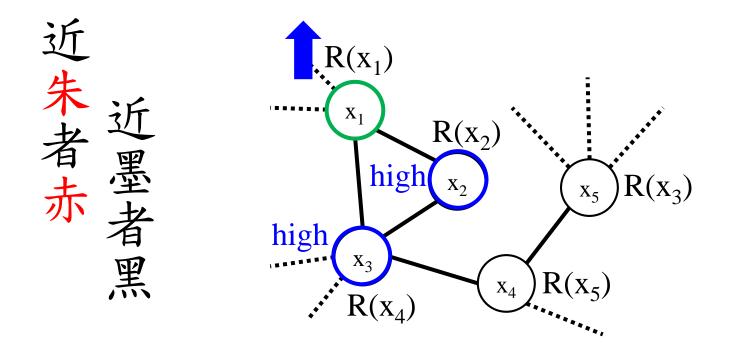


Graph Construction

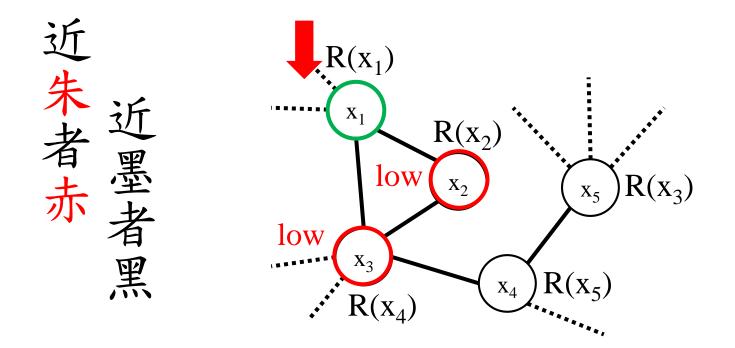
- □ The first-pass results is considered as a graph.
 - Nodes are connected if their retrieval results are similar.



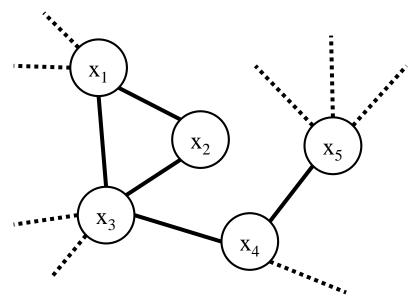
□ The score of each node depends on its neighbors.



□ The score of each node depends on its neighbors.

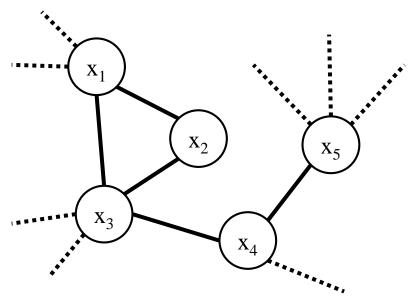


The score of each node depends on its connected nodes.



• Score of x_1 depends on the scores of x_2 and x_3

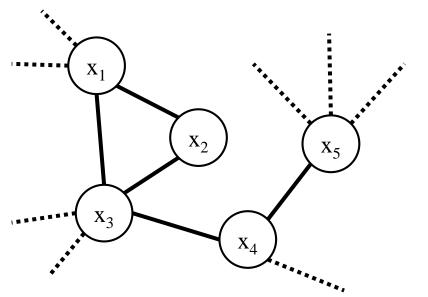
The score of each node depends on its connected nodes.



• Score of x_1 depends on the scores of x_2 and x_3

• Score of x_2 depends on the scores of x_1 and x_3

The score of each node depends on its connected nodes.



• Score of x_1 depends on the scores of x_2 and x_3

• Score of x_2 depends on the scores of x_1 and x_3

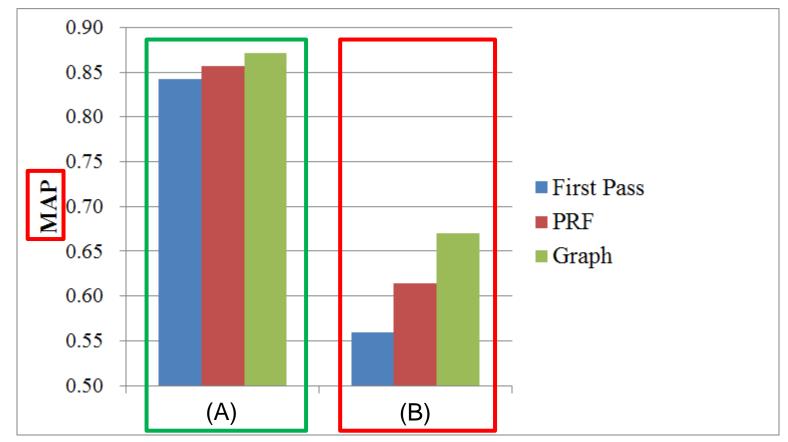
The scores are found by *random walk* algorithm.

Graph-based Approach -Experiments

Digital Speech Processing (DSP) of NTU based on lattices

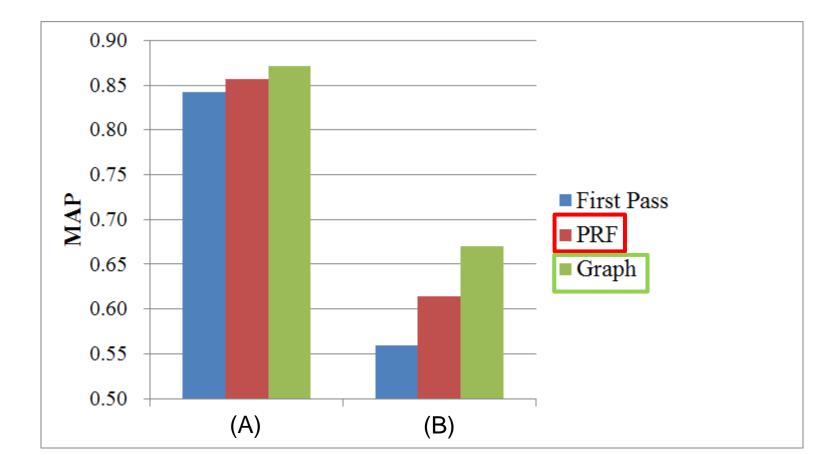
(A): speaker dependent (high recognition accuracy)

