6.0 Language Modeling

References: 1. 11.2.2,11.3, 11.4 of Huang or
2. 6.1- 6.8 of Becchetti, or
3. 4.1- 4.5, 8.3 of Jelinek



Language Modeling: providing linguistic constraints to help the
selection of correct words
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Prob [ *ft 541 > Prob [ % = 1 4]



From Fundamentals of Information Theory

* Examples for Languages
0<H (S)<logM
— Source of English text generation

S — this course is about speech.....
* the random variable is the character = 26*2+.....<64=26
H (S) < 6 bits (of information) per character
* the random variable is the word = assume total number of words=30,000<2%
H (S) < 15 bits (of information) per word
— Source of speech for Mandarin Chinese

S —’L F"ﬂn%ﬁlaﬁ‘ i:ii:iE .....

* the random variable is the syllable (including the tone) = 1300 < 21!
H (S) < 11 bits (of information) per syllable (including the tone)

* the random variable is the syllable (ignoring the tone) = 400 < 2°

H (S) < 9 bits (of information) per syllable (ignoring the tone)
* the random variable is the character = 8,000 < 213
H (S) < 13 bits (of information) per character

— Comparison: speech— 85, girl— ¥ %, computer— 5T &%




Entropy and Perplexity

P (x;)



Entropy and Perplexity
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Perplexity

* Perplexity of A Language Source S

H(S) =->p(x,) log[p(x,)] (perplexity::® % &)
PP(S) = 2"
— size of a “virtual vocabulary” in which all words (or units) are equally
probable

* e.g.1024 words-each v_vith prob_ability —, I(x;)=10 bits (of information)
H(S)= 10 bits (of information), PP(S)=1024

— branching factor estimate for the language
* A Language Model
— assigning a probability P(w;|c;) for the next possible word w; given a

condition ¢; .
€.g. P(W:W1’W2’W3’W4----Wn):P(Wl)P(W2|V¥1) [P(Wiw; 5,Wi4)
C=¢ €2 Ci

® A Test Corpus D of N sentences, with the i-th sentence W, has n;
words and total words N
D =[W W, WL W= Wy, Wo, W3, W,

Ny = Zni
i—1



Perplexity

* Perplexity of A Language Model P(w;|c;) with respect to a Test
Corpus D

— H(P;D)=-

2 [g'og Plwle )} , average of all log P(w;|c;) over the
N whole corpus D

1
=— ZZIOQ{P(WJ.‘C,-) ND} , logarithm of geometric mean of P(w;|c))

i=1 j=1

— pp (P; D) =21P)

average branching factor (in the sense of geometrical mean of reciprocals)
e.g. P(W=w,w,...wp)=P(w,) P(W,w,) P(Wslw;,W,) P(W,wy,ws) P(Wslwz,W,) .....

[ ! ! !

L 1 1 1
1024 512 256 128 256

— ([ ) ] -

— the capabilities of the language model in predicting the next word given
the linguistic constraints extracted from the training corpus

— the smaller the better, performance measure for a language model with
respect to a test corpus

— a function of a language model P and text corpus D
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An Perplexity Analysis Example with Respect to
Different Subject Domains

« Domain-specific Language Models

Trained with Domain Specific 700 -
Corpus of Much Smaller Size very e |
often Perform Better than a a0 |

General Domain Model ol _
—Training corpus: Internet news in

] 500
Chinese language £ _
450 | _‘
1 politics 19.6 M 2 I o
2 congress 2.7 M 400 |
3 business 89 M o
4 culture 4.3 M 350 + -
5 sports 21 M
6 transportation 1.6 M 300 | H H _‘
7 society 10.8 M 1
8 local 8.1M T
9 general(average) 58.1M ol 2 3 4 S 6 7 8 39

Ogeneral domain Odomain specific

—Sports section gives the lowest
perplexity even with very small
training corpus



Perplexity

* KL Divergence or Cross-Entropy

Dlp()a(x)]= Zp(x)log[gg ﬂ

— Jensen’s Inequality

— > p(x;)log[p(x;)] <

—>p(x;)log[a(x;)]
- 1T

Someone call this “cross-entropy” = X[p(x) || q(X)]
— entropy when p(x) is incorrectly estimated as g(x) (leads to some entropy

Increase) o
®* The True Probabilities

the Ianguage model
limy 2 Z'Og[q(xk)]

N—oo

P(wjlc))

A4

Incorrectly estimated as

P(wilc;)

v

>Jpx;)ogla(x,)|

(averaging by aII samples)ﬁ(averaglng if p(x;) is known)

law of large numbers

® The Perplexity is a Kind “Cross-Entropy” when the true
statistical characteristics of the test corpus D Is incorrectly
estimated as p(w;|c;) by the language model

