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Focus of this Tutorial

1 New frontiers and directions towards the future
of speech technologies

71 Not skills and experiences in optimizing
performance in evaluation programs



Text Content Retrieval
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Spoken Content Retrieval
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Spoken Content Retrieval

@@ O eX

oursera
300 hrs multimedia is
uploaded per minute. 1874 courses on coursera
(2015.01) (2016.04)

» Nobody is able to go through the data.

» In these multimedia, the spoken part carries very
Important information about the content

» Spoken content retrieval: Machine listens to the data, and
extract the desired information for each individual user.

« Just as Google does on text data



Spoken Content Retrieval — Goal
_

o Basic goal: Identify the time spans that the query
occurs in an audio database

o This is called “Spoken Term Detection”
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Spoken Content Retrieval — Goal
_

o Basic goal: Identify the time spans that the query
occurs in an audio database

o This is called “Spoken Term Detection”
o Advanced goal: Semantic retrieval of spoken content

[ “US President”

The user is also looking
for utterances including
“Obama”.

Retrieval system



It 1s natural to think ......
e

Spoken Content Retrieval
|

Speech Recognition
+

Text Retrieval



It 1s natural to think ......

1
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Shok Speech
POKEN Recognition Models——___
Content Acoustic Models

Language Model
count (w;_(m— Wi, W
P(wz'|wg'_{n_1j, W) = —(n—1)> )
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® Transcribe spoken content into text by speech recognition




It 1s natural to think ......
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® Transcribe spoken content into text by speech recognition



It 1s natural to think ......

Black Box

I Retrieval
Text Result R f
Retrieval
Query user

® Transcribe spoken content Into text by speech recognition

® Use text retrieval approaches to search over the
transcriptions



It 1s natural to think ......

Black Box

) Retrieval
Text Result R f
Retrieval I‘
W_MMWM. user

® For spoken queries, transcribe them into text by speech
recognition.




Our point In this tutorial
_

Spoken Content Retrieval

e

Speech Recognition
+

Text Retrieval



Outline

N
o Introduction: Conventional Approach:
Spoken Content Retrieval =
Speech Recognition + Text Retrieval
-1 Core: Beyond Cascading Speech
Recognition and Text Retrieval
oFive new directions



Introduction:
Spoken Content Retrieval =
Speech Recognition + Text Retrieval



It 1s natural to think ......
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Speech Recognition always produces errors.




|_attices

Spoken —
Content

M. Larson and G. J. F. Jones, “Spoken content retrieval: A
survey of techniques and technologies,” Foundations and
Trends in Information Retrieval, vol. 5, no. 4-5, 2012.

1 \:AL
Retrieval
Query user

j> ® Keep most possible recognition output

® Each path has a weight (confidence to be
correct)

L_attices




Spoken

Archive
_

time

<
Text Query A_

Caftices —" Retrieval
@ user

»Horizontal scale is the time
»Each path Is a possible recognition result
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»Horizontal scale is the time
»Each path Is a possible recognition result



Spoken
time
catices 1 =——>1 Retrieval |+ A_
@ Text Query

user

»Horizontal scale is the time
»Each path Is a possible recognition result
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»Higher probability to include the correct words
» More noisy words included inevitably

»Higher memory/computation requirements



Searching over Lattices

_
- Consider the basic goal: Spoken Term Detection
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Searching over Lattices

- Consider the basic goal: Spoken Term Detection
o Find the arcs hypothesized to be the query term
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Searching over Lattices

- Consider the basic goal: Spoken Term Detection

o Posterior probabilities computed from lattices used as
confidence scores

Two ways to display the results:

R(Xx,)=0.9 unranked and ranked.
Obama

~—

M%MMM

R(X,)=0.3

@ Obama
. M*Ww




Searching over Lattices

- Consider the basic goal: Spoken Term Detection
o Unranked: Return the results with the scores higher than
a threshold
Set the threshold as 0.6

|R(x)=0.9 | Return x;

Obama
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R(X,)=0.3
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- M*Ww




Searching over Lattices

- Consider the basic goal: Spoken Term Detection

o Unranked: Return the results with the scores higher than

a threshold The threshold can be determined
automatically and query specific.

R =0.9 [Miller, Interspeech 07][Can, HLT 09][Mamou,
U&L’ ICASSP 13][Karakos, ASRU 13][Zhang, Interspeech
Obama 12][Pham, ICASSP 14]
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R(X,)=0.3
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Actual Term Weighted Value

‘ATWVI .
=

01 Evaluating unranked result

ATWV =1 = Py — PPpa

retrieved | time 1:01 1.0
time 2:05 0.9
time 1:31 0.7

------ Prg = NspuriouS/NNT

Ppiss = 1 — Ncorrect/Nref

threshold

N,.r: number of times the query term appears in audio database
N..rrect- the number of retrieved objects that are actually correct
Nspurious- the number of retrieved objects that are incorrect

Nyr: audio duration (in seconds) — N..¢

Maximum Term Weighted Value (MTWV): tune the threshold to
obtain the best ATWV



Searching over Lattices
_

- Consider the basic goal: Spoken Term Detection
o Ranked: results ranked according to the scores

| :Xl 0.9
R(x,)=0.9 Xp 037
Obama
«

—
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Searching on Lattices

- Consider the basic goal: Spoken Term Detection
o Ranked: The results are ranked according to the scores

X1

R(x,)=0.9 %2

Obama

0.9
0.3
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user
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Mean Average Precision (MAP)

O Evaluating ranked list

O area under recall-precision curve

O Recall: percentage of ground truth results retrieved

O Precision: percentage of retrieved results being correct

O Higher threshold gives higher precision but lower recall, etc.

Precision

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

wﬁ

————
—Mﬁrpfevﬂﬂﬁ\\\

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1



Examples of Lattice Indexing

Approaches
e e L ——

Position Specific Posterior Lattices (PSPL)[Chelba, ACL 05][Chelba,
Computer Speech and Language 07]

Confusion Networks (CN)[Mamou, SIGIR 06][Hori, ICASSP 07][Mamou,
SIGIR 07]

Time-based Merging for Indexing (TMI)[zhou, HLT 06][Seide, ASRU 07]

Time-anchored Lattice Expansion (TALE)[Seide, ASRU 07][Seide,
ICASSP 08]

WEFST: directly compile the lattice into a weighted finite state

transducer [Allauzen, HLT 04][Parlak, ICASSP 08][Can, ICASSP 09][Parada,
ASRU 09]



Out-of-Vocabulary (OOV) Problem

S
o Speech recognition is based on a lexicon

= Words not In the lexicon can never be transcribed

o Many informative words are out-of-vocabulary
(O0V)

o Many query terms are new or special words or
named entities



Subword-based Retrieval

o All OOV words composed of subword units

o Generate subword lattices
= Transform word lattices into subword lattices

word lattices subword lattices
.. : ‘ O
o Retrieval .. |:> “““ /r1/ /tr) [val/ Tt
An arc in the Corresponding
word lattice subword sequence

= Can also be directly generated by speech recognition
using subword-based lexicon and language model



Subword-based Retrieval

A
- Subword-based retrieval
o Generate subword lattices
o Transform user query into subword sequence
= Obama — /au/ /ba/ /ma/

o Text retrieval techniques equally useful except
based on subword lattices and subword query

= Replace words by subword units

o OOV words can be retrieved by matching over the
subword units without being recognized



Subword-based Retrieval

- Freguentlx Used Subword Units

- Linguistically motivated units

- phonemes, syllables/characters, morphemes, etc.
[Ng, MIT 00][Wallace, Interspeech 07][Chen & Lee, IEEE T. SAP 02]

[Pan & Lee, ASRU 07][Meng, ASRU 07][Meng, Interspeech 08]

[Mertens, ICASSP 09][ltoh, Interspeech 07][ltoh, Interspeech 11]

[Pan & Lee, IEEE T. ASL 10]

- Data-driven units

— particles, word fragments, phone multigrams, morphs, etc.
[Turunen, SIGIR O7] [Turunen, Interspeech 08]

[Parlak, ICASSP 08][Logan, IEEE T. Multimedia 05]

[Gouveaq, Interspeech 10][Gouveaq, Interspeech 11][Lee & Lee, ASRU 09]



Integrating Different Clues from

Recognition
e ——

01 Similar to system combination in ASR

11 Consistency very often implies accuracy
O Integrating the outputs from different recognition
sys’rems [Natori, Interspeech 10]

O Integrating results based on different subword units

[S.-w. Lee, ICASSP O5][Pan & Lee, Interspeech 07][Meng, Interspeech 10][ltoh,
Interspeech 11]

0 Weights of different clues estimated by optimizing

some retrieval related criteria meng & Lee, ICASSP 09][Chen & Lee,
ICASSP 10][Meng, Interspeech 10][Wollmer, ICASSP 09]



Integrating Different Clues from

Recognition
e L ——

1 Weights for Integrating 1,2,3-grams for different
word /subword units and different indices

g word J 1-gram \
Confusion
Network character 2-gram
| syllable 3-gram
— . _
> integrated with
g ' nt weigh
rosiont| D o different weights
Specific
Posterior | = | Character| < 2-gram
Lattice by
| Syllable _ 3-gram -

maximizing the lower bound of MAP by SVM-MAP

[Meng & Lee, ICASSP 09]



Training Retrieval Model
Parameters

1 Integrating different n-grams, word /subword

units and indices  [Menge& Lee, ICASSP 09] [Chen & Lee, ICASSP 10]

0.5

MAP

Y \
single clue integrated




ASR Accuracy v.s. Retrieval Performance
—

o Spoken Term Detection, Lectures

[ Speaker Dependent: ]
0.9 4: 10 hours of speech from the instructor
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I m MAP "*—ASR accu racyI




ASR Accuracy v.s. Retrieval Performance
—

o Spoken Term Detection, Lectures

,(Improved Speaker Adaptation ]

0.9
0.8 -
0.7 -
0.6 - \
0.5 - \
04 -
0.3 -
0.2 -
0.1 -
0 - . . |
SD SA1 SA2 S|

B MAP —e-ASR accuracy




ASR Accuracy v.s. Retrieval Performance
—

o Spoken Term Detection, Lectures

0.9 [ In|t|al Speaker Adaptation ]