(B): speaker independent (low recognition accuracy)



Graph-based Approach -Experiments

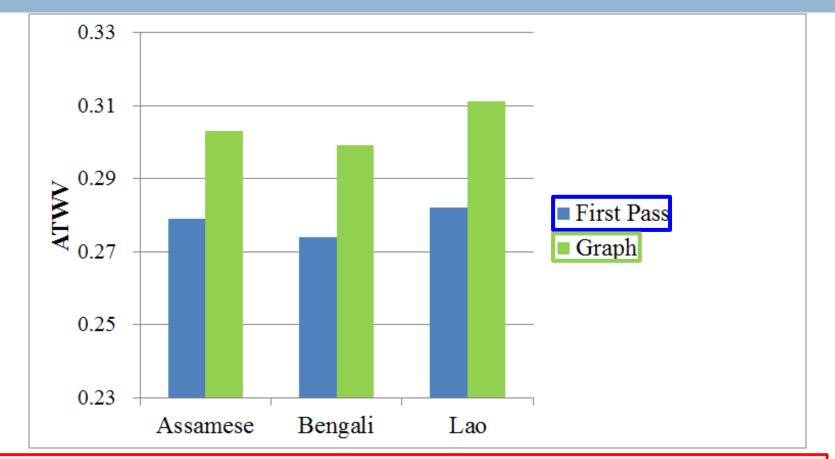
Graph-based re-ranking (green bars) outperformed PRF (red bars)



Graph-based Approach – Experiments on Babel Program

- □ Join Babel program (巴別塔計畫) at MIT
- Evaluation program of spoken term detection
 - More than 30 research groups divided into 4 teams
 - Spoken content to be retrieved are in special languages

Graph-based Approach – Experiments on Babel Program



Speech recognition system is based on deep neutral networks

3 out of 4 teams used this approach

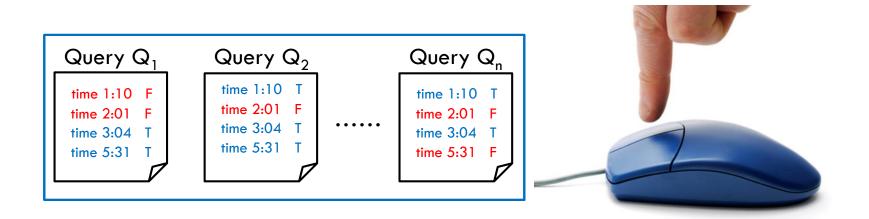
New Directions for Spoken Content Retrieval

- Incorporating Information Lost in Standard Speech Recognition
- Improving Recognition Models by User Relevance feedback
- Query Expansion with Speech Signals
- Spoken Content Retrieval without Speech Recognition
- Interactive Retrieval

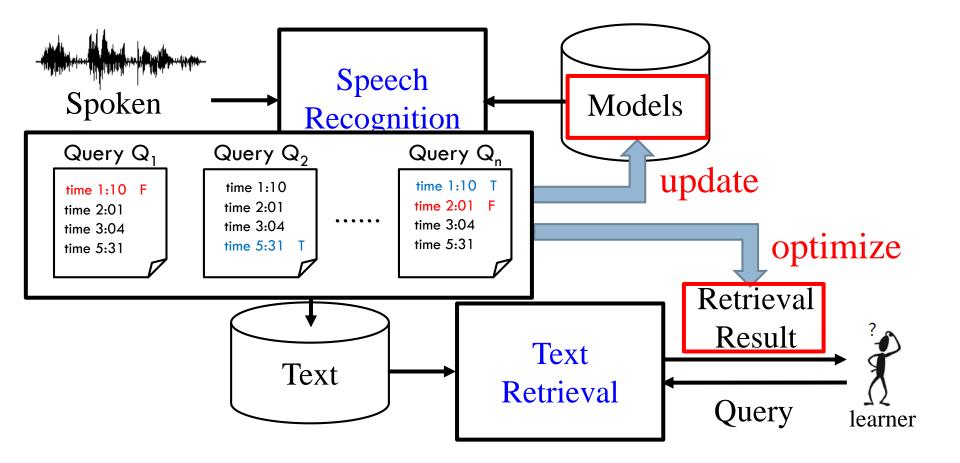
User Relevance Feedback

 Online search engine optimizes performance by user relevance feedback

■ E.g. click-through data [T Joachims, SIGKDD 02]

