
9.0 Speech Recognition Updates



Minimum-Classification-Error (MCE) and Discriminative 

Training

• A Primary Problem with the Conventional Training Criterion : Confusing sets

find (i) such that P(X|(i)) is maximum (Maximum Likelihood) if X Ci

– This does not always lead to minimum classification error, since it doesn't consider the 

mutual relationship among competing classes

– The competing classes may give higher likelihood function for the test data

• General Objective : find an optimal set of parameters (e.g. for recognition 

models) to minimize the expected error of classification

– the statistics of test data may be quite different from that of the training data

– training data is never enough

• Assume the recognizer is operated with the following classification principles :

{Ci, i=1,2,...M}, M classes

(i): statistical model for Ci

={(i)}i=1……M , the set of all models for all classes

X : observations

gi(X,): class conditioned likelihood function, for example,

gi(X,) = P (X|(i)) 

– C(X) = Ci if gi(X,) = maxj gj(X,)           : classification principles

an error happens when P(X|(i)) = max but X Ci 2



(0), (1), (2),… (9)

P (O|(k))
P (O|(7))：correct

P (O|(1))：competing

wrong

Minimum-Classification-Error (MCE)
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Minimum-Classification-Error (MCE) Training

• One form of the misclassification measure

– Comparison between the likelihood functions for the correct class and the 
competing classes

• A continuous loss function is defined

– l(d) →0 when d →-∞
l(d) →1 when d →∞
θ: switching from 0 to 1 near θ
γ: determining the slope at switching point

• Overall Classification Performance Measure :
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

0

γ1γ2

Sigmoid Function

1 𝑑 =
1

1 + 𝑒𝑥𝑝 −𝛾(𝑑 − θ)

l(d) →0 when d →-∞

l(d) →1 when d →∞

θ: switching from 0 to 1 near θ

γ: determining the slope at switching point
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Minimum-Classification-Error (MCE) Training

˙Find  such that

– the above objective function in general is difficult to minimize directly 

– local minimum can be obtained iteratively using gradient (steepest) 

descent algorithm

– every training observation may change the parameters of ALL models, not 

the model for its class only
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partial differentiation with respect to all different parameters individually

t  :  the t-th iteration

ε:  adjustment step size, should be carefully chosen
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a1

a2

L(a1)

Gradient Descent Algorithm
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Discriminative Training and Minimum Phone Error Rate 

(MPE) Training For Large Vocabulary Speech Recognition

• Minimum Bayesian Risk (MBR)

– adjusting all model parameters to minimize the
Bayesian Risk

• Λ: {λi,i=1,2,……N} acoustic models

• Γ: Language model parameters

• Or : r-th training utterance

• sr: correct transcription of Or

– Bayesian Risk
• u: a possible recognition output found in the lattice

• L(u,sr) : Loss function

• PΛ,Γ (u|Or) : posteriori probability of u given Or based on Λ,Γ

–

– Other definitions of L(u,sr) possible

• Minimum Phone Error Rate (MPE) Training

–

• Acc(u,sr) : phone accuracy

– Better features obtainable in the same way

• e.g.     yt = xt + Mht feature-space MPE
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Minimum Phone Error (MPE) Rate Training 

• Lattice

• Phone Accuracy 

Time

Reference phone sequence

Decoded phone sequence
for a path in the lattice
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References for MCE, MPE and Discriminative Training

• “ Minimum Classification Error Rate Methods for Speech 

Recognition”, IEEE Trans. Speech and Audio Processing, May 

1997

• “Segmental Minimum Bayes-Rick Decoding for Automatic Speech 

Recognition”, IEEE Trans. Speech and Audio Processing, 2004

• “Minimum Phone Error and I-smoothing for Improved 

Discriminative Training”, International Conference on Acoustics, 

Speech and Signal Processing, 2002

• “Discriminative Training for Automatic Speech Recognition”, 

IEEE Signal Processing Magazine, Nov 2012 
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Subspace Gaussian Mixture Model

• To increase the modeling flexibility while reducing the required free 
parameters

– In a triphone HMM, different states can have different number of substates

– Fixed number of I Gaussians in each substate, I ≈ 400

– Similar to many and varying number of Gaussian mixtures in each state in 

conventional HMM-GMM

– Each substate specified by a vector 𝑣𝑚 of S dimensions only, S ≈ 40, while the 

parameters of all Gaussians under all different triphones are determined based on 

a set of shared parameters 𝑀𝑖 , ∑𝑖 , 𝑤𝑖 , 𝑖 = 1, 2,⋯ , 𝐼
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( HMM State )j

substate weight vector 
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Subspace Gaussian Mixture Model