/

11

B MAP —e-ASR accuracy

0.8 -

0.7 -

0.6 -

0.5 -
0.4 -

0.3 -

0.2 -

0.1 -

0 -




ASR Accuracy v.s. Retrieval Performance

-4
o Spoken Term Detection, Lectures
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ASR Accuracy v.s. Retrieval Performance

~ Precision at 10: Percentage of the correct items among

the top 10 selected

1
0.9
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rSpeakerlndependent:
 Only 60% of results
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B Precisionat10 -+ASRaccuracy

Sl

are correct I
\ \/Z

o ]
......
n

by
......
[ ]




Is the problem solved?

o Did lattices solve the problem?

o Need high quality recognition models to produce better
lattices and accurately estimate the confidence scores

o Spoken content over the Internet is produced in different
languages on different domains in different parts of the
world under varying acoustic conditions

o High quality recognition models for such content doesn’t
exist yet

o Retrieval performance limited by ASR accuracy



Is the problem solved?
N
- Desired spoken content retrieval
oLess constrained by ASR accuracy

oEXxisting approaches limited by ASR
accuracy because of the cascading of speech
recognition and text retrieval

- Go beyond the cascading concept



Our point In this tutorial
_

Spoken Content Retrieval

e

Speech Recognition
+

Text Retrieval



Core:

Beyond Cascading Speech
Recognition and Text Retrieval

I



New Directions
-4
1. Modified ASR for Retrieval Purposes
2. Incorporating Those Information Lost in ASR
3. No Speech Recognition!
4. Special Semantic Retrieval Techniques for Spoken

Content
5. Spoken Content is Difficult to Browse!



Overview Paper
N

0 Lin-shan Lee, James Glass, Hung-yi Lee, Chun-an
Chan, "Spoken Content Retrieval —Beyond
Cascading Speech Recognition with Text Retrieval,”
IEEE/ACM Transactions on Audio, Speech, and
Language Processing, vol.23, no.9, pp.1389-1420,
Sept. 2015

0 http:/ /speech.ee.ntu.edu.tw/~tlkagk/paper/Overv
iew.pdf

0 This tutorial includes updated information after this
paper is published.


http://speech.ee.ntu.edu.tw/~tlkagk/paper/Overview.pdf

New Direction 1;

Modified ASR
for Retrieval Purposes



Retrieval Performance

__ V.S, Recognition Accuracx

o Intuition: Higher recognition accuracy, better
retrieval performance

oNot always true!

In Tatwan, the need of ...

Recognition Recognition
System A System B

In Taiwan, a need of ... In Thailand, the need of ...

— _J/
~

Same recognition accuracy




Retrieval Performance

__ V.S, Recognition Accuracx

o Intuition: Higher recognition accuracy, better
retrieval performance

oNot always true!

In Tatwan, the need of ...

Recognition Recognition
System A System B

In Talwan, a need of ... In Thailand, the need of ...

Not important Serious problem
for retrieval for retrieval




Retrieval Performance

__ VS, Recognition Accuracx

o Retrieval performance is more correlated to the ASR errors of
name entities than normal terms [Garofolo, TREC-7 99][L. van der
Werff, SSCS 07]

- Expected error rate defined on lattices is a better predictor of
retrieval performance than one-best transcriptions [Olsson, SSCS
07]

o lattices used In retrieval

— For retrieval, substitution errors have more influence than
Insertions and deletions [Johnson, ICASSP 99]

o The language models reducing ASR errors do not always yield

better retrieval performance [Cui, ICASSP, 13][Shao, Interspeech, 08][
Wallace, SSCS 09]

o Query terms usually topic-specific with lower n-gram
probabilities



ASR models learned by
- Ogtimizing Retrieval Performance

P T >
Speech |
Spoken — Models

Recognition
Content ~

Retrieval

Text Result R f
Retrieval
Query user




ASR models learned by
- Ogtimizing Retrieval Performance

" .“ " Speech |
Spoken Recognition
Content

Optimized for recognition accuracy

Retrieval

Text Result R f
Retrieval
Query user




ASR models learned by
- Ogtimizing Retrieval Performance

. Speech |
Spoken Recognition
Content

Optimized for receghition-asctasy

Retrieval Performance

Retrieval

Text Result R f
Retrieval I‘

Query user

Spoken Content Retrieval




New Direction 1-1:

Modified ASR
for Retrieval Purposes
Acoustic Modeling

I



Acoustic Modeling

-4
o Acoustic Model Training

6 = argmaxF(6) 0:acoustic model
0 parameters

F(0): objective function

The objective function F(6) usually defined
to optimize ASR accuracy

Design a new objective function for
optimizing retrieval performance.



Acoustic Modeling 8 = argmaxF(6)
0

- Objective Function for optimizing ASR
performance

F(0) =i ;A(ru» Su)Pg(sy|u)
u| syEL(uj

Summation over all the utterances u

in the training data

»L(u): all the word sequence in
the lattice of x " Wa

W¢

lattice of utterance u



Acoustic Modeling 8 = argmaxF(6)

_
- Objective Function for optimizing ASR

performance
F(6) =
u |syfeL(w)

»s,,. aword sequence in the lattice of x

6 can be

» P (s,|uw): posterior probability of word
HMM or DNN

sequence s, given acoustic model 6
Wa

»A(ry,, s, ): the accuracy of word or phoneme W,
sequence s,, comparing with reference r,
We

MCE, MPE, sMBR lattice of utterance u




Acoustic Modeling 8 = argmaxF(6)
0

o Objective Function for optimizing ASR
performance retrieval

FO) =) ) hGwspeGuw
u Sy€L(u)

If the possible query terms are known in advance,
they can be weighted higher in A(r;, s,)

W-MCE, [Fu, ASRU 07][Weng, Interspeech 12][Weng, ICASSP, 13]
ke)ANord-boosted SMBR [chen, Interspeech 14]



Training Data collected from User

- In most cases, the query terms are not known In
advance

- Collect feedback data on-line
o Use the information to optimize search engines

Query Q, Query Q, Query Q,

time 1:10 F time 1:10 F time 1:10 F
time 2:01 T time 2:.01 F time 2:.01 T
time 3:04 time 3:04 F | °*°°°°° time 3:04 F
time 5:31 time 5:31 T time 5:31 T

o Feedback can be implicit




ASR models learned by

- Ogtimizing Retrieval Performance
SpOken — Dn?‘giifﬂnn L

Query Q, Query Q, Query Q,
fime 1:10 F time 1:10 F time 1:10 F
time 2:.01 T time 2:01 F time 2:01 T
time 3:04 time 3:04 F | °°°°°° time 3:04 F
time 5:31 time 5:31 T time 5:31 T
Text

Retrieval

Models

re-estimate

optimize

Retrieva
Result

r Query user

[Lee & Lee, ICASSP 10] L attices
[Lee & Lee, Interspeech 10]

[Lee & Lee, SLT 10]

[Lee & Lee, IEEE T. ASL 12]




Updated Retrieval Process
_

-1 Each retrieval result x has a confidence score
R(X)
7 R(x) depends on the recognition model 6
R(Xx) should be R(x;0)

Re-estimate Undate the The retrieval
recognition PEAE 1° mmp| results can be
scores R(x; 0)
model 0 re-ranked.

Considering some
retrieval criterion



Basic Form

N 0 = arg max F (6)
F(0)- YRx:0)- YRG0

X, :apositive example
X_ :anegative example
X, ;6) : confidence score of the positive example
X ;0) . confidence score of the negative example



Basic Form

Vo

Basic Form:

F(&):;R(x+;

)‘_

!

Increase the confidence scores of
the positive examples

0 =argmax F (6)

g

¥

Decrease the confidence scores of
the negative examples




Confidence score

Consider Ranking
-4

R(x;6)
@: Original Model

)

@ positive example
@ negative example

A R(x;é)

@: New Model



Consider Ranking
-4

(€D
—o
1S
o
= O
o
O O
O
R(X;@) @ positive example R(X;é)
ti I A
@: Original Model @ negative example @: New Model



Consider Ranking
-4

F(0)= ; R(x+;6?)—; R(x_;6) t

Nt
3 R .
S ® Increase the basic
S < objective function
S ¢ —
o
O @
O
R(X' (9) @ npositive example R(X; é)
o ti I A
@: Original Model @ negative example @: New Model



Consider Ranking

_
Considering the ranking order
L
3 O
o O > Rank perfectly O
2 @
g @
€ ® .
S Worse ranking °
[ _
R(X' 9) @ positive example R(X; é)
@ Original Model @ negative example é: New Model



Consider Ranking

F(@)Z XZX§(X+’ X_)
5(X+,X)=<((1) Fi(xgi);;:g(:;&]

.

®|f the confidence score for a positive example
exceed that for a negative example

»the objective function adds 1.



Consider Ranking

]
F(0)= Y 8(x,,x)
5(X+,X_):<1 R(x+;9)>3(x_;9)
0 otherwise

.
® o(X,, X)) approximated by a sigmoid function
during optimization.

Little feedback data?

‘ The unlabeled examples as negative examples



Acoustic Models - Experiments
_

o Lecture recording (80 queries, each has 5 clicks)
[Lee & Lee, IEEE T. ASL 12]

B BasidN\torm -

W unlabell&d as negative

0.52

0.51

0.50

<
0.49
=

0.48

0.47

0.46

M Baseline

M Ranking




New Direction 1-2:

Modified ASR
for Retrieval Purposes
Besides Acoustic Modeling

I



Language Modeling

1 The query terms are usually very specific. Their probabilities
are underestimated.

11 Boosting the probabilities of n-grams including query terms

O By repeating the sentences including the query terms in
training corpora

0 Helpful in DARPA’s RATS program [Mandal, Interspeech 13] and
NIST OpenKWS13 evaluation [Chen, ISCSLP 14]

1 NN-based LM: Modifying training criterion, so the key terms
are weighted more during training

0 Helpful in NIST OpenKWS1 3 evaluation [Gandhe, ICASSP 14]



Decoding
N

11 Give different words different pruning thresholds during
decoding

0 The keywords given lower pruning thresholds than normal
terms

0 Called white listing [Zhang, Interspeech 12] or keyword-aware
pruning [Mandal, Interspeech 13]

1 OQV words never correctly recognized
o0 Two stage approach [Shao, Interspeech 08]

u Identify the lattices probably containing OOV (by
subword-based approach)

® Insert the word arcs of OOV words into lattices and
rescore



Confusion Models

R
N
Speech | I
Spoken Recognition Models
Content N

‘ Learned by optimizing retrieval

evaluation metrics

Retrieval ?
Confusion Text Result '
Text Model Retrieval >
A B C A’ B, C’ r Query user

The ASR produces systematic errors, so it is possible to
learn a confusion model to offer better retrieval results
[Karanasou, Interspeech 12][Wallace, ICASSP 10]



Jointly Optimizing Speech
- Recognition and Retrieval Modules

Sounds crazy?