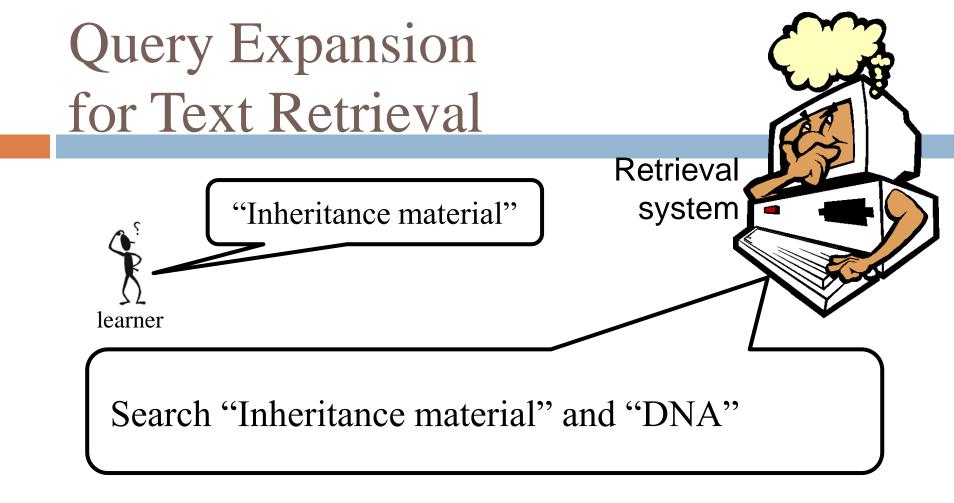


Update Recognition Models

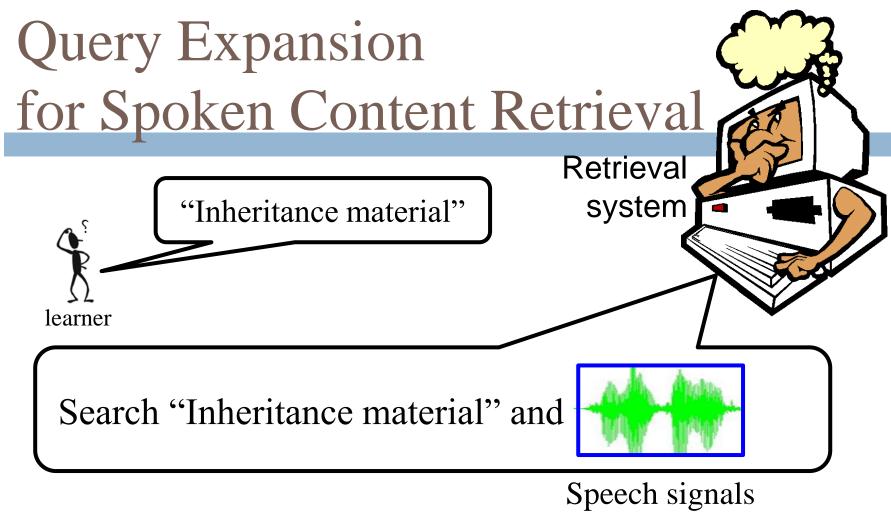


New Directions for Spoken Content Retrieval

- Incorporating Information Lost in Standard Speech Recognition
- Improving Recognition Models by User Relevance feedback
- Query Expansion with Speech Signals
- Spoken Content Retrieval without Speech Recognition
- Interactive Retrieval

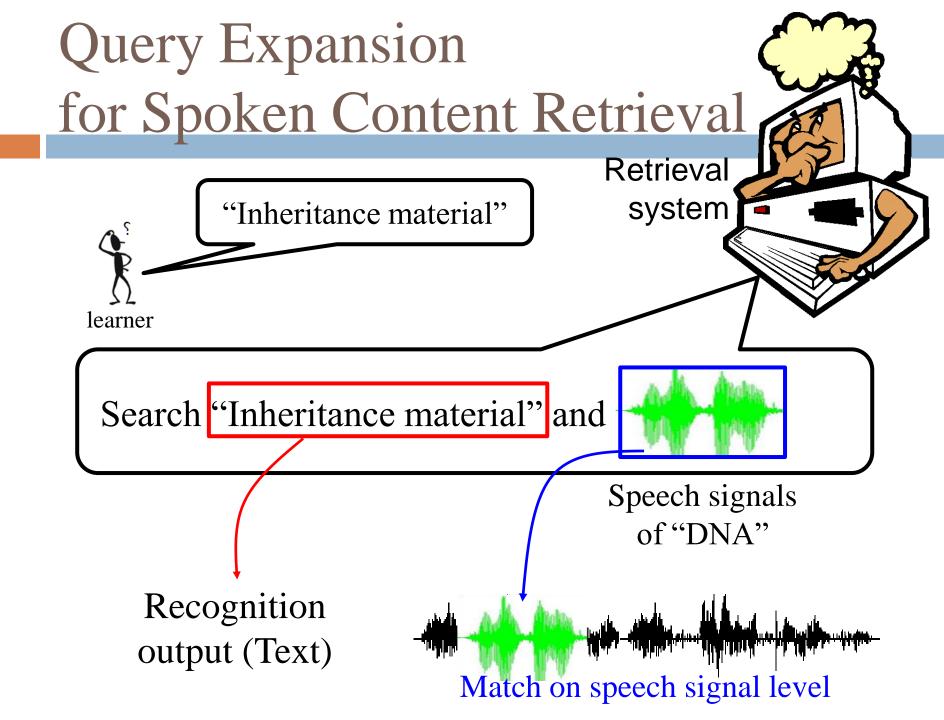


To handle the problem of semantic retrieval, retrieval system will expand the user query.



of "DNA"

Expand the queries by speech signals

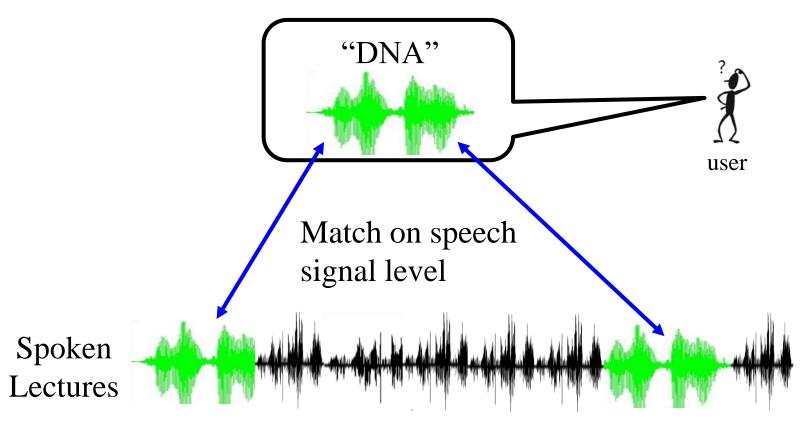


New Directions for Spoken Content Retrieval

- Incorporating Information Lost in Standard Speech Recognition
- Improving Recognition Models by User Relevance feedback
- Query Expansion with Speech Signals
- Spoken Content Retrieval without Speech Recognition
- Interactive Retrieval

