
Digital Speech Processing
Homework #1
Implementing Discrete Hidden Markov Model

林義聖 林政豪

October 9, 2019
Due on November 1, 2019

Outline

1. HMM in Speech Recognition

2. Homework of HMM

2.1 Training

2.2 Testing

3. Requirements

3.1 File Format

3.2 Submission Requirement

4. Grading

5. Contact TAs

HMM in Speech Recognition

Speech Recognition 1/2

In acoustic model,

• each word consists of syllables
• each syllable consists of phonemes
• each phoneme consists of some (hypothetical) states.

“⻘色” →“⻘ (ㄑㄧㄥ)色 (ㄙㄜ ˋ)” →“ㄑ” →{s1, s2, . . . }

Each phoneme can be described by a HMM (acoustic model). Given a
sequence of observation (MFCC vectors), each of them can be
mapped to a corresponding state.

HMM in Speech Recognition 1 / 39

Speech Recognition 2/2

Hence, there are

• state transition probabilities (aij) and
• observation distribution (bj[ot])

in each phoneme acoustic model (HMM).

Usually in speech recognition we restrict the HMM to be a
left-to-right model, and the observation distribution is assumed to
be a continuous Gaussian mixture model.

HMM in Speech Recognition 2 / 39

Review

• Left-to-right
• The observation
distribution is a
continuous
Gaussian
mixture model.

Figure 1: HMM from lecture 2.0
HMM in Speech Recognition 3 / 39

General Discrete HMM

aij = P(qt+1 = j | qt = i),∀ t, i, j (1)
bj(A) = P(ot = A | qt = j),∀ t,A, j (2)

Given qt, the probability distributions of qt+1 and ot are completely
determined. (independent of other states or observation)

HMM in Speech Recognition 4 / 39

HW1 v.s. Speech Recognition

Homework Speech Recognition
λ set 5 models initial-final
λ model_01-05 “ㄑ”

{ot} A, B, C, D, E, F 39-dim MFCC
unit an alphabet a time frame

observation sequence voice wave

HMM in Speech Recognition 5 / 39

Homework of HMM

Flowchart

Figure 2: Training and testing models

Homework of HMM 6 / 39

Problems of HMM

Training

• Basic problem 3 in lecture 4.0
• Given observations O and an initial model λ = (A,B, π), adjust λ to
maximize P(O | λ).

Aij = aij, Bjt = bj[ot], πi = P(q1 = i)

• Baum-Welch algorithm

Testing

• Basic problem 2 in lecture 4.0
• Given λ and O, find the best state sequences to maximize
P(O | λ, q).

• Viterbi algorithm

Homework of HMM 7 / 39

Homework of HMM

Training

Training

• Basic problem 3
• Baum-Welch algorithm: A generalized expectation-maximization
(EM) algorithm1

• Calculate α (forward probabilities) and β (backward probabilities)
given the observations

• Find temporary variables ϵ and γ from α and β

• Update model parameters λ′ = (A′,B′, π′)

1http://en.wikipedia.org/wiki/Baum-Welch_algorithm
Homework of HMM | Training 8 / 39

http://en.wikipedia.org/wiki/Baum-Welch_algorithm

Forward Procedure

Forward algorithm: define a forward variable αt(i)

αt(i) = P(o1,o2, . . . ,ot, qt = i | λ) (3)
= Prob[observing o1,o2, . . . ,ot, state i at time t | λ] (4)

Initialization
α1(i) = πibi(o1), 1 ≤ i ≤ N (5)

Induction

αt+1(j) =
[N∑

i=1

αt(i)aij

]
· bj(ot+1),

1 ≤ t ≤ T− 1, 1 ≤ j ≤ N (6)

Termination

P
(
Ō | λ

)
=

N∑
i=1

αT(i) (7)

Homework of HMM | Training 9 / 39

Backward Procedure

Backward algorithm: define a backward variable βt(i)

βt(i) = P(ot+1,ot+2, . . . ,oT | qt = i, λ) (8)
= Prob[observing ot+1,ot+2, . . . ,oT | state i at time t, λ] (9)

Initialization
βT(i) = 1, 1 ≤ i ≤ N (10)

Induction

βt(i) =
N∑
j=1

aij bj(ot+1) βt+1(j),

t = {T− 1, T− 2, . . . , 1}, 1 ≤ i ≤ N (11)

Homework of HMM | Training 10 / 39

Calculate γ

Define a temporary variable γt(i) = P
(
qt = i | Ō, λ

)
γt(i) =

αt(i)βt(i)∑N
i=1 αt(i)βt(i)

=
P
(
Ō,qt = i | λ

)
P
(
Ō | λ

) (12)

It should be a N× T matrix!

