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Well-Known Application Examples of Speech and 

Language Technologies  – Speaking Personal Assistant 

• Examples

– Weather in New York next week ?

– Who is the president of US ? What did he say today ?

– How can I go to National Taiwan University ?

– Short messaging, personal scheduling, etc.
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• Special Questions:

– 唐詩宋詞, 出師表…

– 說個笑話…



Spoken Dialogue Systems

• Almost all human-network interactions can be made by spoken dialogue

• Speech understanding, speech synthesis, dialogue management, 

discourse analysis

• System/user/mixed initiatives

• Reliability/efficiency, dialogue modeling/flow control

• Transaction success rate/average dialogue turns
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Key Processes in A Spoken Dialogue 

• A Basic Formulation

– goal: the system takes the right actions after each dialogue turn and complete the 
task successfully finally

• Three Key Elements
– speech recognition and understanding: converting Xn to some semantic 

interpretation Fn

– discourse analysis: converting Sn-1 to Sn, the new discourse semantics (dialogue 
state), given all possible Fn

– dialogue management: select the most suitable action An given the discourse 
semantics (dialogue state) Sn

),(Prob 1
max arg

     A
*

n
−= nnnn SXAA

Xn: speech input from the user in the n-th dialogue turn
Sn: discourse semantics (dialogue state) at the n-th dialogue turn
An: action (response, actions, etc.) of the system (computer, hand-held device,    

network server, etc.) after the n-th dialogue turn
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Fn: semantic interpretation of the input speech Xn
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Dialogue Structure

• Turns
– an uninterrupted stream of speech(one or several utterances/sentences) from one participant in 

a dialogue
– speaking turn: conveys new information

back-channel turn: acknowledgement and so on(e.g. O. K.) 
• Initiative-Response Pair

– a turn may include both a response and an initiative
– system initiative: the system always leads the interaction flow

user initiative: the user decides how to proceed
mixed initiative: both acceptable to some degree

• Speech Acts(Dialogue Acts)
– goal or intention carried by the speech regardless of the detailed linguistic form
– forward looking acts

• conversation opening(e.g. May I help you?), offer(e.g. There are three flights to Taipei…), 
assert(e.g. I’ll leave on Tuesday), reassert(e.g. No, I said Tuesday), 

information request(e.g. When does it depart?), etc.
– backward looking acts

• accept(e.g. Yes), accept-part(e.g. O.K., but economy class), reject(e.g. No), 
signal not clear(e.g. What did you say?), etc.

– speech acts  linguistic forms : a many-to-many mapping
• e.g. “O.K.” ⎯ request for confirmation, confirmation

– task dependent/independent
– helpful in analysis, modeling, training, system design, etc.

• Sub-dialogues
– e.g. “asking for destination”, “asking for departure time”, …..
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Language Understanding for Limited Domain

• Semantic Frames ⎯ An Example for Semantic Representation
– a semantic class defined by an entity and a number of attributes(or slots)

e.g. [Flight]:

[Airline] → (United)

[Origin] → (San Francisco)

[Destination] → (Boston)

[Date] → (May 18)

[Flight No] → (2306)

– “slot-and-filler” structure

• Sentence Parsing with Context-free Grammar (CFG) for Language 
Understanding

– extension to Probabilistic CFG, integration with N-gram(local relation without semantics), etc.

Grammar(Rewrite Rules)

S → NP VP

NP → N
VP → V-cluster PP

V-cluster → (would like to) V
V → fly| go

PP → Prep NP
N → Boston | I

Prep → to

S

NP

N

V-cluster PP

VP

V NPPrep

I would like to fly to Boston

N

(would like to)
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Robust Parsing for Speech Understanding

• Problems for Sentence Parsing with CFG
– ungrammatical utterances
– speech recognition errors (substitutions, deletions, insertions)
– spontaneous speech problems: um–, cough, hesitation, repetition, repair, etc.
– unnecessary details, irrelevant words, greetings, unlimited number of linguistic 

forms for a given act
e.g.  to Boston

I’m going to Boston, I need be to at Boston Tomorrow
um– just a minute– I wish to – I wish to – go to Boston

• Robust Parsing as an Example Approach
– small grammars for particular items in a very limited domain, others handled as 

fillers
e.g.  Destination→ Prep CityName

Prep → to |for| at
CityName → Boston |Los Angeles|...

– different small grammars may 
operate simultaneously

– keyword spotting helpful
– concept N-gram may be helpful

• Speech Understanding
– two-stage: speech recognition (or keyword spotting) followed by semantic parsing 

(e.g. robust parsing)
– single-stage: integrated into a single stage

CityName (Boston,...) direction (to, for...)

similar to class-based N-gram

Prob(ci|ci-1), ci: concept
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Conditional Random Field (CRF)

• Find a label sequence 𝒚 that maximizes:

𝑝 𝒚 𝒙; 𝜃 =
1

𝑍(𝑥)
exp{෍

𝑖=1

𝑀

𝜃 ∙ 𝑓(𝑦𝑖−1, 𝑦𝑖 , 𝑥𝑖)}

– Input observation sequence 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑀)