Spoken Content Retrieval without Speech Recognition

Spoken Queries

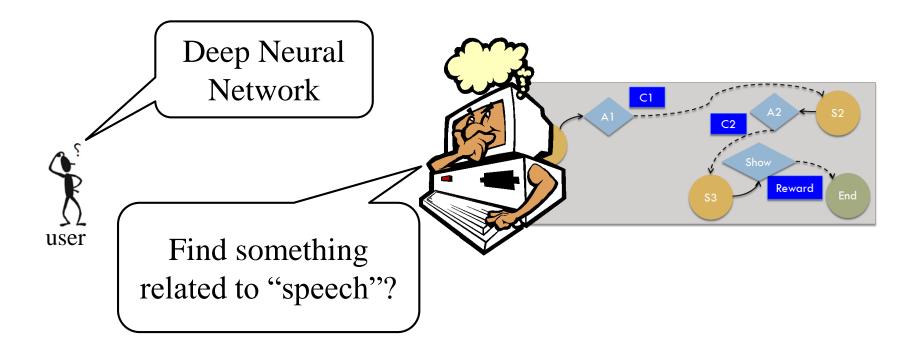


New Directions for Spoken Content Retrieval

- Incorporating Information Lost in Standard Speech Recognition
- Improving Recognition Models by User Relevance feedback
- Query Expansion with Speech Signals
- Spoken Content Retrieval without Speech Recognition
- Interactive Retrieval

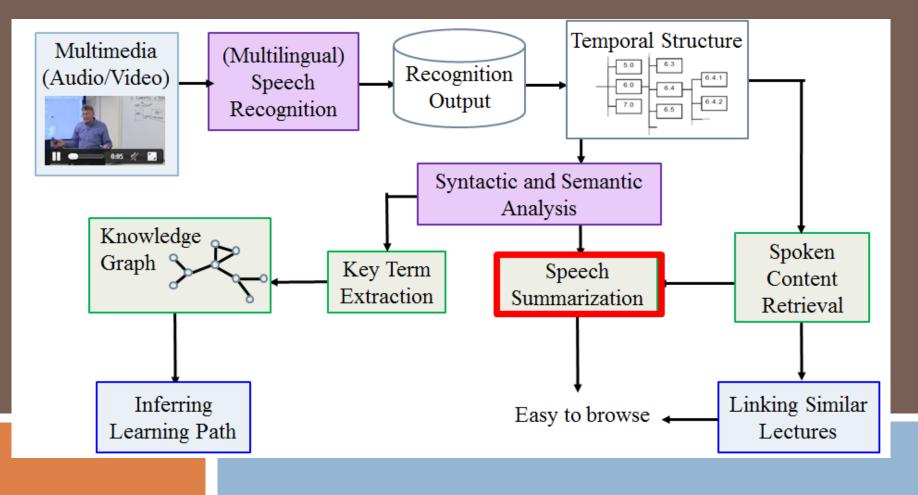
Interactive Retrieval

Model the interactive retrieval process as Markov Decision Process (MDP)



Part III:

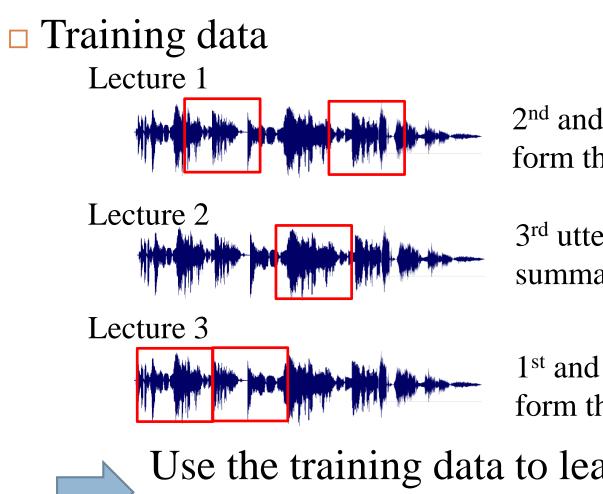
Speech Summarization



MMR approach

- Maximum marginal relevance (MMR) approach
 - Unsupervised approach: Use heuristic rules to select utterances
 - Select utterances whose content are similar to the whole lectures
 - Minimize redundancy in summary at the same time

Supervised Approach



2nd and 4th utterances form the summary

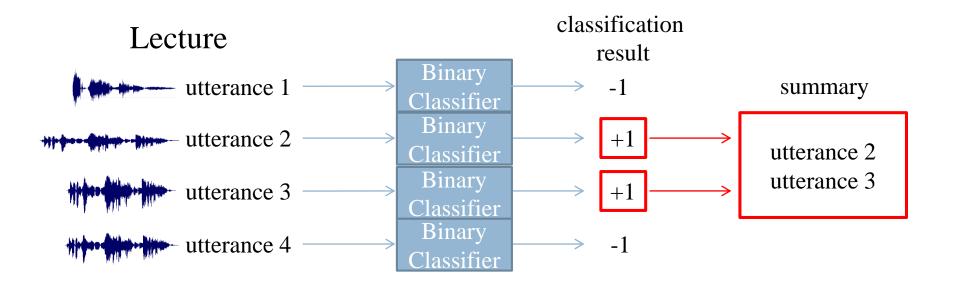
3rd utterances form the summary

1st and 2nd utterances form the summary

Use the training data to learn model for summarization

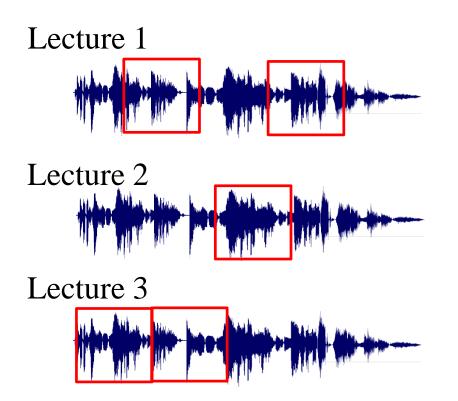
Supervised Approach – Binary Classification