Homework of HMM | Training 11 / 39

Calculate ε

The probability of transition from state i to state j given observation
and model.

ϵt(i, j) = P
(
qt = i,qt+1 = j | Ō, λ

)
(13)

=
αt(i) aij bj(ot+1) βt+1(j)∑N

i=1
∑N

j=1 αt(i) aij bj(ot+1) βt+1(j)
(14)

=
Prob

[
Ō, qt = i, qt+1 = j | λ

]
P
(
Ō | λ

) (15)

In total T− 1 matrices (each N× N)

Homework of HMM | Training 12 / 39

Accumulate ε and γ

Recall γt(i) = P
(
qt = i | Ō, λ

)
T−1∑
t=1

γt(i) = expected number of times that state i

is visited in Ō from t = 1 to t = T− 1 (16)
T−1∑
t=1

ϵt(i, j) = expected number of transitions from

state i to state j in Ō (17)

Homework of HMM | Training 13 / 39

Re-estimate Model Parameters

λ′ = (A′,B′, π′) (18)

πi =

∑
γ1(i)
N , where N is number of samples (19)

aij =
∑

ϵ(i, j)∑
γ(i) =

E [Number of transition from i to j]
E [Number of visiting state i] (20)

bi(k) =
∑

O=k γ(i)∑
γ(i) =

E [Number of observation O = k in state i]
E [Number of visiting state i]

(21)

Accumulate ϵ and γ through all samples!!!
Not just the observations in one sample!

Homework of HMM | Training 14 / 39

Homework of HMM

Testing

Testing

• Basic problem 2
• Given λ and O, find the best state sequences to maximize
P(O | λ, q).

• Calculate P(O | λ) ≈ maxP(O | λ,q) for each of the five models
• The model with the highest probability for the most probable
path usually also has the highest probability for all possible
paths.

Homework of HMM | Testing 15 / 39

Viterbi Algorithm

Complete procedure for Viterbi algorithm2

Initialization
δ1(i) = πibi(o1), 1 ≤ i ≤ N (22)

Recursion

δt(j) = max
1≤i≤N

[δt−1(i) aij] · bj(ot), 2 ≤ t ≤ T, 1 ≤ j ≤ N

(23)
Termination

P∗ = max
1≤i≤N

[δT(i)] (24)

δt(i) = max
q1,...,qt−1

P[q1,q2, . . . ,qt−1,qt = i,o1,o2, . . . ,ot | λ] (25)

= the highest probability along a certain single path ending
at state i at time t for the first t observations, given λ (26)

2http://en.wikipedia.org/wiki/Viterbi_algorithm
Homework of HMM | Testing 16 / 39

http://en.wikipedia.org/wiki/Viterbi_algorithm

Test Accuracy v.s. # of Training Iterations

0 100 200 300 400 500
60

65

70

75

80

85

of iterations

te
st
in
g
ac
cu
ra
cy

Homework of HMM | Testing 17 / 39

Requirements

Provided Files

data/train_seq_0X.txt
• Training data (10K observation sequences)

data/test_lbl.txt
• Testing labels

data/test_seq.txt
• Testing data (2.5K observation sequences)

inc/hmm.h
• Provided by TA, please work with it!

• You can load/dump models with functions within.
model_init.txt

• Initial model parameters
modellist.txt

• Paths to model files
src/test_hmm.c

• A showcase of the usage of hmm.h

dsp-hw1
├── data
│ ├── test_lbl.txt
│ ├── test_seq.txt
│ ├── train_seq_01.txt
│ ├── train_seq_02.txt
│ ├── train_seq_03.txt
│ ├── train_seq_04.txt
│ └── train_seq_05.txt
├── inc
│ └── hmm.h
├── Makefile
├── model_init.txt
├── modellist.txt
└── src
 └── test_hmm.c

Requirements 18 / 39

Input and Output of Your Program

Training

Input 1. number of iterations
2. initial model (model_init.txt)
3. observation sequences
(train_seq_01~05.txt)

Output Five files of parameters for 5 models, each contains
λ = (A,B, π) (e.g. model_01~05.txt)

Testing

Input 1. a file of paths to the models trained in the
previous step (modellist.txt)

2. observation sequences (test_seq.txt)
Output best answer labels and P(O | λ) (e.g. result.txt)

Requirements 19 / 39

Training Details

./train <iter> <model_init_path> <seq_path> <output_model_path>

iter # of iterations
model_init_path path to the initial model params
seq_path path to sequence data
output_model_path path to dump trained models

Requirements 20 / 39

Testing Details

./test <models_list_path> <seq_path> <output_result_path>

models_list_path path to the model list file
seq_path path to sequence data
output_result_path path to output testing result

Requirements 21 / 39

Program Execution Example

Compiling
make # type this in the root directory of the project

Training
./train 100 model_init.txt data/train_seq_01.txt model_01.txt

Testing
./test modellist.txt data/test_seq.txt result.txt

Notice!
Command-line arguments are not fixed, read them during runtime.
(e.g. Use argv in main function to pass the arguments.)
Also the paths in arguments need to be variable path.

