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Speaker Dependent/Independent/Adaptation

e Speaker Dependent (SD)

— trained with and used for 1 speaker only, requiring huge quantity of training data,
best accuracy

— practically infeasible
« Multi-speaker
— trained for a (small) group of speakers

« Speaker Independent (SI)
— trained from large number of speakers, each speaker with limited quantity of data
— good for all speakers, but with relatively lower accuracy

« Speaker Adaptation (SA)

— started with speaker independent models, adapted to a specific user with limited
quantity of data (adaptation data)

— technically achievable and practically feasible

« Supervised/Unsupervised Adaptation
— supervised: text (transcription) of the adaptation data is known
— unsupervised: text (transcription) of the adaptation data is unknown, based on
recognition results with speaker-independent models, may be performed iteratively
« Batch/Incremental/On-line Adaptation
— batch: based on a whole set of adaptation data
— incremental/on-line: adapted step-by-step with iterative re-estimation of models

e.g. first adapted based on first 3 utterances, then adapted based on next 3
utterances or first 6 utterances,...
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MAP (Maximum A Posteriori) Adaptation

* Given Speaker-independent Model set A={A;=(A;, B;, w;), I=1, 2,...M} and A set of
Adaptation Data O = (04, 0,,...0,...07) for A Specific Speaker

_ Prob[O|A]Prob[A _
A*=97 Prob[A[O] = o™ rOb[FiLb][ar;b[ ] s prop G A Prob[A]
* With Some Assumptions on the Prior Knowledge Prob [A] and some Derivation

(EM Theory)
— example adaptation formula
i = TikMjk + Zialy (J,k)o]
= _
J ik + 271 (1,K) o _ _
4 - mean of the k - th Gaussian in the j - th state for a certain 4;
i - adapted value of i,
: o (] ' CikN(og; ek, U k)
yt(Jak):[ Nt(J)ﬂt(J) ][ - jk t .Jk jk
Z:j=105t (J);Bt (J) Z:mzlcij (Otuujm 1U jm)
/I\
7(J)=P(q = j|0,4)
T j¢ a parameter having to do with the prior knowledge about 1/,
_ may have to dc_) with number of samples use_d to tr_ain ik o _
— aweighted sum shifting y;, towards those directions of o, (in j-th state and k-th Gaussian)
larger ;. implies less shift
» Only Those Models with Adaptation Data will be Modified, Unseen Models

remain Unchanged — MAP Principle
— good with larger quantity of adaptation data
— poor performance with limited quantity of adaptation data

]
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MAP Adaptation
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Maximum Likelihood Linear Regression (MLLR)

e Divide the Gaussians (or Models) into Classes C,, C,,...C,, and Define
Transformation-based Adaptation for each Class

M = A +b , Mjk -mean of the k-th Gaussian in the j-th state

— linear regression with parameters A, b estimated by maximum likelihood criterion

[A b =" Prob[O|A, A, bi] foraclass C;
A b estimated by EM algorithm

— All Gaussians in the same class updated with the same A;, b;: parameter sharing, adaptation
data sharing

— unseen Gaussians (or models) can be adapted as well

— A, can be full matrices, or reduced to diagonal or block-diagonal to have less parameters to
be estimated

— faster adaptation with much less adaptation data needed, but saturated at lower accuracy with
more adaptation data due to the less precise modeling

« Clustering the Gaussians (or Models) into L Classes
— too many classes requires more adaptation data, too less classes becomes less accurate

— basic principle: Gaussian (or models) with similar properties and “ just enough” data form a
class

— data-driven (e.g. by Gaussian distances) primarily, knowledge driven helpful
* Tree-structured Classes

— the node including minimum number of Gaussians (or models) but with adequate adaptation
data is a class

— dynamically adjusting the classes as more adaptation data are observed
* Feature-based MLLR (fMLLR)
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Principal Component Analysis (PCA)

* Problem Definition:
—for a zero mean random vector x with dimensionality N, XxeRN, E(x)=0, iteratively
find a set of k (k<N) orthonormal basis vectors {e,, €,,..., €.} S0 that
(1) var (e," x)=max (x has maximum variance when projected on e, )
(2) var (e;" x)=max, subjectto e lLe_L...... le,, 2<i<k
(X has next maximum variance when projected on e, , etc.)
» Solution: {e,, e,,..., €} are the eigenvectors of the covariance

matrix X for x corresponding to the largest k eigenvalues

—new random vector y eRX : the projection of x onto the subspace spanned by
A=[e e, . &l y=A'X

—a subspace with dimensionality k<N such that when projected onto this subspace,
y 1s “closest” to X in terms of its “randomness” for a given k

—var (& x) is the eigenvalue associated with e;

* Proof
—var (e;"x) =¢,TE (xx")e, =e,"Xe; = max, subjectto |e,|*=1
—using Lagrange multiplier

T T 2 0J(e) v =u
= E (xx") e; = A€, var(e," X) = A= max eigenvector eigenvalue

—similar for e, with an extra constraint e,'e, = 0, etc.
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Basic Problem 3 (P.35 of 4.0)
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Elgenvoice

