Towards Machine Comprehension of Spoken Content

Hung-yi Lee

National Taiwan University

Machine Comprehension of Spoken Content

300 hrs multimedia is uploaded per minute. (2015.01)

More than 2000 courses on Coursera

- \succ Nobody is able to go through the data.
- In these multimedia, the spoken part carries very important information about the content.
- We need machine to listen to the audio data, understand it, and extract useful information for humans.

Deep Learning in One Slide

Speech Recognition

Typical Deep Learning Approach

• The hierarchical structure of human languages what do you think

Phoneme:

hh w aa t d uw y uw th ih ng k <u>Tri-phone:</u> t-d+uw d-uw+y uw-y+uw y-uw+th t-d+uw1 t-d+uw2 t-d+uw3 d-uw+y1 d-uw+y2 d-uw+y3 <u>State:</u>

Typical Deep Learning Approach

- The first stage of speech recognition
 - Classification: input \rightarrow acoustic feature, output \rightarrow state

Determine the state each acoustic feature belongs to

Typical Deep Learning Approach

	-			
		VGG Net (85M Parameters)	Residual-Net (38M Parameters)	LACE (65M Parameters)
Verv I	Deep	14 weight layers	49 weight layers	22 weight layers
vCryi		40x41 input	40x41 input	40x61 input
		3 – conv 3x3, 96	3 – [conv 1x1, 64 conv 3x3, 64 conv 1x1, 256]	5 – conv 3x3, 128
		Max pool	4 – [conv 1x1, 128 conv 3x3, 128 conv 1x1, 512]	5 – conv 3x3, 256
		4 – conv 3x3, 192	6 – [conv 1x1, 256 conv 3x3, 256 conv 1x1, 1024]	5 – conv 3x3, 512
		Max pool	3 – [conv 1x1, 512 conv 3x3, 512 conv 1x1, 2048]	5 – conv 3x3, 1024
		4 – conv 3x3, 384	Average pool	1 – conv 3x4, 1
	MSR	Max pool	Softmax (9000)	Softmax (9000)
		2-FC-4096		
		Softmax (9000)		

Human Parity!

- 微軟語音辨識技術突破重大田程碑・對手幹: # 1 法 人 類水準!(2016.10)
 Machine 5.9% v.s. Human 5.9%
 - https://www.bnext.com.tw/article/41414/bn-2016-10-19-020437-216
 - Dong Yu, Wayne Xiong, Jasha Droppo, Andreas Stolcke, Guoli Ye, Jinyu Li, Geoffrey Zweig, "Deep Convolutional Neural Networks with Layer-wise Context Expansion and Attention", Interspeech 2016
- IBM vs Microsoft: 'Human parity' speech recognition record changes hands again (2017.0: Machine 5.5% v.s. Human 5.1%)
 - http://www.zdnet.com/article/ibm-vs-microsoft-human-parityspeech-recognition-record-changes-hands-again/
 - George Saon, Gakuto Kurata, Tom Sercu, Kartik Audhkhasi, Samuel Thomas, Dimitrios Dimitriadis, Xiaodong Cui, Bhuvana Ramabhadran, Michael Picheny, Lynn-Li Lim, Bergul Roomi, Phil Hall, "English Conversational Telephone Speech Recognition by Humans and Machines", arXiv preprint, 2017

End-to-end Approach - Connectionist Temporal Classification (CTC)

• Connectionist Temporal Classification (CTC) [Alex Graves, ICML'06][Alex Graves, ICML'14][Haşim Sak, Interspeech'15][Jie Li, Interspeech'15][Andrew Senior, ASRU'15]

End-to-end Approach - Connectionist Temporal Classification (CTC)

• Connectionist Temporal Classification (CTC) [Alex Graves, ICML'06][Alex Graves, ICML'14][Haşim Sak, Interspeech'15][Jie Li, Interspeech'15][Andrew Senior, ASRU'15]

Proposed Approaches

(a) use DNN phone posterior as acoustic vector

- DNN + structured SVM
 - [Meng & Lee, ICASSP 10]
- DNN + structured DNN
 - [Liao & Lee, ASRU 15]
- Neural Turing Machine
 - [Ko & Lee, ICASSP 17]

1-of-N encoding

How to represent each word as a vector?

1-of-N Encodinglexicon = {apple, bag, cat, dog, elephant}The vector is lexicon size. $apple = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \end{bmatrix}$ Each dimension corresponds $bag = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \end{bmatrix}$ to a word in the lexicon $cat = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \end{bmatrix}$ The dimension for the word $dog = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 \end{bmatrix}$ is 1, and others are 0elephant = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \end{bmatrix}

Word Embedding

 Machine learns the meaning of words from reading a lot of documents without supervision

Word Embedding

- Machine learns the meaning of words from reading a lot of documents without supervision
- A word can be understood by its context

Prediction-based

Prediction-based

You shall know a word by the company it keeps

Word Embedding

Source: http://www.slideshare.net/hustwj/cikm-keynotenov2014

Word Embedding

• Characteristics $\approx V(Berlin) - V(Rome) + V(Italy)$

 $V(hotter) - V(hot) \approx V(bigger) - V(big)$ $V(Rome) - V(Italy) \approx V(Berlin) - V(Germany)$ $V(king) - V(queen) \approx V(uncle) - V(aunt)$

V(Germany)

Solving analogies

Rome : Italy = Berlin : ?