Requirements 22 / 39

Requirements

File Format

Observation Sequence Format

The given data/train_seq_01~05.txt and
data/test_seq.txt look like this.

1 ACCDDDDFFCCCCBCFFFCCCCCEDADCCAEFCCCACDDFFCCDDFFCCD
2 CABACCAFCCFFCCCDFFCCCCCDFFCDDDDFCDDCCFCCCEFFCCCCBC
3 ABACCCDDCCCDDDDFBCCCCCDDAACFBCCBCCCCCCCFFFCCCCCDBF
4 AAABBBCCFFBDCDDFFACDCDFCDDFFFFFCDFFFCCCDCFFFFCCCCD
5 AACCDCCCCCCCDCEDCBFFFCDCDCDAFBCDCFFCCDCCCEACDBAFFF
6 ...

Each of the former has 10000 sequences and the latter has 2500
sequences.

Requirements | File Format 23 / 39

Model Format 1/2

initial: 6
π = [π1, π2, π3, π4, π5, π6]

transition: 6

A =

a11 . . . a16
...
a61 . . . a66


observation: 63

B =

b1(o1) . . . b6(o1)
...

b1(o6) . . . b6(o6)



3The sum of column is 1 here.
Requirements | File Format 24 / 39

Model Format 2/2

A model file (e.g. model_0X.txt) should look like this.

1 initial: 6
2 0.2 0.1 0.2 0.2 0.2 0.1
3

4 transition: 6
5 0.3 0.3 0.1 0.1 0.1 0.1
6 0.1 0.3 0.3 0.1 0.1 0.1
7 0.1 0.1 0.3 0.3 0.1 0.1
8 0.1 0.1 0.1 0.3 0.3 0.1
9 0.1 0.1 0.1 0.1 0.3 0.3

10 0.3 0.1 0.1 0.1 0.1 0.3
11

12 observation: 6
13 0.2 0.2 0.1 0.1 0.1 0.1
14 0.2 0.2 0.2 0.2 0.1 0.1
15 0.2 0.2 0.2 0.2 0.2 0.2
16 0.2 0.2 0.2 0.2 0.2 0.2
17 0.1 0.1 0.2 0.2 0.2 0.2
18 0.1 0.1 0.1 0.1 0.2 0.2

Requirements | File Format 25 / 39

Model List Format

The given modellist.txt looks like this.

1 model_01.txt
2 model_02.txt
3 model_03.txt
4 model_04.txt
5 model_05.txt

Your testing program should be able to read a list like this and load
models from the specified paths for testing. (Don’t worry! If you use
hmm.h, all of these are done by calling function load_models().
For more details please refer to hmm.h.)

Requirements | File Format 26 / 39

Output Format

Your testing program should output these to the specific path (e.g.
result.txt) given as a command-line argument while executing
the program.

1 model_01.txt 7.822367e-34
2 model_05.txt 1.094896e-40
3 model_01.txt 7.928724e-33
4 model_02.txt 4.262100e-37
5 model_02.txt 5.914689e-42
6 ...

Each line consists of the hypothesis model and its likelihood. They
should be separated by a space.

Requirements | File Format 27 / 39

Label File Format

The first few lines of the given data/test_lbl.txt looks like this.

1 model_01.txt
2 model_05.txt
3 model_01.txt
4 model_02.txt
5 model_02.txt
6 ...

Requirements | File Format 28 / 39

Makefile Format

The Makefile you submit should be capable to compile your program
using make. The provided one can compile train.c and test.c in
directory src into two executables train and test.

1 .PHONY: all clean run
2 CC=gcc
3 CFLAGS=-std=c99 -O2
4 LDFLAGS=-lm
5 TARGET=train test
6

7 all: $(TARGET)
8

9 train: src/train.c
10 $(CC) -o $@ $^ $(CFLAGS) $(LDFLAGS) -Iinc
11

12 test: src/test.c
13 $(CC) -o $@ $^ $(CFLAGS) $(LDFLAGS) -Iinc
14

15 clean:
16 rm -f $(TARGET)

Requirements | File Format 29 / 39

Report Format

Please write a one-page report in PDF format, name it report.pdf
and submit with your source code.

