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Mismatch in Statistical Speech Recognition

• Mismatch between Training/Recognition Conditions
– Mismatch in Acoustic Environment ⎯ Environmental Robustness

• additive/convolutional noise, etc.
– Mismatch in Speaker Characteristics ⎯ Speaker Adaptation
– Mismatch in Other Acoustic Conditions

• speaking mode:read/prepared/conversational/spontaneous speech, etc.
• speaking rate, dialects/accents, emotional effects, etc.

– Mismatch in Lexicon ⎯ Lexicon Adaptation
• out-of-vocabulary(OOV) words, pronunciation variation, etc.

– Mismatch in Language Model ⎯ Language Model Adaptation
• different task domains give different N-gram parameters, etc.

• Possible Approaches for Acoustic Environment Mismatch
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Model-based Approach Example 1― Parallel Model 
Combination (PMC)

• Basic Idea
– primarily handling the additive noise
– the best recognition accuracy can be achieved if the models are trained with 

matched noisy speech, which is impossible
– a noise model is generated in real-time from the noise collected in the recognition 

environment during silence period
– combining the noise model and the clean-speech models in real-time to generate 

the noisy-speech models

• Basic Approaches
– performed on model parameters in cepstral domain
– noise and signal are additive in linear spectral domain rather than the cepstral 

domain, so transforming the parameters back to linear spectral domain for 
combination

– allowing both the means and 
variances of a model set to be modified

• Parameters used :
– the clean speech

models
– a noise model
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Model-based Approach Example 1 ― Parallel Model 
Combination (PMC)

• The Effect of Additive Noise in the Three Different Domains and 

the Relationships
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Model-based Approach Example 1 ― Parallel Model 

Combination (PMC)

• The Steps of Parallel Model Combination (Log-Normal 
Approximation) :

– based on various assumptions and approximations to simplify the 
mathematics and reduce the computation requirements
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Model-based Approach Example 2― Vector Taylor’s 

Series (VTS)

• Basic Approach

–Similar to PMC, the noisy-speech models are generated by combination of 

clean speech HMM’s and the noise HMM

–Unlike PMC, this approach combines the model parameters directly in the 

log-spectral domain using Taylor’s Series approximation

–Taylor’s Series Expansion for l-dim functions:
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• Given a nonlinear function z=g(x, y)

–x, y, z are n-dim random vectors

–assuming the mean of x, y, μx, μy and covariance of x, y, Σx, Σy are known

– then the mean and covariance of z can be approximated by the Vector 

Taylor’s Series

• Now Replacing z=g (x, y) by the Following Function

– the solution can be obtained
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Feature-based Approach Example 1— Cepstral Moment 
Normalization (CMS, CMVN) and Histogram Equalization (HEQ)

• Cepstral Mean Subtraction(CMS) - Originally for Convolutional Noise
– convolutional noise in time domain becomes additive in cepstral domain (MFCC)

y[n] = x[n]h[n]  y = x+h , x, y, h in cepstral domain
– most convolutional noise changes only very slightly for some reasonable time interval

x = y−h if  h can be estimated

• Cepstral Mean Subtraction(CMS)
– assuming E[x ] = 0 , then E[y] = h , averaged over an utterance or a moving

window, or a longer time interval
xCMS = y−E[y]

– CMS features are immune to convolutional noise
x[n] convolved with any h[n] gives the same xCMS

– CMS doesn't change delta or delta-delta cepstral coefficients

• Signal Bias Removal
– estimating h by the maximum likelihood criteria

h*= arg max Prob[Y = (y1y2…yT) |  , h] ,  : HMM for the utterance Y

– iteratively obtained via EM algorithm

• CMS, Cepstral Mean and Variance Normalization (CMVN) and Histogram 
Equalization (HEQ)
– CMS equally useful for additive noise

– CMVN: variance normalized as well

– HEQ: the whole distribution equalized

– Successful and popularly used

h

xCMVN= xCMS/[Var(xCMS)]1/2

y=CDFy
-1[CDFx(x)]
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Cepstral Moment Normalization