Compute V(Berlin) - V(Rome) + V(Italy)

Find the word w with the closest V(w)

Demo

• Machine learn the meaning of words from reading a lot of documents without supervision

Sentiment Analysis

Sentiment Analysis

Recurrent Neural Network

Recurrent Structure: usually used when the *input is a* sequence

No matter how long the input sequence is, we only need one function f

Demo

Summarization

Summarization

Extractive Summaries

[Lee, et al., Interspeech 12][Lee, et al., ICASSP 13][Shiang, et al., Interspeech 13]

Audio File to be summarized

- Select the most informative segments to form a compact version
- Machine does not write summaries in its own words

Abstractive Summarization

- Now machine can do abstractive summary (write summaries in its own words)
 - <u>Title generation</u>: abstractive summary with one sentence

 Sequence to sequence learning: Both input and output are both sequences with different lengths.

- Both input and output are both sequences <u>with different</u>
 <u>lengths</u>. → <u>Sequence to sequence learning</u>
 - E.g. Machine Translation (machine learning→機器學習)

- Both input and output are both sequences <u>with different</u>
 <u>lengths</u>. → <u>Sequence to sequence learning</u>
 - E.g. Machine Translation (machine learning→機器學習)

接龍推文是ptt在推文中的一種趣味玩法,與推齊有些類似但又有所不同, 是指在推文中接續上一樓的字句,而推出連續的意思。該類玩法確切起 源已不可知(鄉民百科)

- Both input and output are both sequences <u>with different</u>
 <u>lengths</u>. → <u>Sequence to sequence learning</u>
 - E.g. Machine Translation (machine learning→機器學習)

Summarization

• Input: transcriptions of audio, output: title

Summarization

據印度報業托拉斯報道印度北方邦22 Document: 日發生一起小公共汽車炸彈爆炸事件造成 15 人死亡 3 人受傷 ……

Human: 印度汽車炸彈爆炸造成15人死亡 Machine: 印度發生汽車爆炸事件

刑事局偵四隊今天破獲一個中日跨國竊車 Document: 集團,根據調查國內今年七月開放重型機 車上路後.....

Human:跨國竊車銷贓情形猖獗直得國內警方注意 Machine:刑事局破獲中國車集

Table 1: Performance comparison of various models and input sequence elements over Chinese Gigaword (no ASR errors).

	Model		Input	Output	k	ROUGE-1	ROUGE-2	ROUGE-3	ROUGE-L
	525	(a)	word	character	1	34.47	18.30	8.82	31.26
Deseline	Seq2Seq	(b)	character	character	1	36.33	18.58	8.78	32.39
Базеппе	Attentive Seq2Seq	(c)	word	character	1	36.37	20.23	10.23	32.98
		(d)	character	character	1	37.97	20.47	10.27	33.88
	•	(e)	word	character	1	25.36	9.20	3.43	24.49
Proposed: CTC		(f)	word	character	2	33.58	15.70	7.34	32.20
		(g)	character	character	1	42.71	24.62	14.24	40.56

Experiments

- Training data: Chinese Gigaword
 - Text documents
 - 2M story-headline pairs
- Testing data: TV News
 - <u>Spoken documents</u>
 - 50 hours (1k spoken documents)
 - Character Error Rate = 28.7% (our system), 36.5% (wit.ai)
- Input and output of the model are both Chinese characters

	ROUGE-1	ROUGE-2	ROUGE-L
Manual (Oracle)	26.8	6.5	23.9
ASR	21.3	4.8	20.0

Pseudo ASR error

- Adding pseudo ASR error into training data
 - Analyze the error patterns of ASR system
 - Changing some characters in training text documents by probability

Training Data	ROUGE-1	ROUGE-2	ROUGE-L	
Text	21.3	4.8	20.0	
Text + pseudo error	20.9	3.4	19.1	

(Testing spoken documents have ASR errors)

- Even worse after adding pseudo error
- The model learns to correct the ASR error in input document, which is difficult and causes over-fitting

Learn to Ignore ASR Errors

	Ch			ROUGE-1	ROUGE-2	ROUGE-L
	Text BSL		Seq-2-seq	21.87	4.93	20.52
Text			w/ att.	21.32	4.84	20.05
			Seq-2-seq	19.50	3.57	18.50
	Character	naï	w/ att.	20.86	3.40	19.09
		Р	roposed	22.89	5.01	20.86
	Phoneme		Seq-2-seq	19.32	3.13	17.79
Consider-ing		naï	w/ att.	19.46	3.25	18.06
ASR		Р	roposed	24.01	5.16	22.13
	Initial/Final	Naï	Seq-2-seq	19.87	3.36	17.42
Error			w/ att.	20.41	3.24	18.60
		Proposed		24.56	5.73	22.41
		Naï	Seq-2-seq	19.37	2.72	17.34
	Syllable		w/ att.	19.64	2.71	17.49
		Proposed		22.62	4.46	20.60
	Oracle		Seq-2-seq	26.60	5.68	23.70
Text			w/ att.	26.75	6.54	23.91