State your name, student ID and any challenges you encounter or
attempts you try. A good report may grant you bonus of extra 5%.

Requirements | File Format 30 / 39

File Structure

All of your source code files must be placed under inc/ and src/.
Let’s say you only have two implementation files and use the
functions provided in hmm.h. You should put your source code
under src/ and leave hmm.h in inc/.
.
├── inc
│ ├── hmm.h
│ └── [other *.h or *.hpp]
├── Makefile
├── model_init.txt
├── report.pdf
└── src
 ├── test.c
 ├── train.c
 └── [other *.c, *.cc or *.cpp]

Requirements | File Format 31 / 39

Requirements

Submission Requirement

Submission Requirement 1/2

1. Create a directory named hw1_[STUDENT_ID].
2. Put

• inc/
• Makefile
• model_init.txt
• report.pdf
• src/

into the directory. 4

3. Compress the directory into a ZIP file named
hw1_[STUDENT_ID].zip.

4. Upload this ZIP file to CEIBA.

4Put every source code files in inc/ and src/.
Requirements | Submission Requirement 32 / 39

Submission Requirement 2/2

Let’s say your student ID is r01234567.

hw1_r01234567.zip
└── hw1_r01234567

├── inc
│ └── [*.h or *.hpp]
├── Makefile
├── model_init.txt
├── report.pdf
└── src

 └── [*.c, *.cc or *.cpp]

Requirements | Submission Requirement 33 / 39

Grading

Grading Method

Your training and testing program will be tested respectively. We will
specify 100 as the number of iterations while testing your training
program. And each of your program is allowed to run for 1 min.

Here’s TA’s environment.

Kernel Linux 5.3.1-arch1-1-ARCH 5

Processors Intel Core i7-9700K (2 Cores)
RAM 4096 MB

GCC Version 9.1.0

5You can download the OVA file here if need be: https://ppt.cc/fl7drx. The
user is root and its password is ntudsp

Grading 34 / 39

https://ppt.cc/fl7drx

Grading Policy

File Format 20%
• ZIP file name
• directory name
• separated header and implementation files
• Makefile
• model_init.txt

Program 20%
• compiled and executed without error
• output files generated after execution

Report 10%
and bonus of extra 5% for the impressive ones

Accuracy 50%
30% for your training program and 20% for your
testing program

Grading 35 / 39

Late Submission

Due on November 1, 2019

You are still allowed to submit after 2019-11-01 23:59. The penalty for
late submission is an exponential decay with decay rate 1.5%6 of the
maximum grade applicable for the assignment, for each hour that
the assignment is late.

An assignment submitted more than 3 days after the deadline will
have a grade of zero recorded for that assignment.

SCOREfinal(hr) =
{
SCOREoriginal × 0.985hr , hr ≤ 72
0 , hr > 72

6less than 70% after 24 hrs, 48% for 48 hrs and 33% for 72 hrs
Grading 36 / 39

Please Note...

File Frmat

• All of your source code files should be placed under inc/ and src/.
• model_init.txt must be submitted, even if it’s not needed for your program.

Program

• Make sure your program can be compiled with the Makefile you submit.
• The paths in command-line arguments have to be relative path.

• Each of your program is allowed to run for 1 min.

Accuracy

• Make sure your training program saves models within time limit.

Should you have any questions, please read the FAQ7 first.

7http://speech.ee.ntu.edu.tw/DSP2019Autumn/hw1/FAQ.html
Grading 37 / 39

http://speech.ee.ntu.edu.tw/DSP2019Autumn/hw1/FAQ.html

DO NOT CHEAT

Any form of cheating, lying, or plagiarism will not be tolerated.

Grading 38 / 39

Questions?

Grading 38 / 39

Contact TAs

Should you have any question or need help,

• send email to ntudsp_2019fall_ta@googlegroups.com
• and use “[HW1]” as the subject line prefix

Or come to EE2 R531, and don’t forget to inform us by email, thanks!

林義聖 Tue. 14:00 - 17:00
Thr. 9:00 - 12:00

林政豪 Mon. 10:00 - 12:00
Thr. 15:00 - 18:00

Office hours

Contact TAs 39 / 39

mailto:ntudsp_2019fall_ta@googlegroups.com

	HMM in Speech Recognition
	Homework of HMM
	Training
	Testing

	Requirements
	File Format
	Submission Requirement

	Grading
	Contact TAs