– Output label sequence 𝒚 = (𝑦1, 𝑦2, … , 𝑦𝑀)

– 𝑓 𝑦𝑖−1, 𝑦𝑖 , 𝑥𝑖 : feature function vector

– 𝜃: weights

– 𝑍 𝑥 : term for normalization

Observed

variables

Target

variables
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• Find a label sequence 𝒚 that maximizes:

𝑝 𝒚 𝒙; 𝜃 =
1

𝑍(𝑥)
exp{෍

𝑖=1

𝑀

𝜃 ∙ 𝑓(𝑦𝑖−1, 𝑦𝑖 , 𝑥𝑖)}

– Input observation sequence 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑀)

– Output label sequence 𝒚 = (𝑦1, 𝑦2, … , 𝑦𝑀)

– 𝑓 𝑦𝑖−1, 𝑦𝑖 , 𝑥𝑖 : feature function vector

– 𝜃: weights

– 𝑍 𝑥 : Normalized term

Observed

variables

Target

variables

𝒚𝟐 is determined

by 𝒙𝟐 and 𝒚𝟏

𝝓(𝒙𝒊, 𝒚𝒊)𝝓(𝒚𝒊, 𝒚𝒊−𝟏)

𝝓(𝒙𝒊, 𝒚𝒊)

𝝓(𝒚𝒊, 𝒚𝒊−𝟏)

Conditional Random Field (CRF)
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Example

• POS Tagging

– Input sequence: natural language sentence

•Ex: “Amy ate lunch at KFC”

– Output sequence: POS tagging

•Possible POS tagging: NOUN, VERB, ADJECTIVE, 

ADVERB, PREPOSITION…

•Ex: “Amy(NOUN) ate(VERB) lunch(NOUN) 

at(PREPOSITION) KFC(NOUN)”
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• POS Tagging

– POSi is determined by the wordi and POSi-1

Amy ate lunch at KFCInput word

output POS1 POS2 POS3 POS4 POS5

Example
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Training/Testing of CRF

• Training

–Find a parameter set 𝜃 to maximize the conditioned likelihood 

function 𝑝 𝑦 𝑥; 𝜃 for the training set

–Represent 𝑝 𝑦 𝑥; 𝜃 as log likelihood function

• log 𝑝 𝒚 𝒙; 𝜃

• solved by gradient descent algorithm

• Testing

–Find a label sequence y that maximizes the conditioned 

likelihood function 𝑝 𝑦 𝑥; 𝜃 for the input 𝑥

–Solved by forward-backward and Viterbi algorithms
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Semi-conditional Random Field (Semi-CRF)

• Semi-CRF uses “phrase” instead of “word”

• To find the phrase and corresponding label sequence 
𝑺 that maximize:

𝑝 𝑆 𝑥 =
1

𝑍(𝑥)
exp{σ𝑗=1

𝑁 𝜃 ∙ 𝑓(𝑦𝑗−1, 𝑦𝑗 , 𝒙, 𝑠𝑗)}

– Where 𝑠𝑗 is a phrase in input sequence 𝒙 and its label 𝑦𝑗
– 𝑆 = 𝑠𝑗 , 𝑗 = 1, 2, ⋯𝑁
– 𝑠𝑗 is known in training but unknown in testing
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• Slot filling

– Input sequence: natural language sentence

•Ex: Funny movie about bridesmaid starring Keira Knightley

– Output sequence: slot sequence

•GENRE, PLOT, ACTOR

•Ex: [Funny](GENRE) movie about [bridesmaid](PLOT) 

starring [Keira Knightley](ACTOR)

Example
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Discourse Analysis and Dialogue Management

• Discourse Analysis

– conversion from relative expressions(e.g. tomorrow, next week, he, it…) to real objects

– automatic inference: deciding on missing information based on available knowledge(e.g. “how 

many flights in the morning? ” implies the destination/origin previously mentioned)

– inconsistency/ambiguity detection (e.g. need clarification by confirmation)

– example approach: maintaining/updating the dialogue states(or semantic slots)

• Dialogue Management

– controlling the dialogue flow, interacting with the user, generating the next action
• e.g. asking for incomplete information, confirmation, clarify inconsistency, filling up the empty slots 

one-by-one towards the completion of the task, optimizing the accuracy/efficiency/user friendliness of 

the dialogue

– dialogue grammar: finite state machines as an example

– plan-based dialogue management as another example

– challenging for mixed-initiative dialogues

• Performance Measure

– internal: word error rate, slot accuracy (for understanding), etc.

– overall: average success rate (for accuracy), average number of turns (for efficiency), etc.

Subdialogue:

Conversation 

Opening

Subdialogue:

Asking for 

Destination

Subdialogue:
Asking for 
Departure 

Time

Destination

filled up

Departure

Time 

filled up

no

yes

no

yes
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Dialogue Management

• Example Approach – MDP-based

• Example Task: flight booking

– The information the system needs to know:

• The departure city

• The arrival city

– Define the state as (DEPARTURE,ARRIVAL)

– There are totally four states:

– (?,?), (KNOWN,?), (?,KNOWN), (KNOWN,KNOWN)
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Flight Booking with MDP (1/5)

• The state is decided by the information the system knows.