• CMVN: variance normalized as well

xCMVN= xCMS/[Var(xCMS)]1/2
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cumulative distribution

function (c. d. f.)
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CDFx(‧)

CDFy(‧)

x y

1.0

Histogram Equalization

• HEQ: the whole distribution equalized

y = CDFy
-1[CDFx(x)]
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Feature-based Approach Example 2 ― RASTA 
( Relative Spectral) Temporal Filtering 

• Temporal Filtering
– each component in the feature vector (MFCC coefficients) considered as a signal 

or “time trajectories” when the time index (frame number) progresses
– the frequency domain of this signal is called the “modulation frequency”
– performing filtering on these signals

• RASTA Processing :
– assuming the rate of change of nonlinguistic components in speech (e.g. additive 

and convolutional noise) often lies outside the typical rate of the change of the 
vocal tract shape

– designing filters to try to suppress the spectral components in these “time 
trajectories” that change more slowly or quickly than this typical rate of change of 
the vocal tract shape 

– a specially designed temporal filter for such “time trajectories” 
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Features-based Approach Example 3 ― Data-driven 
Temporal Filtering (1)

• PCA-derived temporal filtering

– temporal filtering is equivalent to the weighted sum of a sequence of a 

specific MFCC coefficient with length L slided along the frame index

–maximizing the variance of such a weighted sum is helpful in recognition

– the impulse response of Bk(z) can be the first eigenvector of the covariance 

matrix for zk ,for example

–Bk(z) is different for different k

Frame index
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stream yt
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filtering: convolution  

Filtering

15



PCA (P.13 of 13.0)
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PCA (P.12 of 13.0)
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Principal Component Analysis (PCA) (P.11 of 13.0)

• Problem Definition:
– for a zero mean random vector x with dimensionality N, x∈RN, E(x)=0, iteratively 

find a set of k (kN) orthonormal basis vectors {e1, e2,…, ek} so that
(1) var (e1

T x)=max (x has maximum variance when projected on e1 )
(2) var (ei

T x)=max, subject to   ei⊥ ei-1 ⊥…… ⊥e1 , 2 i k 
(x has next maximum variance when projected on e2 , etc.)

• Solution: {e1, e2,…, ek} are the eigenvectors of the covariance 
matrix  for x corresponding to the largest k eigenvalues
– new random vector y Rk : the projection of x onto the subspace spanned by                 

A=[e1 e2 …… ek], y=ATx
– a subspace with dimensionality k≤N such that when projected onto this subspace, 

y is “closest” to x in terms of its “randomness” for a given k
– var (ei

T x) is the eigenvalue associated with ei

• Proof
– var (e1

T x) = e1
T E (x xT)e1 = e1

TΣe1 = max,    subject to    |e1|
2=1

– using Lagrange multiplier 

J(e1)= e1
T E (x xT)e1 -λ(|e1|

2-1)  , 

⇒ E (xxT) e1 = λ1e1 , var(e1
T x) = λ1= max

– similar for e2 with an extra constraint e2
Te1 = 0, etc.

= 0
J(e1)

e1
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Linear Discriminative Analysis (LDA)

• Linear Discriminative Analysis (LDA)
–while PCA tries to find some “principal components” to maximize the 

variance of the data, the Linear Discriminative Analysis (LDA) tries to 
find the most “discriminative” dimensions of the data among classes

/a/

/i/

x2

x1

w1
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Linear Discriminative Analysis (LDA)

• tr(M): trace of a matrix M, the sum of eigenvalues, or the “total 
scattering” 

• WTSB,WW: the matrix SB,W after projecting on the new dimensions
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𝜇: total mean 

Linear Discriminative Analysis (LDA)
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Linear Discriminative Analysis (LDA)