Summarization problem can be formulated as a binary classification program
 Included in the summary or not



Supervised Approach – Binary Classification

Training data



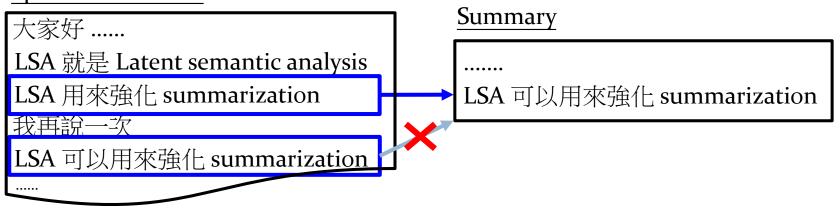
- The utterances in the summary are positive examples.
- Otherwise, negative examples

Train a binary classifier

Supervised Approach – Binary Classification

- Binary classifier individually considers each utterance
- To generate a good summary, "global information" should be considered
- □ Example: summary should be concise

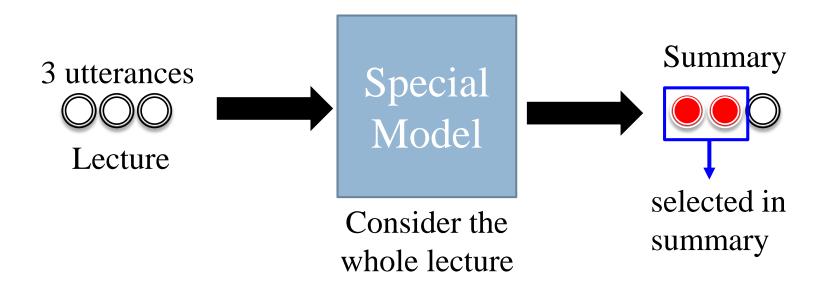
Spoken Document



More advanced machine learning techniques

Globally considering the whole spoken lectures

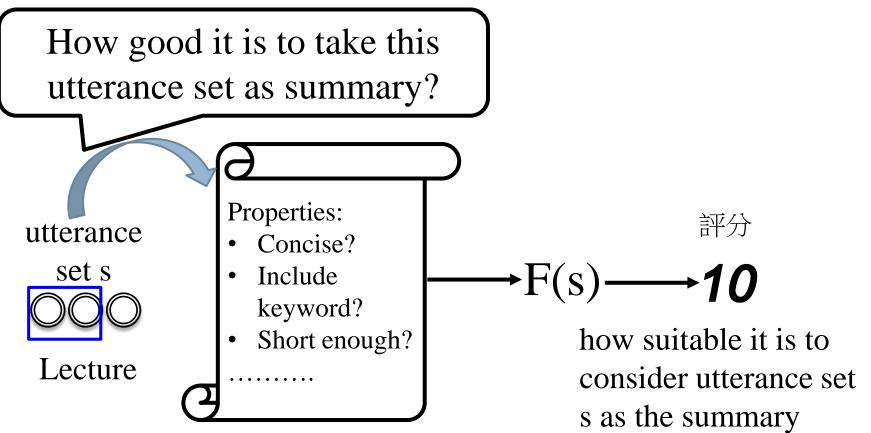
- Learn a special model by structured learning techniques
 - Input: whole lecture
 - Output: summary



Evaluation Function

Evaluation function of utterance set F(s)

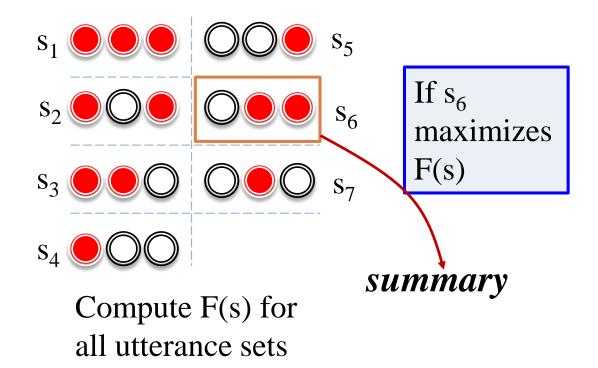
s: utterance set in a lecture



Evaluation Function – How to summary

With F(s), we can do summarization on new lectures now

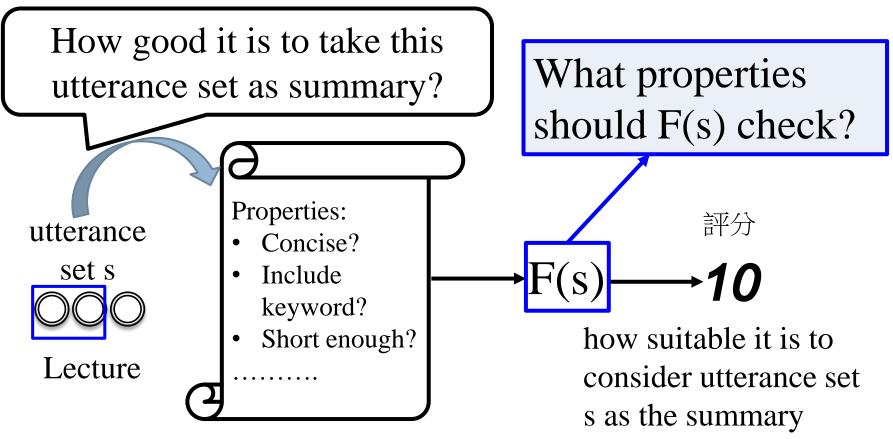
Lecture OOO Enumerate all the possible utterance set s