Structured SVM with

Hidden variables Query @,
[R. Prabhavalkar, ICASSP, 2013, me - fme 1oy o1 E

""" time 3:04

MLSLP 2012] ; o T fme 531

Query Q, Query Q,

A spoken segment

Yes, the segment
"m“ 'W W' " ’ Complex contains the query.
Model

End-to-end model performing speech recognition
and retrieval jointly (learned jointly) in one step



Much information lost during ASR
=

Transcriptions:
using syntax vectors surge ......

Spoken Content
ice

‘ ||I Latt

L]
text
} ke
ing O o,
Usi
Sing rags
Q o
e

tag 'S

Much information lost during ASR




New Direction 2:

Incorporating
Those Information Lost in ASR

I



Information beyond Speech
Recognition Output

Black Box

Retrieval

Text Result R f
Retrieval
Query user
|

Incorporating information lost in
ASR to help retrieval




New Direction 2-1:

Incorporating
Those Information Lost in ASR
What kind of information can be helpful?

I



Information beyond Speech

Recognition Outgut
1

- Phoneme or syllable duration wolimer, IcASSP 09][Naoyuki
Kanda, SLT 12][Teppei Ohno, SLT 12]

Query is Japanese word ““fu-ji-sa-N”’

Speech \
; ‘i i C ‘;

NN NIH]| |_.| | (TN IR

[Naoyuki Kanda, SLT 12] ; . j i I'—S?'l N

very short! » False alarm!

o Pitch & Energy [Tejedor, Interspeech 10]

o Landmark and attribute detection with prosodic cues
Includes can reduce the false alarm [ma, interspeech 2007]



Query-specific Information
—

1 "Jack of all trades, master of none*

Spoken Term
Detection

Query-specific
detector

higher detector accuracy
on specific query

Correctly recognized
all the words



Query-specific Detector

S Retrieval Query Q
Lattices System

/ v Examples of Q\

First-pass Retrieval Result
Compute Similarity ‘

Exemplar-based approach also used in speech recognition
[Demuynck, ICASSP 2011][Heigold, ICASSP 2012][Nancy Chen, ICASSP 2016]




Similarities

between Audio Segments
S ARSI AT (SRS LS E—

O
O

o O
© O
O\O

)

O
QO

A

L1 O O
L1 O O

O
O
Dynamic Time D D

Warping (DTW) m m
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Query-specific Detector

S Retrieval Query Q
_— e ~_ il = ﬁ 4
Lattices System

- | N

First-pass Retrieval Result Examples of O
X X2 X3

Model for Q L earmn a

K model

Evaluate
confidence




Query-specific Detector

S Retrieval Query Q

?

-~

Learn a discriminative model

\

W

les

“Uattices ] System | f [Tu & Lee, ASRU 11]
[l.-F. Chen, Interspeech 13]
v .t.
First-pass Retrieval Result [ POstHive examp
X X, X3 WW

o

negative examples

e )




oo [Tu & Lee, ASRU 11]
Query-specific Detector [k chen interspeech 13

1 The input of SYM or MLP has to be a fixed-length vector

-1 Representing an audio segment with different length into a
fixed-length vector

000_O 000 |
——
Gee 000

r——
- Gee 000
(] 000
—
000_O 000

This is the simplest approach. More sophisticated
ll approach will be introduced in direction 3.




Query-specific Detector

?

NaS=522 Retrieval Query Q f

~ Lattices System

4 |

First-pass Retrieval Result

ofeodo oo

\

positive examples

e
Wi

> Is It realistic to have those examples?

» Data collected from users (direction 1)

negative examples

o

Q Pseudo-relevance Feedback (PRF)

e )




New Direction 2-2:

Incorporating
Those Information Lost iIn ASR
Pseudo Relevance Feedback

I



Pseudo Relevance Feedback (PRF)

AR ? [Chen & Lee
s i uer !

- 2SN RSetrltevaI < Query Q Interspeech 11]
Lattices ystem [Lee & Lee, CSL 14]

4 | N

First-pass Retrieval Result

\_ -




Pseudo Relevance Feedback (PRF)

AR ? [Chen & Lee
s i uer !

- 2SN RSetrltevaI < Query Q Interspeech 11]
Lattices ystem [Lee & Lee, CSL 14]

First-pass Retrieval Result
X; X2 X3
R(X,) R(X,) R(X5)

Confidence scores from lattices

K j‘> Not shown to the user /




Pseudo Relevance Feedback (PRF)

> ;\/‘*) Retrieval Query Q : [Chen &Lee,
i st < Interspeech 11]
Lattices y [Lee & Lee, CSL 14]

4 | N

First-pass Retrieval Result
R(x,) R(X,) R(X3)
Examples of Q

Assume the results with high confidence scores as correct

K |:> Considered as examples of Q /




Pseudo Relevance Feedback (PRF)

AR ? Chen & Lee
e ' uer [ ’

- 2SN RSetrltevaI < Query Interspeech 11]
Lattices ystem [Lee & Lee, CSL 14]

4 | N

First-pass Retrieval Result

W .

B Rrix) R(X,) R(X;)

K similar dissimilar /

X3




Pseudo Relevance Feedback (PRF)

ﬁ

© Lattices

Retrieval

?

System

y Query Q f y

-~

\4

First-pass Retr

MX @2 .

R(X,) R(X3) ‘

t R(X,)

leval Result

X

X3

\Examples of Q

Rank according to new scores

\_

time 1:01
time 2:05
time 1:45

time 2:16
time 7:22
time 9:01
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Pseudo Relevance Feedback (PRF)

- Exgeriments
1

o Lecture recording [Lee & Lee, CSL 14]

Evaluation Measure: MAP (Mean Average Precision)

0.90

0.85

0.80 -+

0.75 -~
<70
S|

0.65 -

m First Pass (on lattices)
m PRF

0.60 -

0.55 -

0.50 -

(A) (B)




Pseudo Relevance Feedback (PRF)

- Exgeriments
1

(A) and (B) use different speech recognition systems
(A): speaker dependent (84% recognition accuracy)
(B): speaker independent (50% recognition accuracy)

0.90

0.85

0.80

0.75

r
< 0.70

=
0.65

m First Pass (on lattices)
m PRF

0.60
0.55

mll

0.50

(A) | (B)




Pseudo Relevance Feedback (PRF)

- Exeeriments
1

o PRF (red bars) improved the first-pass retrieval
results with lattices (blue bars)

0.90

0.85

0.80 -

0.75
i 0.70 - |l First Passl(on lattices)
= 0.65 - IPRF

0.60 -

0.55 -+

0.50 -




New Direction 2-3:

Incorporating
Those Information Lost in ASR
Graph-based Approach

I



Graph-based Approach

-]
7 PRF

o Make some assumption to find the examples

o Each result considers the similarity to the audio
examples

o Graph-based approach [chen & Lee, ICASSP 11][Lee & Lee, APSIPA
11][Lee & Lee, CSL 14]

o Not assume some results are correct
o Consider the similarity between all results



Graph Construction
_

o The first-pass results is considered as a graph.
o Each retrieval result is a node

First-pass Retrieval
Result from lattices

L s O
» -0

g

3




Graph Construction
_

o The first-pass results is considered as a graph.

1 Nodes are connected iIf their retrieval results are similar.

= DTW similarities are considered as edge weights
&

llllll

']
e,
Y
-
.,



Changing Confidence Scores by Graph

- New scores G(x,) for each node based on the graph
structure =-=ssmmp ranked according to new scores

“You are known by the company you keep”



Changing Confidence Scores by Graph

- New scores G(x,) for each node based on the graph
structure =-=ssmmp ranked according to new scores

“You are known by the company you keep”



Graph-based Re-ranking - Formulation




Graph-based Re-ranking - Formulation

original score
(from lattices)

considering ngh structure



Graph-based Re-ranking - Formulation

N(x;): neighbors of x; (nodes connected to x;)

X;: neighbors of x; (nodes connected to x;)



Graph-based Re-ranking - Formulation




Graph-based Re-ranking - Formulation




Graph-based Re-ranking - Formulation

.+ Normalized by the weights of all the
edges connected to X;

W(xi,xj)
X, €N (x;) W (x, x,-}

Y

W (x;, x;) =‘Z




Graph-based Re-ranking - Formulation

The score of x; would be more close to
the nodes x; with larger edge weights.



Graph-based Re-ranking - Formulation
_

o Assign score G(x) for each hit region based on the graph
structure

® G(x,) depends on G(x,)
and G(X,)




Graph-based Re-ranking - Formulation

o Assign score G(x) for each hit region based on the graph
structure

® G(x,) depends on G(x,)
and G(X,)

® G(X,) depends on G(x,)
and G(X3) ......




Graph-based Re-ranking - Formulation

o Assign score G(x) for each hit region based on the graph
structure

® G(x,) depends on G(x,)
and G(X,)

® G(X,) depends on G(x,)
and G(X3) ......




Graph-based Re-ranking - Formulation

o Assign score G(x) for each hit region based on the graph
structure

® How to find G(x,), G(X,),
G(X3) -..... satisfying the
following equation?

® This is random walk.