« A Supervector x constructed by concatenating all relevant parameters for

the speaker specific model of a training speaker
— concatenating the mean vectors of Gaussians in the speaker-dependent phone

models
— concatenating the columns of A, b in MLLR approach
— X has dimensionality N (N = 5,000 X 3 X 8 %X 40 = 4,800,000 for example)

e

-transformation parameters (A, b) T [ [ } <:>

 Atotal of L (L = 1,000 for example) training speakers gives L
supervectors Xi,X,,...X¢
— X1, Xp, Xg..... X, are samples of the random vector x
—each training speaker is a point (or vector) in the space of dimensionality N
* Principal Component Analysis (PCA)
—X'=Xx-E(X) , Z=E(X'X'T) ,
Y ~[e,e,...ecl[4iller,e,...ex]T L[4 i]:diagonal with A ; aselements

-SD model mean parameters (m) . m

{e,.e,,.....e, }: eigenvectors with maximum eigenvalues A,;> A,... > A,
k is chosen such that A;, j>k is small enough (k=250 or 50 for example)



Elgenvoice

* Principal Component Analysis (PCA)
—X'=X-E(X) , Z=E(x'X'T),
> ~[e,e,...ec ][4 ille,e,...e]7 ,[4 i]:diagonal with A ; aselements
{e1.€,,.....6,J: eigenvectors with maximum eigenvalues 1,> 4,... > &
k is chosen such that A, j>k is small enough (k=50 for example)

* Eigenvoice Space: spanned by {e,,e,,.....e,}
—each point (or vector) in this space represents a whole set of tri-phone model

parameters
—{e,65,..... e, represents the most important characteristics of speakers extracted

from uge quantity of training data by large number of training speakers
—each new speaker as a point (or vector)

in this space, y- zae Training Speaker 1 « |
Training Speaker 2
—a; estimated by maximum likelihood New Speaker o
orinciple (EM algorithm) | © New Speaker
a =""*prop[O Za e ]

+ Features and Limitations
—only a small number of parameters a,...a, IS needed to specify the characteristics of
a new speaker
—rapid adaptation requiring only very limited quantity of training data
— performance saturated at lower accuracy (because too few free parameters)
— high computation/memory/training data requirements



Speaker Adaptive Training (SAT) and Cluster Adaptive
Training (CAT)

« Speaker Adaptive Training (SAT)
— trying to decompose the phonetic variation and speaker variation
— removing the speaker variation among training speakers as much as possible
— obtaining a “compact” speaker-independent model for further adaptation
— y=Ax+b in MLLR can be used in removing the speaker variation
* Clustering Adaptive Training (CAT)

— dividing training speakers into R clusters by speaker clustering techniques

— obtaining mean models for all clusters(may include a mean-bias for the “compact” model in
SAT)

— models for a new speaker is interpolated from the mean vectors

» Speaker Adaptive Training (SAT) < Cluster Adaptive Training (CAT)

Training Speakers cluster

mean 1 %
A, b
&b MAP L cluster a,
113 T3] .- mean 2 \
Compact Training i

Speaker -

/ Speaker : ; f
independen : STiTer / mean for a

t model mean R new speaker
: 1

mean-bias

Speaker 1

Speaker 2

Speaker L | —7

Original SI: A*="°"Prob(0;, | |A)
SAT :[A%,(Ab); (1= agmax Prob(0y,  [A_,(Ab), 1) m” = zam +m,, m;: cluster mean i, m,: mean-bias

(Ab)
EM algorithm used fo AL a estimated with maximum likelihood criterion
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Speaker Recognition/Verification

* To recognize the speakers rather than the content of the speech
— phonetic variation/speaker variation
— speaker identification: to identify the speaker from a group of speakers
— speaker verification: to verify if the speaker is as claimed

« Gaussian Mixture Model (GMM)
A={(wj, by, 25,),J=1,2,...M} for speaker i

for 0 = 0,0,...0,...07, b (0,)= _“ﬁleN(ot;y,—,zj)
J:
— maximum likelihood principle
j =" {“aXProb(OMi)

* Feature Parameters

- }\r)lcl):s(g (c::arrying speaker characteristics preferred

— MLLR coefficients A;,b;, eigenvoice coefficients a;, CAT coefficients a,
« Speaker Verification

— text dependent: higher accuracy but easily broken

— text independent

— likelihood ratio test

p(0|2;)

p(0[2;)
A; - background model or anti - model for speaker i, trained by
other speakers, competing speakers, or speaker - independent model
th : threshold adjusted by balancing missing/fa Ise alarm rates and ROC curre
— speech recognition based verification

(0 1) = > th



Speaker Recognition

Gaussian Mixture Model (GMM)
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Likelihood Ratio Test

* Detection Theory— Hypothesis Testing/Likelihood Ratio Test
— 2 Hypotheses: H,, H, with prior probabilities: P(H,),P(H,)
observation: X with probabilistic law: P(X |H,), P(X IH,)

— MAP principle — Likelihood Ratio Test
choose H, if P(H, [X)> P(H, X) P(H| X)=P(X|H))P (H)/P(X), i=0,1
choose H, if P(H, [X)> P(H, X H
1T P(H, H) (Hy X) = P(X|H,) 20 P(H) _1
P(H[X) P(X|H,) P(H,)
> 21 1/ H
PHIX) |, likelihood ratio-Likelihood Ratio Test
P(X| H,)
P(X| Ho)
/A
A = X
X, X1

— Type I error: missing (false rejection)
Type Il error: false alarm (false detection)
false alarm rate, false rejection rate, detection rate, recall rate, precision rate

Th: a threshold value adjusted by balancing among different performance rates



Recelver Operating Characteristics (ROC) Curve
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