• Problem Definition

–wj, j and Uj are the weight (or number of samples), mean and covariance 

for the random vectors of class j, j=1……N,μ is the total mean

–find W=[w1 w2 ……wk], a set of orthonormal basis such that

– tr(M): trace of a matrix M, the sum of eigenvalues, or the “total scattering”

WTSB,WW: the matrix SB,W after projecting on the new dimensions

• Solution

– the columns of W are the eigenvectors of Sw
-1SB with the largest 

eigenvalues
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Features-based Approach Example 3 ― Data-driven 
Temporal Filtering (2)

• LDA/MCE-derived Temporal Filtering

– Filtered parameters are weighted sum of parameters along the time 

trajectory (or inner product)

Frame index
1        2      3         4         5
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Tzk
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Speech Enhancement Example 1 ― Spectral Subtraction 
(SS)
• Speech Enhancement

– producing a better signal by trying to remove the noise
– for listening purposes or recognition purposes

• Background
– Noise n[n] changes fast and unpredictably in time domain, but relatively slowly in 

frequency domain, N(w)
y[n] = x[n] + n[n]

• Spectrum Subtraction
– |N(w)| estimated by averaging over M frames of locally detected silence parts, or  

up-dated by the latest detected silence frame
|N(w)|i= β|N(w)|i-1+(1- β) |N(w)|i,n

|N(w)|i: |N(w)| used at frame i

|N(w)|i,n : latest detected at frame i
– signal amplitude estimation

|X(w)|i = |Y(w)|i- |N(w)|i       , if |Y(w)|i- |N(w)|i>α |Y(w)|i
=α |Y(w)|i if |Y(w)|i- |N(w)|i≤α |Y(w)|i 

transformed back to x[n] using the original phase
performed frame by frame

– useful for most cases, but may produce some “musical noise” as well
– many different improved versions 

^

^
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Spectral Subtraction
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Speech Enhancement Example 2 ― Signal Subspace 
Approach

• Signal Subspace Approach
– representing signal plus noise as a vector in a K-dimensional space
– signals are primarily spanned in a m-dimensional signal subspace
– the other K-m dimensions are primarily noise
– projecting the received noisy signal onto the signal subspace

signal plus noise

projected on signal 

subspace

signal plus noise

(K-dim)

clean speech
signal 

subspace

(m-dim)
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Speech Enhancement Example 2 ― Signal Subspace 
Approach

• An Example

– Hankel-form matrix

signal samples: y1y2y3…yk…yL…yM

y1 y2 y3 y4… yk

y2 y3 y4…… yk+1

Hy= y3 y4……….yk+2.    .    .             .
.    .    .             .
.    .    .             .
yL yL+1 yM

– Generalized Singular Value Decomposition (GSVD)

UTHyX = C =diag(c1, c2, …ck), c1≥c2≥… ≥ck

VTHnX =  S =diag(s1, s2, …sk), s1≤s2≤…≤sk

subject to 

U, V, X : matrices composed by orthogonal vectors

Which gives   ci > si for 1 ≤ i ≤ m,  signal subspace

si > ci for m+1 ≤ i ≤ k,  noise subspace

Ki1  ,1sc 2

i

2

i =+

－ Hy for noisy speech

－ Hn for noise frames

n  
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Speech Enhancement Example 3 ― Audio Masking 
Thresholds

• Audio Masking Thresholds
– without a masker, signal inaudible if below a “threshold in quite”
– low-level signal (maskee) can be made inaudible by a simultaneously 

occurring stronger signal (masker).
– masking threshold can be evaluated
– global masking thresholds obtainable from many maskers given a frame 

of speech signals
– make noise components below the masking thresholds

masking 

threshold
masker

maskee

threshold 
in quiet
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Power Spectral Density

Speech Enhancement Example 4 ― Wiener Filtering

• Wiener Filtering
– estimating clean speech from noisy speech in the sense of minimum mean square 

error given statistical characteristics

x(t)
clean speech          n(t)

noise

– an example solution : assuming x(t), n(t) are independent

E[(y(t)-x(t))2]=min
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