G(X;) I1s uniquely and
efficiently obtainable

Jra 3Gl Nl )




Experiments
]

Graph-based Approach -

o Lecture recording [Lee & Lee, CSL 14]
(A): speaker dependent (high recognition accuracy)
(B): speaker independent (low recognition accuracy)

0.90

0.85

0.80

0.75

=
S 0.70

0.65

® First Pass (on lattices)
m PRF
= Graph

0.60

0.35

0.50

(A) (B)




Graph-based Approach -
- Exgeriments

o Graph-based re-ranking (green bars) outperformed PRF (red
bars)

0.90

0.85 -

0.80 -

0.75 -

A
< 0.70 -

® First Pass (on lattices)

m PRF
= Graph

0.65 -

0.60 -

0.55 -

0.50 -

(A) (B)




Graph-based Approach —
- Exgeriments

1 Graph-based approach on limited language data
from the |IARPA Babel program

0.35

0.34
0.33
0.32
S 031
E 0.30 M First Pass
<L o029 ® Graph
0.28
0.27
0.26
0.25

Bengali Assamese [Lee & Glass,
Interspeech 14]



Graph-based Approach —
__ Experiments

o 13% relative improvement on OOV queries on

lecture recording (several speakers) [sansen, ICASSP
13][Norouzian, ICASSP 13]

o 14% relative improvement on AMI Meeting Corpus
[Norouzian, Interspeech 13]

o Graph Spectral Clustering

o Optimizing evaluation measure and considering the
graph structure at the same time [Audhkhasi, ICASSP 2014]

o 11% relative improvement with subword-based
SyStem on Open KWSlS (Swahlll) [Van Tung Pham, ICASSP,

2016]



New Direction 3:
No Speech Recognition!



Why Spoken Content Retrieval
- without Sgeech Recognition?

o Bypassing ASR to avoid information loss and all problems
with ASR (errors, OOV words, background noise, etc. )

o Just to identify the query, no need to find out which words the
query includes

o Audio files on the Internet in hundreds of different languages

o Too limited annotated data for training reliable speech
recognition systems for most languages

o Written form even doesn’t exist for some languages

- Many audio files are code-switched across several different
languages



Spoken Content Retrieval

- wIithout Sgeech Recognition
s it possible?

— —
spoken US President 1
query |

“US President”

Spoken Content

Compute similarity between spoken queries and audio
files on acoustic level, and find the query term



Approach Categories

1 DTW-based Approaches
O Matching sequences with DTW

1 Audio Segment Representation

O Representing audio segments by fixed length vector
representations

01 Unsupervised ASR (or model-based approach)

O Training word- or subword-like acoustic patterns (or tokens)
from target audio archive

O Transcribing both the audio archive and the query into
word- or subword-like token sequences

0 Matching based on the tokens, just like text retrieval



New Direction 3-1:

No Speech Recognition!
DTW-based Approaches

I



DTW-based Approach

7 Conventional DTW

£

Audio Segment D

e

© O

O\I;) O
O

O

1 O O
1 O O

O
O
Audio Segment WWWM

1 O



DTW-based Approach

T Segmental DTW [Zhang, ICASSP
10], Subsequence DTW [Angueraq,
0 DTW for query-by-example | icme 135icalvo, MediaEval 14]

o Whether a spoken query Is in an utterance

Adding slope-constraints
- 9o oP
[Chan & Lee, Interspeech 10]

]
]

The blue path is better
] than the green one.

aey 0 0B B O 0000
b ot

Utterance



Acoustic Feature Vectors
B

1 Gaussian posteriorgram [zhang, ICASSP 10][Wang, MediaEval 14]

-1 Phonetic posteriors [Hazen, ASRU 09]

0 MLP trained from another corpus (probably in a
different language)

11 Bottle-neck feature generated from MLP [kesirajy,
MediaEval 14]

1 RBM posteriorgram [zhang, ICASSP 12]

] Performance compd rison [Carlin, Interspeech 11]



Speed-up Approaches for DTW
=

0 Segment-based matching [Chan & Lee, Interspeech 10][Chan & Lee,

ICASSP 1] Group consecutive acoustically similar feature
vectors into a segment

c o0 O O 0 O 0O O

]
]

Spoken

Utterance

© O O O

c o0 O O 0 O 0O O
c O O O 0 O 0O O
c O O O 0 O 0O O




Speed-up Approaches for DTW

1 Segment-based matching

Group consecutive acoustically similar feature
vectors into a segment

Hierarchical _—
Agglomerative Q
Clustering (HAC)

Step 1: build a tree /
Step 2: pick a
threshold ﬁ D

i 0




Speed-up Approaches for DTW
=

0 Segment-based matching [Chan & Lee, Interspeech 10][Chan & Lee,
ICASSP 11]
Compute similarities between segments only

@@O@o

© O O
© O O
© O O

]

O
O
O
O

© O O O

5
iy :

Utterance

© O O




Speed-up Approaches for DTW

] Seg ment-based md’rching [Chan & Lee, Interspeech 10][Chan & Lee,
ICASSP 11]

1 Lower bound estimation [Zhang, ICASSP 11][Zhang, Interspeech 11]

71 Indexing the frames in the target audio file [Jansen, AsrRU
11][Jansen, Interspeech 12]

-1 Information Retrieval based DTW [Anguera, Interspeech 13]



New Direction 3-2:
No Speech Recognition!

Audio Segment Representation

I



Framework

[Chung & Lee, Interspeech 16][Chen, ICASSP 15]
[Levin, ICASSP 15][Levin, ASRU 13]

Audio archive divided into variable-

length audio segments

Audio

Segment to

Vector

Audio

ﬁ‘m =P Segment to

Spoken
Query

Vector

On-line

m—p

q

q

Off-line

|
|

Similarity

v

Search Result




Audio Word to Vector

11 The audio segments corresponding to words with
similar pronunciations are close to each other.




Audio Word to Vector -
- Segmen’rql Acoustic Indexinﬁ

- Basic idea A set of template
audio segments

[Levin, ICASSP 15][Levin, ASRU 13]



Audio Word to Vector — Chung & Lee.

Interspeech 16]

Sequence Auto-encoder
I e R —

Representation for the whole

RNN Encoder /audio segment
I
I

acoustic features

audio segment




Audio Word to Vector — Chung & Lee.

Interspeech 16]

Seqguence Auto-encoder

RNN Encoder Y1 Yo Y Ya

RNN Decoder




Sequence Auto-encoder —

Experimental Results
2 SASL USRS LS ——

Edit Distance between
Phoneme segquences

ki o

Deep Deep
Learning l l Learning
O ¢
U e— O
w Cosine .
¢ Similarity Q




Experimental Results

Edit Distance between
Phoneme sequences

Deep Deep
Learning 1 Learning
C
o —-
o | U Cosine
o

More similar
pronunciation




Sequence Auto-encoder —

Experimental Results
2 SASL USRS LS ——

71 Projecting the embedding vectors to 2-D

T I I I I I I T
0.2r word hand - 7
0.15F -
hands
0.1 |
0.05r -

-0.05

-0.1r

-0.15- — >

| | | | | | | |
-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25



MAP

Sequence Auto-encoder —

o1 Audio story (LibriSpeech corpus)

032

03r
0.28r
0.26
0.24
0.22+

0.2r
0.18F
0.16¢
014

012F 1
150 200 250 300 350 400 450 500

——SA ——DSA —DTW/ |

training epochs for
seguence auto-encoder

Experimental Results
2 SASL USRS LS ——

SA: sequence
auto-encoder

DSA: de-noising
seguence auto-encoder

Input: clean speech
+ noise

output: clean speech



New Direction 3-3:

No Speech Recognition!
Unsupervised ASR

I



Conventional ASR
-

unknown speech signal

e

_>[ ASR }-’ -+ Hello World ---

Knowledge about the

A huge annotated

language (Phone set, Lexicon,

corpus
Language Model)




Unsupervised ASR

unknown speech signal

e

Acoustic Tokens

tOt1t2, t1t3, t2t3,
t2t1t3t3t2 -

Used in Query by example
Spoken Term Detection

—> ASR —»

Unsupervised ASR:
Learn the models for a set of acoustic patterns (tokens)
directly from the corpus (target spoken archive)



Unsupervised ASR - Acoustic Token
=

tterance

t0

t1 t2
r -
‘ acoustic
\ feature

acoustic tokens: chunks of acoustically similar feature
vectors with token ids

tl

[Zhang & Glass, ASRU 09]
[Huijbregts, ICASSP 11]
[Chan & Lee, Interspeech 11]



Unsupervised ASR

S O 211 B 0 21170 o —

lwg = initialization(X) | x feature
; ; | sequence
simple segmentation
and clustering Initialization
0, = arg m@aX P(X Wi—1, 9) Wo j Initial token
sequence
w; = argmax P(X|w,0;_1)
v model training
X :feature sequence for the whole ‘ l 9
corpus ’ g

w : token sequences for X

token decoding

!