— H (P ;D)=X(DIP)
— the larger the worse



Law of Large Numbers
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Smoothing of Language Models

* Data Sparseness
— many events never occur in the training data
e.g. Prob [Jason immediately stands up]=0 because Prob [immediately| Jason]=0

— smoothing: trying to assign some non-zero probabilities to all events
even If they never occur in the training data
* Add-one Smoothing
— assuming all events occur once more than it actually does
e.g. bigram

NEw,w! >) N w,w! >) N(<w,w! >)+1
N (w*) D N(EwW, W >) T Y N(<ww! >)+V
j j

p(w!|w") =

V: total number of distinct words in the vocabulary



Smoothing : Unseen Events
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Smoothing of Language Models

® Back-off Smoothing
P(WilWi 11y Wiags - - Wiid) <[ POWIWi i1, Wiinags .- Wig), T N(SW, g, Wi, W;>)>0
a(Wi-n+19' : 'Wi-l) p(Wilwi-n+29° : 'Wi-l)’ If N(<Wi-n+1a- Wi, Wi >):O

(13 _{ P, S ith > 0) P,: n-gram
=

aP,_, , ifP, =0 P,: smoothed n-gram

— back-off to lower-order if the count is zero, prob (you| see)>prob (thou| see)
* Interpolation Smoothing
P (WilWi e1s Wi gags- - Wi)) =OW, g, Wi ) P(WiIWG g W) FH(L-0(W, g, Wi 1)) P (WEIWG g, W)
— interpolated with lower-order model even for events with non-zero counts
(P, =bP+ (1= b)Py_y)

— also useful for smoothing a special domain language model with a background
model, or adapting a general domain language model to a special domain



Smoothing of Language Models

* Good-Turing Smoothing
— Good-Turning Estimates: properly decreasing relative frequencies for
observed events and allocate some frequencies to unseen events
— Assuming a total of K events {1,2,3...,k,.....K}
number of observed occurrences for event k: n(k),

N: total number of observations, N =3 n(k)

k=1

n,: number of distinct events that occur r times (number of different events k such that

Nt =n) N=>rn

— Good-Turing Estimates:
* total counts assigned to unseen events=n,
* total occurrences for events having occurred r times: rn, — (r+1)n,,4
* anevent occurring r times is assumed to have occurred r* times,
N r=(r +1)h
e r*== forr=0 n,
No

e > r'n, =Z(r+1)%nr =>(r+)n,, =N



Good-Turing
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— An analogy: during fishing, getting each kind of fish Is an event
an example: n(1)=10, n(2)=3, n(3)=2, n(4)=n(5)=n(6)=1, N=18 3

prob (next fish got is of a new kind) = prob (those occurring only once) = 18 ..



Smoothing of Language Models

e Katz Smoothing
— large counts are reliable, so unchanged

— small counts are discounted, with total reduced counts assigned to unseen
events, based on Good-Turing estimates

i}nr(l— d)r=n_ | d.:discount ratio for events with r times
— distribution of counts among unseen events based on next-lower-order
model: back off
— an example for bigram:
_ (N (<wi,w;>) IN(w;) 1>
POWi[Wi1) =2 d N (< Wi, Wi >) / N(W) , Ty>1>0
L a (Wi, w;) P(w;) , =0

a (w;_;,w;): such that the total counts equal to those assigned



Katz Smoothing
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Class-based Language Modeling

* Clustering Words with Similar Semantic/Grammatic Behavior into

Classes _
€.0. ( John ") (~ saw %gg stregt]
[Marry J found ro?
[ She [ drove ~ car campus
rode bus —[ in ;
father _
My [swter park]

— P(wilwi, wig) = P(wilc(wy))P(c(wj)lc(wi,), c(wi,) )
c(w;): the class including w,
— Smoothing effect: back-off to classes when too few counts, classes

complementing the lower order models
— parameter size reduced

* Limited Domain Applications: Rule-based Clustering by Human
KﬂOWledge Lcjﬂ-itedA- |' Taipei Los Angeles Sunday
e.g. Tell me all flights of [EvaAir  [from to on

— new items can be easily added without training data

* General Domain Applications: Data-driven Clustering (probably aided
by rule-based knowledge)



Class-based Language Modeling

* Data-driven Word Clustering Algorithm Examples

— Example 1.
* initially each word belongs to a different cluster

* in each iteration a pair of clusters was identified and merged into a cluster
which minimizes the overall perplexity

* stops when no further (significant) reduction in perplexity can be
achieved

Reference: “Cluster-based N-gram Models of Natural Language”,
Computational Linguistics, 1992 (4), pp. 467-479
— Example 2:
Prob [W= Wyw,Ws... W= 1T Prob(w,wi, ;... w,1)= IT Prob(wih,