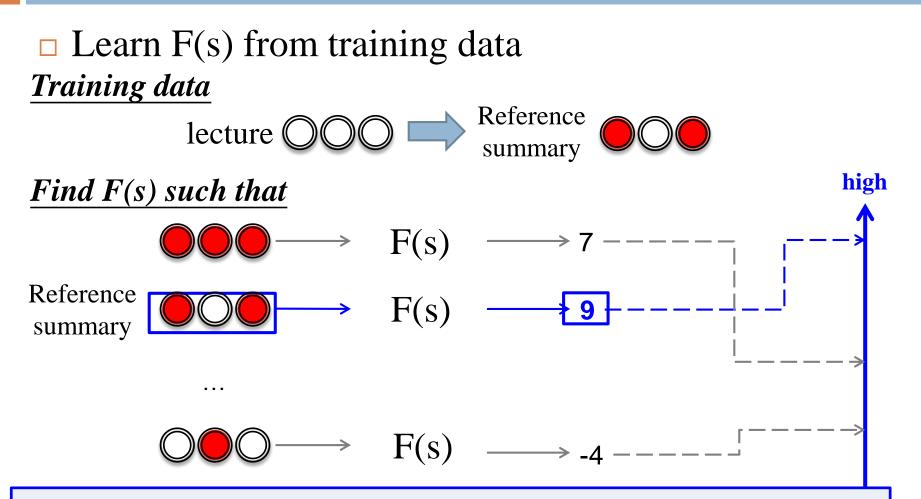
Evaluation Function

□ Evaluation function of utterance set F(s)

□ s: utterance set in a lecture



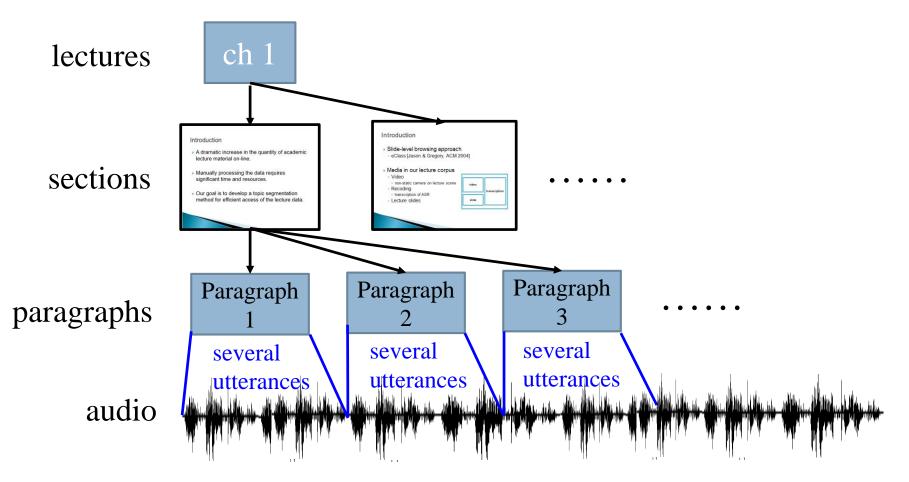
Evaluation Function - Training



Structured SVM: I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun. Support Vector Learning for Interdependent and Structured Output Spaces, ICML, 2004.

Speech Summarization - Structure

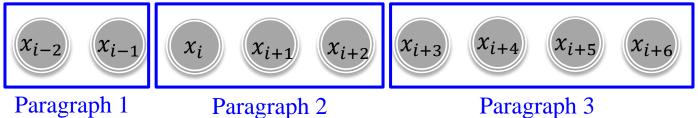
Temporal structure helps summarization



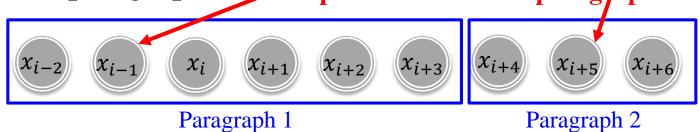
Speech Summarization - Structure

- Temporal structure helps summarization
 - Long summary: consecutive utterances in a paragraph are more likely to be

Important paragraph

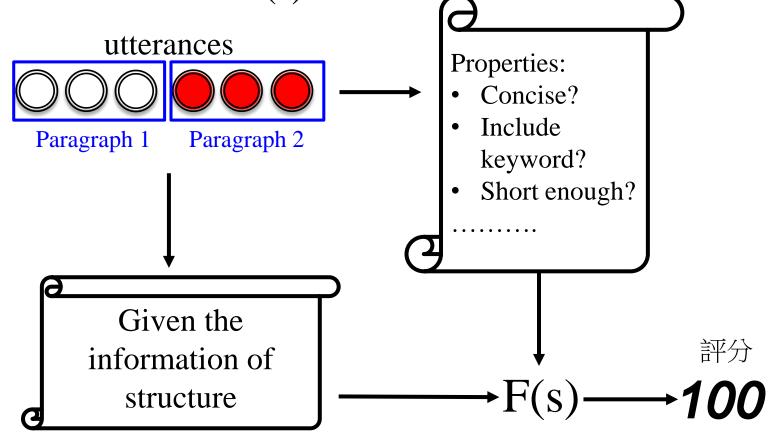


Short summary: one utterance is selected on behalf of a paragraph.
Representative of the paragraph



Evaluation Function - Structure

Add structure information into evaluation function of utterance set F(s)