Key Term Extraction

Key Term Extraction

• Input is a vector sequence, but output is only one vector

Speech Question Answering

Speech Question Answering

Speech Question Answering: Machine answers questions based on the information in spoken content

New task for Machine Comprehension of Spoken Content

• TOEFL Listening Comprehension Test by Machine

Audio Story: (The original story is 5 min long.)Question: "What is a possible origin of Venus' clouds?"Choices:

(A) gases released as a result of volcanic activity

(B) chemical reactions caused by high surface temperatures

(C) bursts of radio energy from the plane's surface

(D) strong winds that blow dust into the atmosphere

New task for Machine Comprehension of Spoken Content

• TOEFL Listening Comprehension Test by Machine

Using previous exams to train the network

Model Architecture

The whole model learned end-to-end.

Model Details

Sentence Representation

Attention on all phrases

Experimental Results

- Example Naïve approach: 50
 - Find the paragraph containing most key terms in 1.
- the question. 45

40

2. Select the choice containing most key terms in

Experimental Results

Analysis

Type 3: Connecting Information

- Understanding Organization
- Connecting Content
- Making Inferences
- There are three types of questions

Type 3: Pragmatic Understanding

Analysis

Understanding the *Function of What Is Said* Understanding the *Speaker's Attitude*

• There are three types of questions

Spoken Content Retrieval

Spoken Content Retrieval

- 3 hours tutorial at INTERSPEECH 2016 (with Prof. Lin-shan Lee)
 - Slide:

http://speech.ee.ntu.edu.tw/~tlkagk/slide/spoken_cont ent_retrieval_IS16.pdf

- Overview paper
 - Lin-shan Lee, James Glass, Hung-yi Lee, Chun-an Chan, "Spoken Content Retrieval — Beyond Cascading Speech Recognition with Text Retrieval," IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol.23, no.9, pp.1389-1420, Sept. 2015
 - <u>http://speech.ee.ntu.edu.tw/~tlkagk/paper/Overview.p</u>
 <u>df</u>

One Slide Summarization

Spoken Content Retrieval Speech Recognition + Text Retrieval

Talk to Humans

Chat-bot

Sequence-to-sequence learning from human conversation without hand-crafted rules.

On-going project:

- Training by reinforcement learning
- > Training by generative adversarial network (GAN)

Demo - Towards Characterization

- •作者:王耀賢
- https://github.com/yaushian/simple_sentiment_di alogue
- https://github.com/yaushian/personal-dialogue

Jiwei Li, Will Monroe, Tianlin Shi, Sébastien Jean, Alan Ritter, Dan Jurafsky, "Adversarial Learning for Neural Dialogue Generation", arXiv preprint, 2017

Chat-bot with GAN

感謝 段逸林 同學提供實驗結果

Example Results

input | I love you.

input | Do you like machine learning?

input | I thought I have met you before.

input | Let's go to the party.

input | How do you feel about the president?

Talk to Humans

Scenario of Interactive Retrieval

Deep Reinforcement Learning

- The actions are determined by a neural network
 - Input: information to help to make the decision
 - Output: which action should be taken
 - Taking the action with the highest score

Deep Reinforcement Learning v.s. Previous Work

• Previous work [Wen & Lee, Interspeech 12][Wen & Lee, ICASSP 13]

Experimental Results

• Different network depth, raw features

Audio Word to Vector

Why? Need the manual transcriptions of lots of audio to learn. Most languages have little transcribed data.

New Research Direction: Audio Word to Vector

Audio Word to Vector

Machine represents each audio segment also by a vector

Used in the following spoken language understanding applications

vector

Learn from lots of audio without supervision

[Chung, Wu, Lee, Lee, Interspeech 16)

We use *sequence-to-sequence auto-encoder* here

The training is unsupervised.

What does machine learn?

• Typical word to vector:

 $V(Rome) - V(Italy) + V(Germany) \approx V(Berlin)$ $V(king) - V(queen) + V(aunt) \approx V(uncle)$

Audio word to vector (phonetic information)

$$V((1))) - V((1))) + V((1))) = V((1)))$$

$$GIRL GIRLS GIRLS GIRLS (GIRLS)$$

$$V((1))) - V((1))) + V((1))) = V((1)))$$

New Languages

Audio Word to Vector – Application

Compute similarity between spoken queries and audio files on acoustic level, and find the query term

Audio Word to Vector – Application

• DTW for query-by-example

Segmental DTW [Zhang, ICASSP 10], Subsequence DTW [Anguera, ICME 13][Calvo, MediaEval 14]

Audio Word to Vector – Application

Audio archive divided into variablelength audio segments

Audio Word to Vector –Application

• Query-by-Example Spoken Term Detection

SA: sequence auto-encoder

DSA: de-noising sequence auto-encoder

Input: clean speech + noise

output: clean speech

Next Step

One day we can build all spoken language understanding applications directly from *audio word to vector*.

Audio word to vector with semantics