=1
hi: Wy, W,,...W, 4, hlstory of w;

* clustering the histories into classes by decision trees (CART)
* developing a question set, entropy as a criterion

* may include both grammatic and statistical knowledge, both local and
long-distance relationship

Reference: “A Tree-based Statistical Language Model for Natural

Language Speech Recognition”, IEEE Trans. Acoustics,
Speech and Signal Processing, 1989, 37 (7), pp. 1001-1008



An Example Class-based Chinese Language Model

» A Three-stage Hierarchical Word Classification Algorithm
— stage 1 : classification by 198

POS features (syntactic & semantic)
 each word belonging to one class only

* each class characterized by a set of POS's
— stage 2 : further classification with data-driven approaches
— stage 3 : final merging with data-driven approaches

7 7 NN ” N
AA (take) = SFAE (car)
= (o) | TEE G
B gide) || T K& (rain)
L J ~i%  (airplane)
(g (drive) - / /

A (steer) 7]

N\ \ PR«

— rarely used words classified by human knowledge

— both data-driven and human-knowledge-driven



POS features

(_, ., _,_...)

Data-driven Approach Example

W, N;H; -t 'FWN
Wy
Wy | R . . lba - -
23
. -_77,..--1;"!‘“‘
Ny ’




Structural Features of Chinese Language

« Almost Each Character with Its Own Meaning, thus Playing Some
Linguistic Role Independently

 No Natural Word Boundaries in a Chinese Sentence
BIRIRAES RE T NENEEN TSR

— word segmentation not unique
— words not well defined
— commonly accepted lexicon not existing

» Open ( Essentially Unlimited ) Vocabulary with Flexible Wording
Structure

— new words easily created everyday 28 (electricity)+fg& (brain)— E i (computer)
— long word arbitrarily abbreviated =8 KE (Taiwan University) =X
— name/title G MERI AR 4R (former President T.H. Lee) —Z B4R 40 S &

— unlimited number of compound words & (high) + %R (speed) + A (highway)— 5 2R A F (freeway)

« Difficult for Word-based Approaches Popularly Used in Alphabetic

Languages
— serious out-of-vocabulary(OOV) problem



Word-based and Character-based Chinese Language

Models

« Word-based and Class-based Language Modeling
— words are the primary building blocks of sentences
— more information may be added
— lexicon plays the key role
— flexible wording structure makes it difficult to have a good enough lexicon
— accurate word segmentation needed for training corpus
— serious “out-0f -vocabulary(OOV)” problem in many cases
— all characters included as “ mono-character words”

« Character-based Language Modeling
— avoiding the difficult problem of flexible wording structure and undefined
word boundaries
— relatively weak without word-level information
— higher order N-gram needed for good performance, which is relatively
difficult to realize

 Integration of Class-based/Word-based/Character-based Models
— word-based models are more precise for frequently used words
— back-off to class-based models for events with inadequate counts
— each single word is a class if frequent enough
— character-based models offer flexibility for wording structure



Segment Pattern Lexicon for Chinese — An Example
Approach

« Segment Patterns Replacing the Words in the Lexicon

segments of a few characters often appear together : one or a few
words

regardless of the flexible wording structure

automatically extracted from the training corpus (or network
Information) statistically

Including all important patterns by minimizing the perplexity

« Advantages

bypassing the problem that the word is not well-defined

new words or special phrases can be automatically included as long as
they appear frequently in the corpus (or network information)

can construct multiple lexicons for different task domains as long as
the corpora are given(or available via the network)



Example Segment Patterns Extracted from Network

News Outside of A Standard Lexicon

 Patterns with 2 Characters
- —E R - B8F w0 B B8 ir'
Ri B By BE HE G BEe FHA
 Patterns with 3 Characters
- SHEY - RANE - FFE - LER - BTH
KoK - B1RAB - BlEEZ - SAR - BRKRE - FHEF
 Patterns with 4 Characters
- AREE  REE  #RfEE  sREE - BE85E7]
mEME - EAD - ETT I BIFEEE - BARE

I



Word/Segment Pattern Segmentation Samples

« With A Standard Lexicon

*With Extracted Segment Pattern
LU AR B AR FP o L A g 2L AVKE PR
Fr 4B B * <& =
© 4 BT F #A5 =& d B2V AF Fy P
3t A 4 R 2 I - S Y
3% R I3 Fw OF AR
FHE R R F B Fl MR RE ) R DB
O AR 2 Wi £
LW AEET N ISP F ) =3 ZFH
R 2AH BF 22 £ AR R R AT
FP P LB wh O RH RE 2 ZL
LR Apy A EO N I B S

LA dpg Ak

Percentage of Patterns outside of the Standard Lexicon : 28%