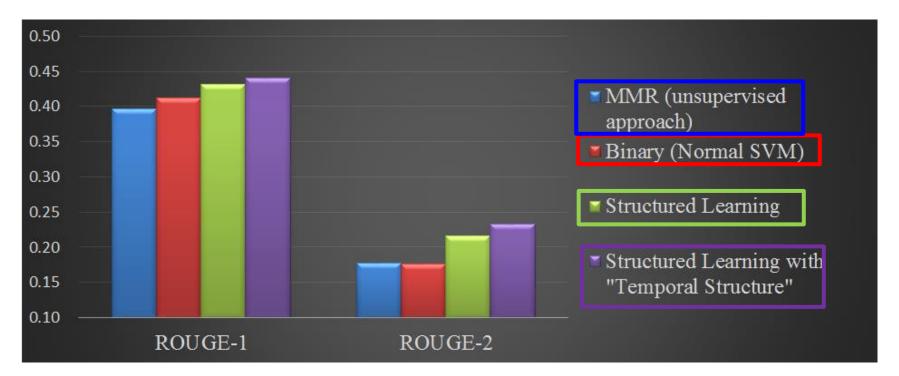


Speech Summarization - Structure

- □ Structure in text are clear
 - Paragraph boundaries are directly known
- For spoken content, there is no obvious structure
 - Here the structure are considered as "hidden variables"
 - Structured learning with hidden variables

Speech Summarization -Experiments

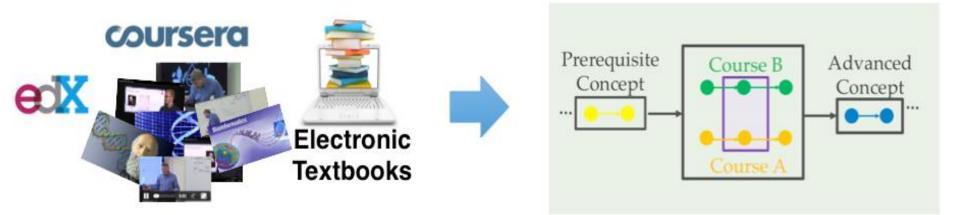
- □ Evaluation Measure: ROUGE-1 and ROUGE-2
 - Larger scores means the machine-generated summaries is more similar to human-generated summaries.



Part IV: Demo

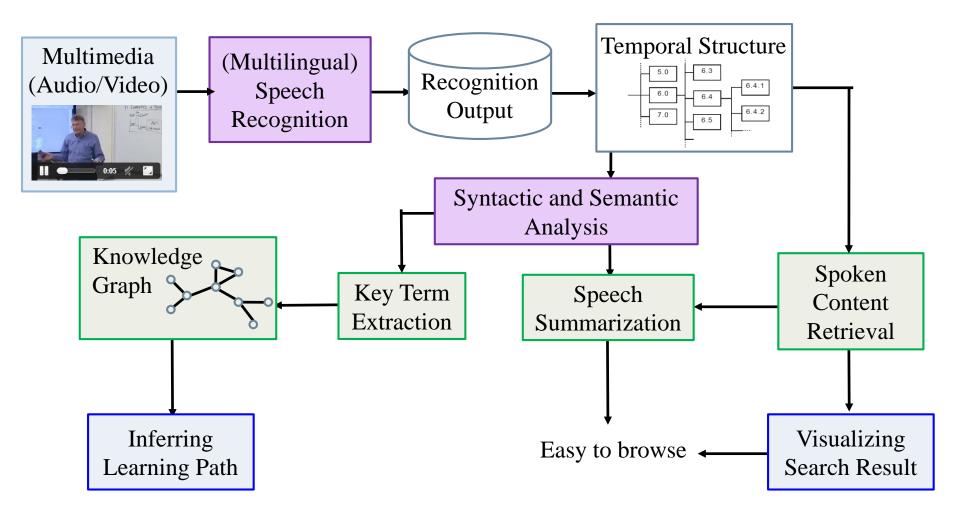
On-line lecture platforms (MIT)

- □ "Cang-Jie (倉頡)":
 - Search lecture recording and textbook
 - Linking video clips or textbook sections with similar content
 - Inferring prerequisite and advanced concepts
 - http://people.csail.mit.edu/tlkagk/Cangjie/



Concluding Remarks

Towards Spoken Knowledge Structuring and Organization



Ultimate Goal

Personalized course for each learner

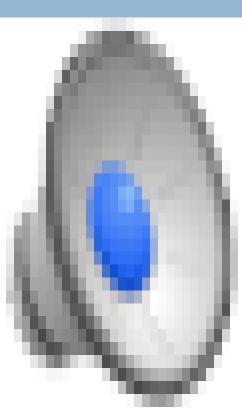
on-line learning material ➢ I want to learn "XXX".
➢ I am a graduate student of computer science.
➢ I can spend 10 hours.

I open a course for you.

