
Digital Speech Processing
Homework #1

Implementing
Discrete Hidden Markov Model

Date: Mar. 13 2018
Revised by Alex H. Liu

Outline
} HMM in Speech Recognition

} Problems of HMM
◦ Training
◦ Testing

} Homework File Format

} Submit Requirement

2

HMM in Speech
Recognition

3

Speech Recognition
• In acoustic model,

• each word consists of syllables
• each syllable consists of phonemes
• each phoneme consists of some (hypothetical) states.

“青色” → “青(ㄑㄧㄥ)色(ㄙㄜ、)” → ”ㄑ” → {s1, s2, …}

Each phoneme can be described by a HMM (acoustic model).
Given a sequence of observation (MFCC vectors), each of
them can be mapped to a corresponding state.

4

Speech Recognition
• Hence, there are state transition probabilities (aij) and
observation distribution (bj [ot]) in each phoneme
acoustic model(HMM).

• Usually in speech recognition we restrict the HMM to be a
left-to-right model, and the observation distribution are
assumed to be a continuous Gaussian mixture model.

5

Review
• left-to-right
• observation distribution
are a continuous
Gaussian mixture model

6

General Discrete HMM
• aij = P (qt+1 = j | qt = i) " t, i, j .

bj (A) = P (ot = A | qt = j) " t, A, j .

Given qt , the probability distributions of qt+1 and ot are
completely determined.
(independent of other states or observation)

7

HW1 v.s. Speech Recognition

Homework #1 Speech Recognition

l set 5 Models Initial-Final

l model_01~05 “ㄑ”

{ot } A, B, C, D, E, F 39dim MFCC

unit an alphabet a time frame

observation sequence voice wave

8

Homework of HMM

9

Flowchart

10

seq_model_
01~05.txt

testing_data.txt

model_01.txt
model_init.txt

model_05.txt

train test

testing_answer.txt

CER
.
.
.
.

Problems of HMM
• Training

• Basic Problem 3 in Lecture 4.0
• Give O and an initial model l = (A, B, p), adjust l to maximize P(O|l)
pi = P(q1 = i) , Aij = aij , Bjt = bj [ot]

• Baum-Welch algorithm

• Testing
• Basic Problem 2 in Lecture 4.0

• Given model l and O, find the best state sequences to maximize P(O|l, q).
• Viterbi algorithm

11

Training
} Basic Problem 3:
◦ Give O and an initial model l = (A, B, p), adjust l to maximize P(O|l)
pi = P(q1 = i) , Aij = aij , Bjt = bj [ot]

}Baum-Welch algorithm
} A generalized expectation-maximization (EM) algorithm.
1. Calculate α (forward probabilities)

and β (backward probabilities) by
the observations.

2. Find ε and γ from α and β
3. Recalculate parameters l’ = (A’ ,B’ ,p’)
http://en.wikipedia.org/wiki/Baum-Welch_algorithm

12

Forward Procedure
13

Forward Algorithm

αt(i)

αt+1(j)

j

i

t+1t

Forward Procedure by matrix
• Calculate β by backward procedure is similar.

14

Calculate γ

15

Calculate ε

16

Accumulate ε and γ

17

Re-estimate Model Parameters

18

l’ = (A’ ,B’ ,p’)

Accumulate ε and γ through all samples!!
Not just all observations in one sample!!

Testing
• Basic Problem 2:

• Given model l and O, find the best state sequences to maximize
P(O|l, q).

• Calculate P(O|l) ≒ max P(O|l, q) for each of the five
models.

• The model with the highest probability for the most
probable path usually also has the highest probability for
all possible paths.

19

Viterbi Algorithm

http://en.wikipedia.org/wiki/Viterbi_algorithm

20

Flowchart

21

seq_model_
01~05.txt

testing_data.txt

model_01.txt
model_init.txt

model_05.txt

train test

testing_answer.txt

CER

.

.

.

.

File Format

22

test_hmm.c

23

} An example of using hmm.h (include I/O functions)
and Makefile (a script to compile your program).

} Type ”make” to compile, type ”make clean” to
remove executable.

} Please use the hmm.h provided by TA.

} If C++11 is used, add the flag -std=c++11 in your
makefile.

test_hmm.c

24

Input and Output of your programs
} Training algorithm
◦ input

� number of iterations
� initial model (model_init.txt)
� observed sequences (seq_model_01~05.txt)

◦ output
� l=(A, B, p) for 5 trained models

5 files of parameters for 5 models (model_01~05.txt)

} Testing algorithm
◦ input

� modellist.txt (list of filename of models trained in the previous step)
� Observed sequences (testing_data1.txt & testing_data2.txt)

◦ output
� best answer labels and P(O|l) (result1.txt & result2.txt)

25

Program Format Example

26

./train iteration model_init.txt seq_model_01.txt
model_01.txt

./test modellist.txt testing_data.txt result.txt

} Arguments are NOT fixed, read them during runtime.
(i.e. Use argv in main function to pass the arguments.)

} The arguments need to be variable path (it is not necessary to
be in the directory the program executed).
(e.g. data path may be ~/data/testing_data.txt)

Input Files
+- dsp_hw1/

+- c_cpp/
| +-
+- modellist.txt //the list of models to be trained
+- model_init.txt //HMM initial models
+- seq_model_01~05.txt //training data observation
+- testing_data1.txt //testing data observation
+- testing_answer.txt //answer for “testing_data1.txt”
+- testing_data2.txt //testing data without answer

27

Observation Sequence Format

ACCDDDDFFCCCCBCFFFCCCCCEDADCCAEFCCCACDDFFCCDDFFCCD

CABACCAFCCFFCCCDFFCCCCCDFFCDDDDFCDDCCFCCCEFFCCCCBC

ABACCCDDCCCDDDDFBCCCCCDDAACFBCCBCCCCCCCFFFCCCCCDBF

AAABBBCCFFBDCDDFFACDCDFCDDFFFFFCDFFFCCCDCFFFFCCCCD

AACCDCCCCCCCDCEDCBFFFCDCDCDAFBCDCFFCCDCCCEACDBAFFF

CBCCCCDCFFCCCFFFFFBCCACCDCFCBCDDDCDCCDDBAADCCBFFCC

CABCAFFFCCADCDCDDFCDFFCDDFFFCCCDDFCACCCCDCDFFCCAFF

BAFFFFFFFCCCCDDDFFCCACACCCDDDFFFCBDDCBEADDCCDDACCF

BACFFCCACEDCFCCEFCCCFCBDDDDFFFCCDDDFCCCDCCCADFCCBB

……

28

seq_model_01~05.txt / testing_data1.txt

Model Format
•model parameters.

(model_init.txt /model_01~05.txt)

2
9

initial: 6
0.22805 0.02915 0.12379 0.18420 0.00000 0.43481

transition: 6
0.36670 0.51269 0.08114 0.00217 0.02003 0.01727
0.17125 0.53161 0.26536 0.02538 0.00068 0.00572
0.31537 0.08201 0.06787 0.49395 0.00913 0.03167
0.24777 0.06364 0.06607 0.48348 0.01540 0.12364
0.09149 0.05842 0.00141 0.00303 0.59082 0.25483
0.29564 0.06203 0.00153 0.00017 0.38311 0.25753

observation: 6
0.34292 0.55389 0.18097 0.06694 0.01863 0.09414
0.08053 0.16186 0.42137 0.02412 0.09857 0.06969
0.13727 0.10949 0.28189 0.15020 0.12050 0.37143
0.45833 0.19536 0.01585 0.01016 0.07078 0.36145
0.00147 0.00072 0.12113 0.76911 0.02559 0.07438
0.00002 0.00000 0.00001 0.00001 0.68433 0.04579

Prob(q1=3|HM
M) = 0.18420

Prob(qt+1=4|qt=2,
HMM) = 0.00913

A
B
C
D
E
F

0
1
2
3
4
5

0 1 2 3 4 5

Prob(ot=B|qt=3,
HMM) = 0.02412

Model List & Testing Ans. Format
modellist.txt testing_answer.txt

30

model_01.txt
model_02.txt
model_03.txt
model_04.txt
model_05.txt

model_01.txt
model_05.txt
model_01.txt
model_02.txt
model_02.txt
model_04.txt
model_03.txt
model_05.txt
model_04.txt
…….

model_01 gives the highest probability on
First test instance (first line in testing_answer.txt)

Output Format

• result.txt
• Hypothesis model and it’s likelihood

• acc.txt
• Calculate the classification accuracy

your models obtain on testing data1.
• Only the highest (submitted)

accuracy!!!
• One line (number) only
• No need to submit the code for

calculating accuracy.

31

model_01.txt 1.0004988e-40
model_05.txt 6.3458389e-34
model_03.txt 1.6022463e-41
…….

Submit Requirement
} Upload to CEIBA
} Your program
◦ train.c, test.c, hmm.h, Makefile

} Your 5 Models After Training
◦ model_01~05.txt

} Testing result and and accuracy
◦ result1~2.txt (for testing_data1~2.txt)
◦ acc.txt (for testing_data1.txt)

} Document (pdf) （No more than 2 pages）
◦ Name, student ID, summary of your results
◦ Specify your environment and how to execute.

32

Submit Requirement
Compress your hw1 into “hw1_[學號].zip”

After unzipping,
it should be
+- hw1_[學號]/

+- train.c /.cpp
+- test.c /.cpp
+- hmm.h
+- Makefile
+- model_01~05.txt
+- result1~2.txt
+- acc.txt
+- Document.pdf (pdf)

33

Remark
} Testing environment: CSIE workstation(gcc 8.2).
} If C++11 is used, add -std=c++11 in your makefile.
} You have to make sure your program is able to

compile(hmm.h should be submitted).
} The arguments of your program have to be given in

the runtime(provided by argv in main function).
} Do not compress the directory by RAR/TAR.
} The testing program should run in 10 minute.
} FAQ : http://speech.ee.ntu.edu.tw/DSP2019Spring/hw1/FAQ.html

Grading Policy
• Accuracy 30%
• Program 35%
•Report 10%

• Environment + how to execute + summary of your program.
•File Format 25%

• zip & fold name
• result1~2.txt
• model_01~05.txt
• acc.txt
• makefile
• Command line (train & test) (see page. 25)

You may get zero point in file format if the format is wrong.
•Bonus 5%

• Impressive analysis in report.

35

Do Not Cheat!

• Any form of cheating, lying, or plagiarism will not be
tolerated!

• We will compare your code with others.
(including students who has enrolled this course)

36

Contact TA

• If you have any question or need help , send email to
ntudigitalspeechprocessingta@gmail.com

Please use the title “[DSP HW1] your question here”
Please also C.C. (this address will not reply any email)

r07922013@ntu.edu.tw

• Office Hour: Wednesday 13:20-14:10 電二531劉浩然
(Please inform me by email if you‘re coming, thanks!)

37