° final token

W sequence




Unsupervised ASR
-%

Grouping consecutive

‘ acoustically similar feature

o vectors into segments

Extract acoustic
features for every

utterance Extract mean of each segment

and perform K-means
clustering on the entire archive

\ 4

Get Token ID




Unsupervised ASR

S O 211 B 0 21170 o —

lwp = initialization(X) |
simple segmentation
and clustering

0, = argm@axP(Xwi_l,H)

w; = argmax P(X|w,0;_1)

X : feature sequence for the whole
corpus

6 - Model (e.g. HMM) parameters

w . token sequences for X

¢ training iteration

y feature
| sequence

Initialization

l initial token
Wo
sequence

model training

1 e

token decoding

|
i final token

W sequence



Unsupervised ASR

S G171 21| B 1T —

optimize HMM parameters using
Baum—-Welch algorithm on token
sequence w;_, to get new models 6;

AR DD LTI RO et

0, = argm@axP(Xwi_l,H)

decode acoustic features into a new
token sequence w; using Viterbi
decoding

LI AR IR o

w; = argmax P(X|w,6;—1)

y feature
| sequence

Initialization

l initial token
Wo
Sequence

model training

1 e

token decoding

|
i final token

W sequence



Unsupervised ASR

S 05 =11 B vl GILT0)) S

y feature
| sequence
IO wo Initialization

=

INnitial token
sequence

URTATEERE: i TRCIAARCIN 1] R

TUTIRENT A0S MU W1
wo

AT =~ ws —
model training
I =~ @

v Wi ‘ l 0;
iterate until the token token decoding
sequences (including token i
boudaries) converge _ final token

W sequence



Acoustic Token in Query by
- Exomgle Sgoken Term Detection

11 Compute the similarity between the models of two

tokens
Model of KL divergence of the Gaussian
token A * mixtures in the first state of
two models

(Y ()

Model of
token B



Acoustic Token in Query by
- Exc:mgle Sgoken Term Detection

11 Compute the similarity between the models of two
tokens

Model of 7 1. ererennnnee,
token A = *

Sum of the KL divergence - f\ ;

[ |
over the states of the two Model of
token models token B




Token-based DTW

» Tokens
In query subsequence matching Token-based DTW
b O
g Q
d o
b ®
@ * Tokens in an

a | b | c|d|al|lbl|l gl h| b | d | Utterance

» Signal-level DTW is more sensitive to signal variation (e.g. same phoneme
across different speakers), while token models are able to cover better the
distribution of signal variation

» Much lower on-line computation load



for Acousitc Tokens
1

Multi-granularity Space

. Unknown hyperparameters for the token models
- Number of HMM states per token (m): token length
- Number of distinct tokens (n)

. Multiple layers of Intrinsic representations of speech



Multi-granularity Space
for Acousitc Tokens

. From short to long (Temporal Granularity)
Number of states per HMM (m)

- phoneme
- syllable
- word
- phrase

. From coarse units to fine units (Phonetic Granularity)

_ general phoneme set Number of distinct HMMs (n)

— gender dependent phoneme set
— speaker specific phoneme set



Multi-granularity Space
- for Acousitc Tokens

Training multiple sets of HMMs for with different granularity
[Chung & Lee, ICASSP 14 ]

n

speaker
specific

gender
dependent

general

phoneme syllable word phrase



for Acousitc Tokens
1

Multi-granularity Space

11 Token-based DTW using tokens with different
granularity (m,n) averaged gave much better
performance

7 One example

0 Frame-level DTW: MAP = 10%

0 Using only the token set with the best performance:
MAP = 11%
0 Using 20 sets of tokens (number of states per

HMM m =3,5,7,9,11, number of distinct HMMs
n=50,100,200,300): MAP =26%



Hierarchical Paradigm

01 Typical ASR:
O Acoustic Model: models for the phonemes

0 Lexicon: the pronunciation of every word as a phoneme
sequence

O Language Model: the transition between words

Acoustic Model Lexicon Language Model
Word 1
Phoneme 1
Phoneme 1 Phoneme 4
Phoneme 2
Word 2
Phoneme 3 Phoneme 2 Phoneme 1 Phoneme 3 WOrd 4




Hierarchical Paradigm
—

o1 Similarly, in unsupervised ASR:
. Acoustic Model: the phoneme-like token HMMs
x. Lexicon: the pronunciation of every word-like token as a
sequence of phoneme-like tokens
©. Language Model: the transition between word-like tokens

Acoustic Model Lexicon Language Model

word-like token 1

phoneme- phoneme-
like token 1 like token 4

phoneme-like token 1

phoneme-like token 2

word-like token 2

phoneme- phoneme- phoneme-
like token 2 like token 1 like token 3

phoneme-like token 3

V" word-like
token 1




Hierarchical Paradigm
—

o1 Similarly, in unsupervised ASR:
. Acoustic Model: the phoneme-like token HMMs
x. Lexicon: the pronunciation of every word-like token as a
sequence of phoneme-like tokens
©. Language Model: the transition between word-like tokens

Bottom-up Construction

Acoustic Model Lexicon Language Model

word-like token 1

phoneme- phoneme-
phoneme-like token 2 like token 1 like token 4

word-like token 2

Top Down Constraint




Bottom Up Construction

Histogram Tail a.
Pruning
. - Sta el .. Free-word
3 stages during training J @* HMM training Decoding

4

focus on different constraints: A
- N-gram
stagel: Acoustic Model 9? Consirction
Ol Histogram Tail
. . Prunin,
stage2: Language Model i stage2 | Prnie |
stage3: Lexicon @& Q’l FMM trainine
?
this part alone would be the 5| Word-lke patten

reconstruction

HMM training we described

earlier *
e o O =

[Chung & Lee, ICASSP 13]




Hierarchical Paradigm
—

o1 Similarly, in unsupervised ASR:
. Acoustic Model: the phoneme-like token HMMs
x. Lexicon: the pronunciation of every word-like token as a
sequence of phoneme-like tokens
©. Language Model: the transition between word-like tokens

Bottom-up Construction

Acoustic Model Lexicon Language Model

word-like token 1

phoneme- phoneme-
phoneme-like token 2 like token 1 like token 4

word-like token 2

Top Down Constraint




This figure is from Aren

TOp'dOwn ConStralntS Jansen’s ICASSP paper.

[Jansen, ICASSP 13]

06 07 0 0.0D.040.08.08 0 0.020.040.0¢
Time (s) Time (s) Time (s)

» Signals of the same phoneme may be very different on phoneme
level, but the global structures of signals of the same word are very
often very similar on word level

» Global structures help in building the hierarchical model



Multi-layered Acoustic Tokenizing Deep Neural
Networks (MAT-DNN)

» Jointly learn high quality frame-level features (much better than MFCCs) and

acoustic tokens in an unsupervised way

» Unsupervised training of multi-target DNN using unsupervised token labels

as training target

[Chung & Lee, ASRU 15]

In the first iteration, we use MFCC as the initial features

In the other iterations, we concatenate the bottleneck features with the MFCC

Multi-layered Acoustic Tokenizer (MAT)

Initial
Acoustic

(iteration 1)

Multi- layered
Token labels as

Multi-target DNN (MDNN)

(iteration 1)

Token Model Token Label MDNN targets
Optimization —> Optimization | oooo%oooo |
—Pt T ‘L ( ooooeoooo ]
- (m,n) L 00000 g 00000 ]
Bottleneck (subjword ConcatenatedT:eatures(iteration 2,3,..)
Fdatures evaluation ;i) .
(iterations 2,3,...) Acoustic | concatenation |
|: Features

Bottierneck Features

Bottleneck
Features

feature
evaluation



Multi-layered Acoustic Tokenizing Deep Neural
Networks (MAT-DNN)

[Chung & Lee, ASRU 15]

» Jointly learn high quality frame-level features (much better than MFCCs) and

acoustic tokens in an unsupervised way

» Unsupervised training of multi-target DNN using unsupervised token labels

as training target

In the first iteration, we use MFCC as the initial features

In the other iterations, we concatenate the bottleneck features with the MFCC

Multi-layered Acoustic Tokenizer (MAT)

Initial
Acoustic

(iteration 1)

Multi- layered
Token labels as

Multi-target DNN (MDNN)

(iteration 1)

Token Model Token Label MDNN targets
Optimization —> Optimization | oooo%oooo |
—Pt T ‘L ( ooooéoooo ]
- (m,n) L___ 00000 ﬁ ooooo ]
Bottleneck (sub)word ConcatenatedT:eatures(iteration 2,3,...)
Fdatures evaluation Initial -
(itprations 2,3,...) Acoustic | concatenation |
|: Features

Bottierneck Features

Bottleneck
Features

feature
evaluation



Multi-layered Acoustic Tokenizing Deep Neural
Networks (MAT-DNN) [Chung & Lee, ASRU 13]

1 Experimental Results
0 Query by Example Spoken Term Detection on Tsonga

Approach ___ MAP____

Frame-based MFCC 9.0
DTW New Feature 28.7

Token-based

DTW New Tokens 26.2



New Direction 4:

Special Semantic Retrieval Techniques
for Spoken Content

I



Semantic Retrieval
1

o User expects semantic retrieval of spoken content.

o User enters “US President”, system also finds “Obama”
o Widely studies on text retrieval
o Take query expansion as example

Retrieval [ “US Presiden&
(B

“Obama” and “US
President” are related

Search both
“US President” or “Obama”




Semantic Retrieval

-4
o User expects semantic retrieval of spoken content.

o User enters “US President”, system also finds “Obama”
- Widely studies on text retrieval
o Take query expansion as example

o The semantic retrieval techniques developed for text
can be directly applied on spoken content

o Query/document expansion based on language
modeling retrieval approach as example



Review: Language Modeling Retrieval

AEBroach
]

- Both query Q and document d are represented as
unigram language models 6, and 6,

W| ‘9 I (W| ‘9d)
«
J I dwergence I I
W, W, wg; W, Wsg ... Wy W, wg; W, Wg ...
Query model 6, Document model 6,

KL divergence between the two models can be evaluated.



Review: Language Modeling Retrieval

AEBroach
]

o Given query Q, rank document d according to a
relevance score function S, ,(Q,d):

S (Q.d)=-KL(6, 16, )

o Inverse of KL divergence between query model 6, and
document model 6,

o The documents with document models 0, similar to
query model 6, are more likely to be relevant.



Review: Basic Query/Document

Models Iin Text Retrieval
1

- Query model 6 for text: P(Wl 0
Q

): Ni{w,Q
> N(w,Q)

o
N(w,Q): term frequency of word w in query Q
Normalize into probability

- Document model 0, for text :

P(w| 6, ) el

2 N(w.d)

N(w,d): term frequency of word w In document d
Normalize into probability

Those basic models can be enhanced by query/document
expansion to handle the problem of semantic retrieval.