• A triphone HMM in Subspace GMM

…

v1

…

v2…

HMM State

…

v3

…

v4…

HMM State

…

v5

…

v6…

HMM State

Substate

Gaussian

HMM

𝐌1
𝚺1
𝐰1

…

𝐌2
𝚺2
𝐰2

𝐌𝐼
𝚺𝐼
𝐰𝐼

Shared 
Parameters

Shared

I ≈ 400, 𝑣𝑚: S dimensional, S ≈ 40
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Subspace Gaussian Mixture Model

• A triphone HMM in Subspace GMM

…

v1

…

v2…

HMM State

…

v3

…

v4…

HMM State

…

v5

…

v6…

HMM State

Substate

Gaussian

HMM

𝐌1
𝚺1
𝐰1

…

𝐌2
𝚺2
𝐰2

𝐌𝐼
𝚺𝐼
𝐰𝐼

Shared 
Parameters

… …… =
𝜇 𝑚𝑖

(D x 1)
v𝑚

(S x 1)

𝐌𝑖 (D x S)

Mi is the basis set 
spanning a subspace 
of mean (columns of
Mi not necessarily 
orthogonal)

I ≈ 400

D ≈ 39 S ≈ 40
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Subspace Gaussian Mixture Model

• A triphone HMM in Subspace GMM

…

v1

…

v2…

HMM State

…

v3

…

v4…

HMM State

…

v5

…

v6…

HMM State

Substate

Gaussian

HMM

𝐌1
𝚺1
𝐰1

…

𝐌2
𝚺2
𝐰2

𝐌𝐼
𝚺𝐼
𝐰𝐼

Shared 
Parameters

The likelihood of HMM state j given ot

𝑏𝑗 𝑜𝑡 = ෍

𝑚=1

𝑀

𝑐𝑗𝑚෍

𝑖=1

𝐼

𝜔𝑗𝑚𝑖 × 𝑁 𝑜𝑡 𝜇𝑗𝑚𝑖 , Σ𝑖 )

j: state,  m:substate,  i: Gaussian 
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References for Subspace Gaussian Mixture Model

• "The Subspace Gaussian Mixture Model– a Structured 

Model for Speech Recognition", D. Povey, Lukas Burget et. 

al Computer Speech and Language, 2011

• "A Symmetrization of the Subspace Gaussian Mixture 

Model", Daniel Povey, Martin Karafiat, Arnab Ghoshal, Petr

Schwarz, ICASSP 2011

• "Subspace Gaussian Mixture Models for Speech 

Recognition", D. Povey, Lukas Burget et al., ICASSP 2010

• "A Tutorial-Style Introduction To Subspace Gaussian 

Mixture Models For Speech Recognition", Microsoft 

Research technical report MSR-TR-2009-111
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Neural Network — Classification Task

Classifier

Male

Female

Others

ClassifierFeatures Classes

•Hair Length

•Make-up

.

.

.
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Hair Length

Make-Up

Female

Male

Voice pitch

Neural Network — 2D Feature Space
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Neural Network ‒ Multi-Dimensional Feature Space

• We need some type of non-linear function!
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Neural Network — Neurons

• Each neuron receives inputs from other neurons

• The effect of each input on the neuron is adjustable (weighted)

• The weights adapt so that the whole network learns to perform 

useful tasks
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• A lot of simple non-linearity → complex non-linearity
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Neural Network Training – Back Propagation

• Start with random weights

• Compare the outputs of the 

net to the targets

• Try to adjust the weights to 

minimize the  error 
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Gradient Descent Algorithm

𝑤1

𝑤2

𝐸(𝑤1)
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Neural Network — Formal Formulation

• Neural Network (Multi-Layer Perceptron): 
– a non-linear statistical modeling tool

– architecture: input layer റ𝑥, hidden layer ℎ, and output layer റ𝑦

– Wh, Wy: weight matrix; bh, by: bias vector

• Neural Network Training: 
– with training examples ( റ𝑥(𝑖), 𝑙(𝑖)) (𝑙(𝑖): labels)

– minimize the error function: 𝐸(𝑊ℎ,𝑊y, 𝑏ℎ, 𝑏y) = ∑𝑖 ||𝑦
(𝑖) − 𝑙(𝑖)||2

– back propagation: minimizing the error function by adjusting the parameters 

applied beforehand  

ℎ = 𝑓(𝑊ℎ റ𝑥 + 𝑏ℎ)

റ𝑦 = 𝑔(𝑊𝑦ℎ + 𝑏𝑦)

f,g: non-linear functions

e.g. 𝑓 𝑧 =
1

1+𝑒−𝑧
(sigmoid)

g 𝑧𝑚 =
𝑒𝑧𝑚

∑𝑘 𝑒
𝑧𝑘

(softmax)

റ𝑥
റ𝑦

ℎ
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References for Neural Network

• Rumelhart, David E.; Hinton, Geoffrey E., Williams, Ronald 

J. "Learning representations by back-propagating errors". 

Nature, 1986.

• Alpaydın, