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Speaker Dependent/Independent/Adaptation

 Speaker Dependent (SD)
– trained with and used for 1 speaker only, requiring huge quantity of training data, 

best accuracy
– practically infeasible

• Multi-speaker
– trained for a (small) group of speakers

• Speaker Independent (SI)
– trained from large number of speakers, each speaker with limited quantity of data
– good for all speakers, but with relatively lower accuracy

• Speaker Adaptation (SA)
– started with speaker independent models, adapted to a specific user with limited 

quantity of data (adaptation data)
– technically achievable and practically feasible

• Supervised/Unsupervised Adaptation
– supervised: text (transcription) of the adaptation data is known
– unsupervised: text (transcription) of the adaptation data is unknown, based on 

recognition results with speaker-independent models, may be performed iteratively

• Batch/Incremental/On-line Adaptation
– batch: based on a whole set of adaptation data
– incremental/on-line: adapted step-by-step with iterative re-estimation of models

e.g. first adapted based on first 3 utterances, then adapted based on next 3 
utterances or first 6 utterances,... 2
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MAP (Maximum A Posteriori) Adaptation

• Given Speaker-independent Model set Λ={λi=(Ai, Bi, πi), i=1, 2,...M} and A set of 
Adaptation Data O = (o1, o2,...ot,...oT) for A Specific Speaker

• With Some Assumptions on the Prior Knowledge Prob [Λ] and some Derivation 
(EM Theory)
– example adaptation formula

– a weighted sum shifting μjk towards those directions of ot (in j-th state and k-th Gaussian)
larger τjk implies less shift 

• Only Those Models with Adaptation Data will be Modified, Unseen Models 
remain Unchanged — MAP Principle
– good with larger quantity of adaptation data
– poor performance with limited quantity of adaptation data
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τjk: a parameter having to do with the prior knowledge about μjk

may have to do with number of samples used to trainμjk
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MAP Adaptation
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Maximum Likelihood Linear Regression (MLLR)

 Divide the Gaussians (or Models) into Classes C1, C2,...CL, and Define 
Transformation-based Adaptation for each Class

– linear regression with parameters A, b estimated by maximum likelihood criterion

– All Gaussians in the same class updated with the same Ai, bi: parameter sharing, adaptation 
data sharing

– unseen Gaussians (or models) can be adapted as well
– Ai can be full matrices, or reduced to diagonal or block-diagonal to have less parameters to 

be estimated
– faster adaptation with much less adaptation data needed, but saturated at lower accuracy with 

more adaptation data due to the less precise modeling

• Clustering the Gaussians (or Models) into L Classes
– too many classes requires more adaptation data, too less classes becomes less accurate
– basic principle: Gaussian (or models) with similar properties and “ just enough” data  form a 

class
– data-driven (e.g. by Gaussian distances) primarily, knowledge driven helpful 

• Tree-structured Classes
– the node including minimum number of Gaussians (or models) but with adequate adaptation 

data is a class
– dynamically adjusting the classes as more adaptation data are observed

• Feature-based MLLR (fMLLR)
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MLLR
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Principal Component Analysis (PCA)

• Problem Definition:
– for a zero mean random vector x with dimensionality N, x∈RN, E(x)=0, iteratively 

find a set of k (kN) orthonormal basis vectors {e1, e2,…, ek} so that
(1) var (e1

T x)=max (x has maximum variance when projected on e1 )
(2) var (ei

T x)=max, subject to   ei⊥ ei-1 ⊥…… ⊥e1 , 2 i k 
(x has next maximum variance when projected on e2 , etc.)

• Solution: {e1, e2,…, ek} are the eigenvectors of the covariance 
matrix  for x corresponding to the largest k eigenvalues
– new random vector y Rk : the projection of x onto the subspace spanned by                 

A=[e1 e2 …… ek], y=ATx
– a subspace with dimensionality k≤N such that when projected onto this subspace, 

y is “closest” to x in terms of its “randomness” for a given k
– var (ei

T x) is the eigenvalue associated with ei

• Proof
– var (e1

T x) = e1
T E (x xT)e1 = e1

TΣe1 = max,    subject to    |e1|
2=1

– using Lagrange multiplier 

J(e1)= e1
T E (x xT)e1 -λ(|e1|

2-1)  , 

⇒ E (xxT) e1 = λ1e1 , var(e1
T x) = λ1= max

– similar for e2 with an extra constraint e2
Te1 = 0, etc.