Parallel to

Review: Query Expansion [

Query Text Query Q
model |
| P(Wl QQ)
l doc 101
Retrieval ‘ ggg igg
Engine

LR First-pass
—____—] Retrieval Result

Document
Model

Qﬂ/ [Tao, SIGIR 06]




Parallel to

Review: Query Expansion [

Query Text
model | ext Query Q

1 P(W|9Q)

Document model

P(w
L Top N
WIWo VoW Wy documents / | I I I for doc 101
W1 W, W3 Wy Wy
P(w

l doc 1011 p ) ------
d
Retrieval [LLdoc 205 1
Engine | doc 145 Document model
for doc 205
/-_\ Fi rst_pass Wy Wy Wy Wy Ws ...
“——__ | Retrieval Result
Document
Model

~Y% [Tao, SIGIR 06]



Parallel to

Review: Query Expansion [

Query Text Quer
model | Query Q
tPw6,) P(w]6,) common patterns in
document models
L ‘ Top N Pl (by EM algorithm)
Wy W WaW, Wy documentS/ I
- W; W, W, W, We ...
l doc 101~ P(W 01 2T
Retrieval doc 205 t 1 Plwley)
. | doc 145 |~ | JJ
Engine N
1 “ e L. >
/-_\ Fi rst_pass Wy Wy Wa W, W ... Wi W WaWg W ...
] Retrieval Result New Query Model
Document
Model

4 [Tao, SIGIR 06]



Parallel to

Review: Query Expansion [

Query Text Quer Final Result
model | Query Q
1 Plw|é& : :
(wié,) P(w]6;) Retrieval Engine
L Top N |
Wy, Wy W3 W, We ” dOCumentS// I I
- W; W, W, W, We ...
l doc 101~ P(W 61 2T
d A 1
Retrieval doc 205 t P(w|6',)
. | doc 145 |~ | JJ
Engine N
1 “ e LI >
/-_\ Fi rst_pass Wy Wy Wa W, W ... Wi W WaWg W ...
] Retrieval Result New Query Model
Document
Model

4 [Tao, SIGIR 06]



Review: Document Expansion

_
4 A
P(W|‘9d) P(W|9d)
“airplane” “airplane”
I I I “aircraft”
>
Wp W, Wi W, Ws ... W, W, wy, W, Wg ...
Document model 6, New Document model 6,
Find topics _‘ Modify
behind —— document
document P J model

This is realized by PLSA, LDA, etc.

[Wei, SIGIR 06]



Semantic Retrieval on Lattices

_
o Modify retrieval model for lattices:

Original Retrieval :
Model of Text For Lattices

Expected

Term Frequency » Term Frequency
Expected

Document Length » Document Length

o Take the basic language modeling retrieval approach as
example



Document Model from Lattices

N
- Document model 6, for text

IN(w,d]—

%]N(W,d)\

o (Spoken) Document model 6, fyorp lattice

P(W|‘9d):

E(w.d)|l— query/document
P(Wl ‘9 ‘ (W )‘ expansion can be
Z“E W, d applied

Replace term frequency N(w,d) with expected term frequency
E(w,d) computed from lattices




Expected Term Frequency

- Expected term frequency E(w,d) for word w In spoken
document d based on lattice

E(w,d)= (d;\l(w,u)P(uld)

uelL

lattice of spoken
document d

Wg Wa

W¢




Expected Term Frequency

_
- Expected term frequency E(w,d) for word w In spoken
document d based on lattice

E(w,d)= a\l(w,u
u

Can we have better
»U: a word sequence in the lattice of d | estimation?

»P(ul|d): posterior probability of word sequence u

»N(w,u): the number of word w

; ; lattice of spoken
ring in word seguence u
appearing g document d

Wa

»L(d): all the word sequences in
the lattice of d » W

B
W¢




New Direction 4-1:

Special Semantic Retrieval Techniques
for Spoken Content

Better Estimation of Term Frequencies

I



Better Estimation of Term

Freguencies
]

- Context of each term In the lattices [Tu & Lee, ICASSP 12]

o The occurrences of a given term are usually characterized
by similar context, while widely-varying contexts typically
Imply different terms [Schneider, Interspeech 10]

o Graph-based approach
o Graph-based approach improved spoken term detection

o It can also improve semantic retrieval of spoken content

o ldea: Replace expected term frequency E(w,d) with scores

from graph-based approach [Lee & Lee, SLT 12] [Lee & Lee,
|IEEE/ACM T. ASL 14]



Graph-based Approach for
- Semantic Retrieval

o For each word w In the lexicon

cen d X1 Xy
spoken document ‘ l”” ‘ . W ‘
X3
spoken document ‘ ‘ !

X4
spoken document l M l ‘

Find the occurrence regions of word w from lattices




Graph-based Approach for
- Semantic Retrieval

o For each word w In the lexicon

X1 X3
spoken document )

spoken document

spoken document

Connect the occurrence regions as a graph by similarities




Graph-based Approach for
- Semantic Retrieval

o For each word w In the lexicon
X1 Xy

- Al -
GO

spoken document

X4 G(X

spoken document
Better estimation of
the occurrence of w

X4

spoken document

. N .
* WW b P-4

Obtain new score G(x) by random walk




Graph-based Approach for
- Semantic Retrieval

- For each word w In the lexicon

spoken document

Repeat this process for all the words w in the lexicon



Graph-based Approach for
- Semantic Retrieval

Lattice-based Graph-enhanced
Document Model:lE ( document model:
W

P(w|6,)= - P(w|6;)= ZE(VZV\?()ZI)

replace

query/document
Better estimation of term E'( d) expansion can be
frequencies for each word w W, applied
ind A

spoken document d
WWW - Scores from

G(x,) G(x,) 9raph




Graph-based Approach for Semantic

Retrieval - Exgeriments
1

o Experiments on TV News [Lee & Lee, IEEE/ACM T. ASL 14]

0.51

0.5

0.49

0.48

% 0.47
2 0.46
0.45

0.44

0.43

Basic LM Query Expansion Document Expansion ~ Query + Document
Expansion

W |lattice M Graph-Enhanced



New Direction 4-2:

Special Semantic Retrieval Techniques
for Spoken Content

Exploiting Acoustic Tokens

I



Acoustic Tokens
1

7 We can discover “acoustic tokens” in direction 3

| Token 3 Token 2 Token 1
Token 2 Token3  Token 1

e ki,

f ‘\‘n
Can be useful in semantic
retrieval of spoken content:

Token i Token 3

» Query expansion with acoustic tokens
»Unsupervised semantic retrieval of spoken content



Query Expansion
- with Acoustic Tokens

Basic idea of query expansion “US President” “Oamma =

Related terms frequently co-occur
In the same spoken document

If “Obama” 1s not in the lexicon
» “Obama” will never appear 1n lattices.

» We can never know “Obama” co-occur with
“US President” in query expansion.

» Tvpical approach: using subwords
yP PP _ _ J _ . Complementary
tokens z




Query Expansion
- with Acoustic Tokens

Original Text Query: [Lee & Lee, ICASSP 13]
“US President”

2

digo: ------ US President ...

dygs: ... US President ......

First pass: Retrieve spoken documents containing “US
President” in the transcriptions




Query Expansion
- with Acoustic Tokens

Original Text Query:
“US President”

2

igo: - US President ... MWM 4

dygs: ... US President ......

"

Find acoustic tokens frequently appear in the signals of
these retrieved documents




Query Expansion
- with Acoustic Tokens

Original Text Query:
“US President”

2

igo: - US President ... MWM 4

dygs: ... US President ......

Even the terms related to the query is OOV

m) If they co-occur with the query in speech signals
m) Find acoustic tokens corresponding to these terms




Query Expansion
- with Acoustic Tokens

Original Text Query:
“US President”

iul

digot ---. .. US President ... MWM

Expanded Query:
“US President” + |




] ) “US President” ]
Z§ (Expanded Query:

“US President”
( “White House”

A 1 Find the same tokens
(IR __,-";: EA Tk A l 3

RN ___,-----"‘?E“%J-—-"-"‘“\P’ ‘ I ‘ | ‘ | '

L] %__;E_J__ Tk " */f ._,.-//"“: . ' | ‘ [ ‘ " | | i

e LA, Lattices LML A

By expanding the text query with acoustic tokens,
more semantically related audio files can be retrieved.

f




Query Expansion
— Acoustic Patterns

o Experiments on TV News [Lee & Lee, ICASSP 13]

0.305 0.31 0.32

® No expnaison

* Expand Query only has Text
* Expand Query has Text and Speech Signals




Unsupervised Semantic Retrieval

o Unsupervised Semantic Retrieval [Li & Lee, ASRU
13][Oard, FIRE 13]

o Find spoken documents semantically related to the
spoken queries

o Without speech recognition

- New task, not too much previous work

o Below is just a very preliminary study based on query
expansion with acoustic tokens [Li & Lee, ASRU 13]



Unsupervised Semantic Retrieval
_

1. Find spoken documents containing the spoken query

» Done by the query-by-example spoken term
detection approaches (e.g. DTW)

e Spoken Document 1

Spoken Queries

.. Spoken Document 2

W Spoken Document 3

~ database




Unsupervised Semantic Retrieval
_

2. Find acoustic tokens frequently co-occurring with
the spoken queries in the same document

Spoken Queries




Unsupervised Semantic Retrieval
_

3. Use the acoustic tokens to expand the
original spoken query

Expanded
Queries




Unsupervised Semantic Retrieval
_

4. Retrieve again by the expanded queries

B) Can retrieve spoken documents not
containing the original spoken queries

Expanded
Queries




Unsupervised Semantic Retrieval

- Exgeriments
1

-1 Broadcast news, MAP as evaluation measure

o Using only DTW for unsupervised semantic
retrieval: MAP= 8.76%

= The semantically related documents without the
query term cannot be retrieved by DTW.

o Expanded by Acoustic Tokens: MAP=9.70%

= Unsupervised semantic retrieval has a long way
to go

[Li & Lee, ASRU 13]



New Direction 5:
Speech Content iIs Difficult to Browse!



Audio Is hard to browse
1

o When the system returns the retrieval results,
user doesn’t know what he/she get at the first
glance

Retrievql Result

LG e

b

[

)

&S
&S
&S




Audio Is hard to browse
e

olnteractive spoken content retrieval
nExtracting Core Information
nOrganizing Retrieved Results
nSpoken Question answering



New Direction 5-1:

Speech Content is Difficult to Browse!
Interactive Spoken Content Retrieval

I



Interactive spoken content retrieval

US President ]
Retrieval
, System

-

\_ spoken content )

Input query is usually short # Cannot describe the
iInformation need clearly

Speech recognition always produces errors.



Interactive spoken content retrieval
_

US President

—

/ More precise, please.

user




Interactive spoken content retrieval
_

US President

—

/ More precise, please.
%f 4[ Obama

[ Is it related to “Election”?