Thank You for Your Attention

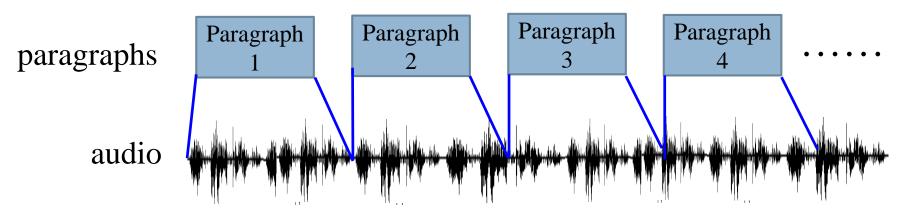
Appendix

Video Demonstration



Paragraph Boundaries

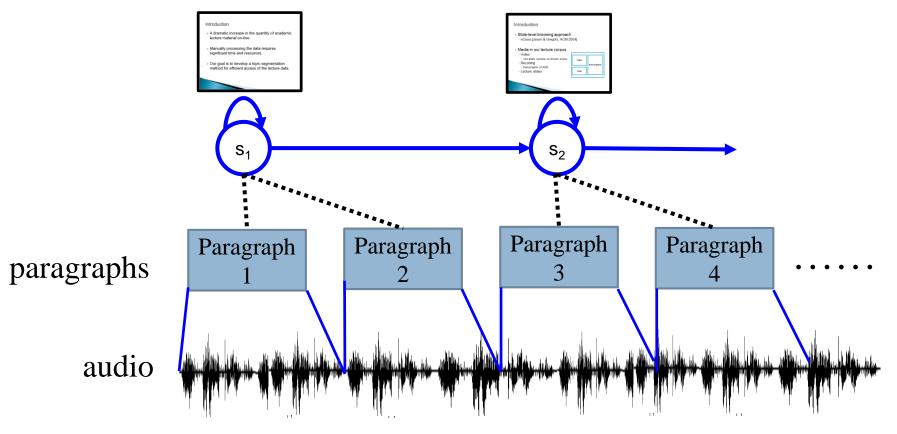
- With speech recognition, we know the content of each utterances
 - Compute their similarities
- □ Find the boundary of paragraph such that
 - The content of the utterances in a paragraph is similar



Slide Boundaries

□ The slides are modeled as HMMs

Align the slides with paragraphs



- □ A good summary should
 - **1**. *include the most important utterance*
 - 2. but *minimize the redundancy* at the same time
 - **3**. not too long

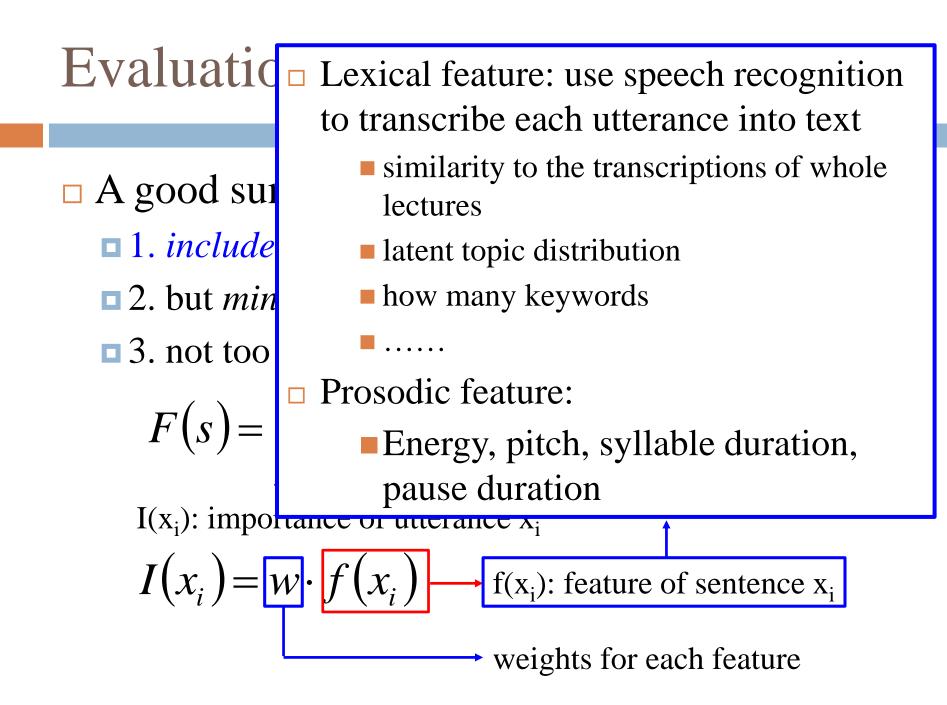
Utterance set s fulfill the above requirement should have large F(s)

- □ A good summary should
 - **1**. *include the most important utterance*
 - **2**. but *minimize the redundancy* at the same time
 - 3. not too long

$$F(s) = \sum_{x_i \in s} I(x_i)$$

 $I(x_i)$: importance of utterance x_i

$$I(x_i) = w \cdot f(x_i) \longrightarrow f(x_i)$$
: feature of sentence x_i



- □ A good summary should
 - **1**. *include the most important utterance*
 - 2. but *minimize the redundancy* at the same time
 - **3**. not too long

$$F(s) = \sum_{x_i \in s} I(x_i) - \lambda \sum_{x_i, x_j \in s} Sim(x_i, x_j)$$

Sim (x_i, x_j) : similarity between utterances x_i and x_j λ is a parameter to be determined.

□ A good summary should

1. *include the most important utterance*

■ 2. but *minimize the redundancy* at the same time

3. not too long

$$F(s) = \sum_{x_i \in s} I(x_i) - \lambda \sum_{x_i, x_j \in s} Sim(x_i, x_j)$$
$$\sum_{x_i \in s} L(x_i) < K \quad \text{(constraint)}$$

L(x_i): length of utterance x_i K: length constraint of summary

□ A good summary should

1. *include the most important utterance*

• 2. but *minimize the redundancy* at the same time

3. not too long

$$F(s) = \sum_{x_i \in s} I(x_i) - \lambda \sum_{x_i, x_j \in s} Sim(x_i, x_j)$$

$$\sum_{x_i \in s} L(x_i) < K \text{ (constraint)}$$

$$I(x_i) = W \cdot f(x_i) \text{ Jointly learn from training data}$$

Idea of Training

Training data

$$D_1 \bigcirc \bigcirc R_1 \bigoplus R_1 \bigoplus \bigotimes R_{eference} summary$$

$$D_2 \bigcirc \bigcirc \bigcirc R_2 \bigoplus R_2 \bigoplus \bigotimes \bigotimes R_{eference} summary$$

Find w and λ in F(s) such that

 $F(R_1) > F(s_{D1}) \longrightarrow s_{D1} \text{ is all utterance set in } D_1, \text{ except } R_1$ $F(R_2) > F(s_{D2}) \longrightarrow s_{D2} \text{ is all utterance set in } D_2, \text{ except } R_2$

I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun. Support Vector Learning for Interdependent and Structured Output Spaces, ICML, 2004.