= 0
J(e1)

e1
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PCA

⋯ 𝑒1𝑘
𝑇 ⋯

⋮
𝑥𝑘
⋮

= Ԧ𝑒1 ⋅ Ԧ𝑥

= Ԧ𝑒1 Ԧ𝑥 cos 𝜃

Ԧ𝑦 = 𝐴𝑇 Ԧ𝑥 =

𝑒 1
𝑇

𝑒 2
𝑇

⋮
𝑒 𝑘
𝑇

Ԧ𝑥

∥
1

13



Basic Problem 3 (P.35 of 4.0)
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PCA
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N-dim
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N=3

k=2

PCA
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Eigenvoice

• A Supervector x constructed by concatenating all relevant parameters for 

the speaker specific model of a training speaker
– concatenating the mean vectors of Gaussians in the speaker-dependent phone 

models

– concatenating the columns of A, b in MLLR approach
– x has dimensionality N (N = 5,000× 3× 8× 40 = 4,800,000 for example)

·SD model mean parameters (m)

·transformation parameters (A, b)

• A total of L (L = 1,000 for example) training speakers gives L 

supervectors x1,x2,...xL

– x1, x2, x3..... xL are samples of the random vector x

– each training speaker is a point (or vector) in the space of dimensionality N

• Principal Component Analysis (PCA)
– x'= x-E(x)  ,  Σ= E(x' x'T)  , 

{e1,e2 ,.....ek}: eigenvectors with maximum eigenvalues λ1> λ2... > λk

k is chosen such that λj, j>k is small enough (k=250 or 50 for example)

elements as   with diagonal :] [,    ]....,[ ] ][....,[ ii
T

21i21  kK eeeeee
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Eigenvoice

• Principal Component Analysis (PCA)
– x'= x-E(x)  ,  Σ= E(x' x'T),

{e1,e2 ,.....ek}: eigenvectors with maximum eigenvalues λ1> λ2... > λk

k is chosen such that λj, j>k is small enough (k=50 for example)

• Eigenvoice Space: spanned by {e1,e2 ,.....ek}
– each point (or vector) in this space represents a whole set of tri-phone model 

parameters
– {e1,e2 ,.....ek} represents the most important characteristics of speakers extracted 

from huge quantity of training data by large number of training speakers 
– each new speaker as a point (or vector) 

in this space,  

– ai estimated by maximum likelihood 
principle (EM algorithm)

• Features and Limitations
– only a small number of parameters a1...ak is needed to specify the characteristics of 

a new speaker
– rapid adaptation requiring only very limited quantity of training data
– performance saturated at lower accuracy (because too few free parameters)
– high computation/memory/training data requirements
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Speaker Adaptive Training (SAT) and Cluster Adaptive 
Training (CAT)
• Speaker Adaptive Training (SAT)

– trying to decompose the phonetic variation and speaker variation
– removing the speaker variation among training speakers as much as possible
– obtaining a “compact” speaker-independent model for further adaptation
– y=Ax+b in MLLR can be used in removing the speaker variation

• Clustering Adaptive Training (CAT)
– dividing training speakers into R clusters by speaker clustering techniques
– obtaining mean models for all clusters(may include a mean-bias for the “compact” model in 

SAT)
– models for a new speaker is interpolated from the mean vectors

• Speaker Adaptive Training (SAT)
Training Speakers

used algorithm EM
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Speaker Recognition/Verification

• To recognize the speakers rather than the content of the speech
– phonetic variation/speaker variation
– speaker identification: to identify the speaker from a group of speakers
– speaker verification: to verify if the speaker is as claimed

• Gaussian Mixture Model (GMM)
λi={(wj, μj, Σj,), j=1,2,...M}   for speaker i 

for O = o1o2 ...ot ...oT ,

– maximum likelihood principle

• Feature Parameters
– those carrying speaker characteristics preferred
– MFCC
– MLLR coefficients Ai,bi, eigenvoice coefficients ai, CAT coefficients ai

• Speaker Verification
– text dependent: higher accuracy but easily broken
– text independent
– likelihood ratio test

– speech recognition based verification
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Gaussian Mixture Model (GMM) HMM

Speaker Recognition

23



Likelihood Ratio Test

 Detection Theory― Hypothesis Testing/Likelihood Ratio Test
– 2 Hypotheses: H0, H1 with prior probabilities: P(H0),P(H1)

observation: X with probabilistic law: P(X  H0), P(X  H1)
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likelihood ratio-Likelihood Ratio Test

– Type I error: missing (false rejection)

Type II error: false alarm (false detection)

false alarm rate, false rejection rate, detection rate, recall rate, precision rate

Th: a threshold value adjusted by balancing among different performance rates

– Likelihood Ratio Test

P(Hi   X)=P(X  Hi)P(Hi)/P(X), i=0,1

– MAP principle

choose H0 if P(H0  X)> P(H1  X)

choose H1 if P(H1  X)> P(H0  X)

P(X| H1)

x2

P(X| H0)

X
x1
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