Interactive spoken content retrieval

/ More precise, please.
4[ Obama

e =

US President

—

Is it related to “Election”?

Yes.

- ~ N

Show the results




Challenges

o Given the information entered by the users, which
action should be taken?

| Gain much information,

« - but much user labor
More precise, please”

“Is 1t relevant to XXX?” “Give me an example.”

“Show the results.”

but little user labor

Borrowing the experiences from developing dialogue system
(air ticket booking, city guides, personal assistant .., )



MDP for Interactive Retrieval

S
- Markov Decision Process (MDP)

o The system iIs in certain states.
o Which action should be taken depends on the state the
system is in.

] MDP fOF InteraCtlve retrleval [Wen & Lee, Interspeech 12][Wen
& Lee, ICASSP 13]

o State: the degree of clarity of the user’s information
need

Ambiguous state space Clear
—



. \T/

Ambiguous

[Cronen-Townsen,
SIGIR 02]
[Zhou, SIGIR 07]

[US President. f %

I

Query

state space

Search

Doc3
Docl
Doc?2

Engine

Clear

State Estimator: Estimate the degree
of clarity from the retrieval results

™ LN
\*’*‘*W*’W’*‘*"‘/

N—

Achieve

Spoken

-




& .

\ /

<@

Ambiguous state space Clear

- A set of candidate actions
o System: “More precisely, please.”
o System: “Is 1t relevant to XXX?”

o.....
- There 1s an action “show results”

o When the system decides to show the results, the
retrieval session Is ended



& .

I \T/

<@

Ambiguous state space Clear
m(S)="More n(S)=Show Results

precise, please”

o Choose the actions by intrinsic policy =(S)

o The policy is a function
o Input: state S, output: action A



Vs ) '
|\ |
x n(S1) = Al
Ambiguous state space Clear
User response mms) The system gets a cost
C1 due to user labor.
)
Obama. { A_l: More Doc3
- precise, please. Docl
Doc?2
=) N | e
Search 6| Spoken
Engine Achieve

N~




Ambiguous

state space

Search

Doc?2
Docl
Doc3

Engine

a Spoken
Achieve

Clear

Update Results

™ L
\%*W*’W’T/

N eYe—




Interact with Users - MDP

1 Good interaction:

o The quality of final retrieval results shown to the
users are as good as possible

o The user labors (C1, C2) are as small as possible



Interact with Users - MDP

—————— . -
. / C2 .- - o N
P d
v d
P
Vs
/ _——
\‘-_4-'/ = ~
\' N
>/ y

Find a polity = that

‘ Maximizing Retrieval Quality, Minimizing User Labor
The polity = can be learned from historical

|nteraCt|0n [Wen & Lee, Interspeech 12][Wen & Lee, ICASSP 13]



Deep Reinforcement Learning

natur

T ATUNRAT AR WRTELT R B JORE

SHARE DATAIN

AGIANTIN THE

EARLY UNIVERSE

""'_.';'».":f'f'
-

TELEPORTATION
R TWO

RS-

THE INTERNATIONAL WEEKLY JOU

At last — a computer program that
can beat a champion Go player PAGE 484

ALL SYSTEMS /GO

N RESEARCHETHICS 0P £ D NATUREASIA.COM

SONGBIRDS

PAGE 462



° ™ L
Deep Reinforcement bt >
Learnin : Spoken
~<arhing Content
N— I
[Wu & Lee, Interspeech 16]

(e) )
gquery Spoken Content
| . Results
Retrieval

—>05 DNN lfeatures
Show the results.

e

More precise, please.
Max | -

Is It relevant to XX?

Learning Target:

Maximizing Retrieval Quality, Minimizing User Labor



[Wu & Lee, Interspeech 16]
Experimental Results Oral, Friday, 6:40 pm,

Spoken Term Detection

1 Broadcast news, semantic retrieval

Optimization Target:
Retrieval Quality (MAP) Retrieval Quality - User labor

"l Hand-crafted [ MDP [ Deep Reinforcement
Learning



Deep Reinforcement Learning v.s.
MDP for interactive retrieval

] MDP fOI’ interactive retrieval [Wen & Lee, Interspeech 12][Wen &
Lee, ICASSP 13]

. D)
. State
action < State <+«— | Results
Estimator

The two stages were learned separately.

11 Deep D ) e y
End-to-end action N : ‘ ‘ ‘O JResuI’rs

learning

No hand-
crafted states

Q

(1

_—

I ~~ V—J
Policy State Estimator




New Direction 5-2:

Speech Content is Difficult to Browse!
Extracting Core Information

I



Extracting Core Information
_

10 minutes

g

o

Retrieved
Audio File
Summary /

30 seconds _
Deep Learning,
- Neural Network ....

“Introduction of
Deep Learning”




Reference: 13 Speech Summarization
(Gokhan Tur, Renato De Mori, Yang Liu, Dilek

S u m m ari Zati O n Hakkani-Tir). G. Tur and R. DeMori, Spoken

Language Understanding: Systems for

| Extracting Semantic Information from Speech. |

o Unsupervised Approach: Maximum Margin
Relevance (MMR) and Graph-based Approach
- Supervised approach

o Na'lve approach: Summarization problem can be
formulated as binary classification

classification

Audio File _ e
inary
.‘% utterancel ———> Classifier 1 summary
Binary
Hrpeem—pme— Utterance 2 ——— Classifier 1 |— Ltterance 2
W utterance3 ——— Binary +1 |——| utterance 3
Classifier

W Utterance 4 ———| e bak] -1
Classifier



Summarization

— Binarx Classification
1

o Binary classifier individually considers each utterance
o Not sufficient

o Example: summary should be concise

Lecture Recording

Hello ...... Summary

LSA is Latent semantic analysis

| LSA is useful for summarization | LSA is useful for summarization

Therefore ...... /v LSA improves summarization

LSA improves summarization )
L : /-4|: Summary should be succinct

To generate a good summary, “global information” should be

considered ) : :
~| More advanced machine learning techniques




Summarization

- Considering Global Information

- Learn a special model [Lee & Lee, ICASSP 13]
o [Lee & Lee, Interspeech 12]
o Input: whole audio file
o Output: summary

_ Summary
3 utterances Special
000 ) @O
o Model
Audio File
Consider the zﬁlri(rzrtg:;n

whole audio file

Structured SVM: |. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun. Support
\ector Learning for Interdependent and Structured Output Spaces, ICML, 2004.




Summarization

- Structure In SEoken Content
1

- Temporal structure helps summarization

o Long summary: consecutive utterances in a
paragraph are more likely to be

Important paragraph
G a6 88neees

Paragraph 1 Paragraph 2 Paragraph 3
o Short summary: one utterance is selected on behalf
of a paragraph.

Representative of the parag ;aph

so et |e e

Paragraph 1 Paragraph 2




Summarization

- Structure In Sgoken Content

o Structure in text are clear
oParagraph boundaries are directly known

o For spoken content, there Is no obvious
structure

o' The structure can be considered as “hidden
variables™

oJointly learning structure of spoken

document and summarization (shiamne & Lee, Interspeech
13]



- Experiments
]

Summarization

o Evaluation Measure: ROUGE-1 and ROUGE-2

o Larger scores means the machine-generated summaries
IS more similar to human-generated summaries.

0.50
045
0.40
0.35 | Unsupervised
030
025 = Binary
0.20
015 = Global

010
005

0.00
[Shiang & Lee, Interspeech 13]

ROUGE-1 ROUGE-2



Key Term Extraction
N

o TF-IDF is a good measure for identifying key terms
[E. D’Avanzo, DUC 04][Jiang, SIGIR 09]

1 Feature parameters from latent topic models [Hazen,
Interspeech 11] [Chen & Lee, SLT 10]

0 Key terms are usually focused on small number of topics
11 Prosodic Features [Chen & Lee, ICASSP 12]

o slightly lower speed, higher energy, wider pitch range

1 Machine Learning methods

O Inpu’r: a term, output: key ferm or not [Liv, SLT 08][Chen & Lee,
SLT 10]

O Input: a document, output: key terms in the document
[Kamal Sarkar, arXiv, 2010]



|<ey Te rm EX1‘I‘CIC1'i0n [Shen & Lee, Interspeech 16]

Poster, Sunday, 1:30 p.m., Dialogue
Systems and Analysis of Dialogue

— Deep Learnin
- T eeptearming

<
10, Keyword Set

SVM, Regression, Python,
- = = ... Fourier Transform,

Speech Processing,

Bubble Sort, etc.
V] - VT
Output Layer
|

Embedding Layer

document E> X1 X2 X3 X4 ot Xy

Hidden Layer

Embedding Layer

y

M :




Title Generation
B

11 Deep Learning based Approach [alexander M Rush, EMNLP
15][Chopra, NAACL 16][Lopyrey, arXiv 2015][Shen, arXiv 201 6]

0 Based on Sequence-to-sequence learning

O Input: a document (word sequence), output: its title

(shorter word sequence)

| text i input | <eos> headline i output

https://arxiv.org/pdf/1512.01712v1.pdf




New Direction 5-3:

Speech Content Is Difficult to Browse!
Organizing Retrieved Results

I



Introduction

- Organizing the retrieval results to help users
know what is retrieved

o Taking retrieving on-line lectures as example

o Searching spoken lectures Is a very good
application for spoken content retrieval

o The speech of the instructors conveys most
knowledge in the lectures



Retrieving One Course

- [Kong & Lee, ICASSP 09]
NTU Virtual Instructor ¢ g1 ee. IEEE/ACM T, ASL 14]

NTU VIRTUAL INSTRUCTOR |

ABoUT 898 RESULTS FoR TERM "\ITERBI"

1. E 17 62 sec. in 0080082
in 8-2 Confinuous Speech Recognifion Example; Digif String Recognifion - One Stage Search

(Transcription. ... ZiEEiterh] BLEFErTE TR e T B R E T erobier B oS G S terbl B ...)
key Terms Related To This Slide: confinuows speech hmm isolale work recognition language model n

gram phone, viterbi
2. L 112 .57 sec.in :08:00.82

in 8-2 Confinuous Speech Recognifion Example: Diglt Sirng Recognifion - One Stape Search