S1

Sf

S2

(?,?)
(KNOWN,?)

(KNOWN,KNOWN)

17



• The state is decided by the information the system knows.

• A set of available actions is also defined.

S1

Sf

S2
A1: ask DEPARTURE city

A2: ask ARRIVAL city

A3: confirm

A4: return flight list

Flight Booking with MDP (1/5)
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• Assume the system is at state S1 and takes action A1.

S1

Sf

S2

A1: ask DEPARTURE city

A1

(?,?)

Flight Booking with MDP (2/5)
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• Assume the system is at state S1 and takes action A1.

• User response will cause the state to transit.

S1

Sf

S2

A1: ask DEPARTURE city

A1

(?,?)

Flight Booking with MDP (2/5)
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• The transition is probabilistic based on user response and 

recognition results (with errors).

S1

Sf

S2

A1: ask DEPARTURE city

A1

(?,?)

0.7

0.2

0.1

Response: From Taipei.

Response: From Taipei to Boston.

Response: What did you say?

Flight Booking with MDP (3/5)
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• The transition is probabilistic based on user response and 

recognition results (with errors).

• A reward associated with each transition.

S1

Sf

S2

A1: ask DEPARTURE city

A1

(?,?)

0.7

0.2

0.1

+10

+5

-5

Flight Booking with MDP (3/5)
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• The interaction continues.

S1

Sf

S2A2

(KNOWN,?)

A2: ask ARRIVAL city

Flight Booking with MDP (4/5)
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• The interaction continues.

S1

Sf

S2A2

(KNOWN,?)

A2: ask ARRIVAL city

Flight Booking with MDP (4/5)
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• The interaction continues.

• When the final state is reached, the task is completed and 

result is returned.

S1

Sf

S2

(KNOWN,KNOWN)

Flight Booking with MDP (4/5)
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• For the overall dialogue session, the goal is to maximize the total 

reward

R = R1 + … + Rn = 5 + 5

• Dialogue optimized by choosing a right action given each state 
(policy).

• Learned by Reinforcement Learning.

• Improved as Partially Observable MDP (POMDP)

S1

Sf

S2A1

(?,?)

+5
A2

+5

Flight Booking with MDP (5/5)
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Client-Server Architecture

• Galaxy, MIT

computer NLG

NLU

ASR

TTSLaptop

Phone Air Travel
Restaurant 

Guide
Weather

PDA City Guide Auto

Classifieds

• Integration Platform, AT& T

• Domain Dependent/Independent Servers Shared by Different 
Applications/Clients

– reducing computation requirements at user (client) by allocating most load at 

server

– higher portability to different tasks

Application 

(Client)

Application 

(Client)
Application 

(Client)

Dialogue/ 
Application 

Manager

Dialogue/ 
Application 

Manager

The Client API (Application Programming Interface)

Resource Manager/Proxy Server)

The Server SPI (Server Provider Interface)

ASR  
Server

TTS 
Server

Audio 
Server

Database 
Server

GDC  
Server

Telephone/Audio 
Interface

Domain 

Server

HLT 

Server

Client

Network
Hub
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Retrieved movies

Voice Command Recognition results

An Example: Movie Browser

28



Flowchart

database

USER

TURKER

annotations

Query 

utterances

CRF model

Speech

recognizer

Speech

Synthesis

Search 

Engine

indexing

Dialogue 

and 

Discourse

29



Semi-CRF for Slot Filling

• Input data: user’s query for searching movie

• Ex: Show me the scary movie

• Output: label the input sentence with “GENRE”, “PLOT” 

and “ACTOR”  

• Topic modeling

– Data sparsity → difficult to match terms exactly

– Ex. “funny” and “comedy” 

– Use Latent Dirichlet Allocation (LDA) for topic modeling

• Handling misspelling

– Convert query terms to standard phonemes

– Search by pronunciations instead of spellings
30



Example
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References for CRF

• References:

– Jingjing Liu, Scott Cyphers, Panupong Pasupat, Ian Mcgraw, 

and Jim Glass, A Conversational Movie Search System 

Based on Conditional Random Fields , Interspeech, 2012

– J. Lafferty, A. McCallum, and F. Pereira. Conditional 

random fields: Probabilistic models for segmenting and 

labeling sequence data, In Proc. of ICML, pp.282-289, 2001

– Wallach, H.M., Conditional random fields: An 

introduction, Technical report MS-CIS-04-21, University of 

Pennsylvania 2004

– Sutton, C., McCallum, A., An Introduction to Conditional 

Random Fields for Relational Learning, In Introduction to 

Statistical Relational Learning 2006
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• References:

– Sunita Sarawagi, William W. Cohen: Semi-Markov 

Conditional Random Fields for Information 

Extraction. NIPS 2004

– Bishan Yang and Claire Cardie, Extracting Opinion 

Expressions with semi-Markov Conditional Random 

Fields, EMNLP-CoNLL 2012

• Toolkits:

– CRF++ 

(http://crfpp.googlecode.com/svn/trunk/doc/index.html)

– CRFsuite (http://www.chokkan.org/software/crfsuite/)

References for CRF
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