{Transcription: .. oL TR RE BRI PTEIRT viter ] 2% 1 TR B0 B 0o B (B W R AR PV R vite v BB BRTRE R Ry . )
key Terms Related Ta This Slide: continuous speech hirmim jsolafe work recognifion language maodel .n

gram phone, viterbi

3 1337 sec. in (01127 47
in 7-12 End-point Detaction

(Transcription. . frRLELL T mrAterbl fr—esiterby )
key Terms Related To This Slide: defa,end point defection frarme gaussian gaussian mixture hmm push fo

falk sience iterbs

4.1 I 1757 sec. in0:25:23.05
in 8-4 Time-Svhchraonous Viterbi Search For L VOSE

Searching the course Digital Speech Processing of NTU




Massive Open On-line Courses

(MOOCS)
T

7 Enormous on-line courses
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Today’s Retrieval Techniques

coursera

I language model I

Sort by | Starting soon

[] Always Open
[ ] Starting Soon

Eligible For
] Specialization Certificates
] Verified Certificates

[« All Partners

] Columbia University
|| Stanford University
] University of Toronto

[+ All Languages
] English

[ L

Courses  Specializations Institufions  About » | Hung-yi Lee -

Global Partners (3) - US State Institutions {0)

Courses

University of Toronto Ot 1sf 2012
Neural Networks for Machine Learning 8 weeks long
with Geoffrey Hinfon

Columbia University Feb 24th 2013
Natural Language Processing 10 weeks long
with Michael Collins

Stanford University
Natural Language Processing
with Dan Jurafsky & Christopher Manning

A list of related courses




Today’s Retrieval Techniques

coursera

Courses

Courses  Specializations Institutions

About » | Hung-yi Lee -

Global Pag

University of Toronto

Neural Networks for Machine Learning
with Geoffrey Hinfon

Columbia University

Natural Language Processing
with Michael Collins

Neral Networks for Machine Leaming

Lecture 1a
Why do we need machine leaming?
ey Firton

Nitsh Sevvastava
Ken Swersky

pns (0)

Introduction to
NLP

What is Natural

More sophisticated decision tree features

Stanford University
Natural Language Processing
with Dan Jurafsky & Christopher Manning

1 Ut Lowes G Marts
s o, Lowar, 5, bt

7, Applying Multinomial Naive Bayes
[/ Classifiers to Text Classifieation

positions «— all word Bosions in test documant

CmangmanPle ) [ Pixicy
T e T T

o Ty




More 1s less ......

1
o Given all the related lectures from different courses

Which lecture should |
go first?

‘jf
learner

Learning Map

» Nodes: lectures in the same
topics

» Edges: suggested learning
order

[Shen & Lee, @""
]

Interspeech 15




Learning Map

Neural Networks for Machine Leaming

Lecture 1a
Why do we need machine leaming?

Geofiey Hinton

Nitsh Sevvastava
Kein Swersky

Neural Networks for Machine Leaming

Lecture 1a
Why do we need machine leaming?

Geofiey Hinton

Ways to reduce overfiting

- At e f et s i e, o

Nitish Seivastava
Kewn Swersky

Introduction to
NLP

What is Natural
Language Processing?

More sophisticated decision tree features

Upper, luqu::::r'

o1 Humeric features.

—
ohaleyaor
« Probtaleyfusord shee

oy aten-of5)
xcurs at begnrieg o )

Ways to reduce overfiting

More sophisticated decision tree features

- Upper, Lower GG Mumber
Upper, Lowar, E5p, Humbar

+ Case of word with
+ Case of word after

) Wumeric features
s

P —

. Applying Multinomial Naive Bayes
&%) dlassifiers to Text Classification

positions «- all word positions in test document

cy=argmaxPc)) [T Peyle)

¢ WNTRIE

Applying Multinomial Naive Bayes
&

-
Classifiers to Text Classification
positions «— all word positions in test document u I

€= argmas P(c,) 1 Paiey
o WYTewle)

Siamnie same topic




Lectures In the same topic
_

“Local” Information:

' Applying Multinomial Naive Ba: y
Classifiers to Text Classific h

positions < all word p ns in test document

srgmax P(c;) H P(xIc)
& ?(C\jP(ulc,S (&

“Global”
Information:




Learning Map

Neural Networks for Machine Leaming

Lecture 1a
Why do we need machine leaming?

Geattey Hirton

Nitsh Sevvastava
Kein Swersky

Neural Networks for Machine Leaming

Lecture 1a
Why do we need machine leaming?

Geofiey Hinton

Ways to reduce overfiting

- At e f et s i e, o

Nitish Seivastava
W Swersky

Introduction to
NLP

What is Natural

Language Processing?

K5/ More sophisticated decision tree features

U, Lower 33 Murber
 Upsr, Lower, 39, Numbar

« Case ol werd
+ Case of ward after

o1 Humeric features.

—
ohaleyaor
« Probtaleyfusord shee

oy aten-of5)
xcurs at begnrieg o )

Ways to reduce overfiting

More sophisticated decision tree features
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() classifiers to Text Classification
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Prerequisite

Lectures In
different courses

Prerequisite?

Applying Multinomial Naive Bayes
) Classifiers to Text Classification

positions <— all word positions in test document
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Content of Content of
Lecture A Lecture B
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C Ais the prerequisite of B

B is the prerequisite of A




Content of Content of
Lecture A Lecture B

Prerequisite N

A is the prerequisite of B
B is the prerequisite of A

Lectures In
different courses The existing courses on-line
can be the training data

An existing course Lecture 1 is a
Lecture 1 | prerequisite of
lecture 2
Prerequisite? Lecture 2 | Lecture 2is a
prerequisite of
B e i lecture 3
@__ Lecture 3
IO R S S
e S o : Training examples
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Vision: Personalized Courses
]

» | want to learn “deep learning”.
» | am a graduate student of

?
computer science. f

k> | can spend 6 hours.
Learner

%}4 | open a course for you. }

- With MOOCs and Spoken Language Processing
technigues

o It Is possible to have a personalized course for each
learning need.

on-line learning

material

e




New Direction 5-4:

Speech Content Is Difficult to Browse!
Spoken Question Answering

I



Spoken Question Answering

What is a B:ssible
origin of Venus’ cloyds?

(-] o O

Venus’ clouds ]

Taking some time to find the answer

Lectures
about Venus

Spoken Content Retrieval




Spoken Question Answering

What is a possible
origin of Venus’ clouds?

Gases released as a
result of volcanic activity

Spoken Question Answering: Machine answers
guestions based on the information in spoken content




Spoken Question Answering

1 Question Answering in Speech Transcripts (QAST) has been a
well-known evaluation program of spoken question answering.

o 2007, 2008, 2009

Reference: 6 Spoken Question Answering (Sophie Rosset, Olivier Galibert and Lori
Lamel). G. Tur and R. DeMori, Spoken Language Understanding: Systems for
Extracting Semantic Information from Speech.

1 Focused on factoid questions in the previous study
o0 E.g. “What is name of the highest mountain in Taiwan?”.

0 To answer more difficult questions, machine has to understand
questions and spoken documents.

0 How good can it achieve?



New task for Machine

- Comgrehension of Sgoken Content

1 TOEFL Listening Comprehension Test by Machine

[Tseng & Lee, Interspeech 16]

Audio Story: = - (The original story is 5 min long.)
Question: “ What is a possible origin of Venus’ clouds? ”
Choices:

(A) gases released as a result of volcanic activity

(B) chemical reactions caused by high surface temperatures
(C) bursts of radio energy from the plane's surface

(D) strong winds that blow dust into the atmosphere



Simple Baselines
N

(2) select the shortest
choice as answer

Accuracy (%)

random

Naive Approaches




Results
B

Memory Network: 39.2%

(proposed by FB Al group)

Accuracy (%)

Naive Approaches




Model Architecture

Answer ' l

Select the choice | Attention
most similar to the
answer

Attention ‘

Question IR

Semantics

*

*

Question:“what is a possible
origin of Venus' clouds?"

The model is learned
end-to-end.

...... It be quite possible that this be
due to volcanic eruption because
volcanic eruption often emit gas. If
that be the case volcanism could
very well be the root cause of
Venus 's thick cloud cover. And also
we have observe burst of radio
energy from the planet 's surface.
These burst be similar to what we
see when volcano

Recognition

Audio Story il

Speech




[Tseng & Lee, Interspeech 16]

Poster, Sunday, 1:30 p.m., Dialogue
Results o 10 ey ot

Systems and Analysis of Dialogue

Proposed Approach: 48.3%
Memory Network: 39.2% \

(proposed by FB Al group)

Accuracy (%)

Naive Approaches




Concluding Remarks

I



Conclusion Remarks

S
- New research directions for spoken content retrieval

o Modified ASR for Retrieval Purposes
o Incorporating Those Information Lost in ASR
o No Speech Recognition!

o Special Semantic Retrieval Techniques for Spoken
Content

o Spoken Content is Difficult to Browse!



Take-Home Message
_

Spoken Content Retrieval

e

Speech Recognition
+

Text Retrieval



Spoken Content Retrieval

@@ O eX

oursera
300 hrs multimedia is
uploaded per minute. 1874 courses on coursera
(2015.01) (2016.04)

» Nobody is able to go through the data.

» In these multimedia, the spoken part carries very
Important information about the content

» Spoken content retrieval: Machine listens to the data, and
extract the desired information for each individual user.

« Just as Google does on text data



Overview Paper
N

0 Lin-shan Lee, James Glass, Hung-yi Lee, Chun-an
Chan, "Spoken Content Retrieval —Beyond
Cascading Speech Recognition with Text Retrieval,”
IEEE/ACM Transactions on Audio, Speech, and
Language Processing, vol.23, no.9, pp.1389-1420,
Sept. 2015

0 http:/ /speech.ee.ntu.edu.tw/~tlkagk/paper/Overv
iew.pdf

0 This tutorial includes updated information after this
paper is published.


http://speech.ee.ntu.edu.tw/~tlkagk/paper/Overview.pdf

Thank, You for Your Attention



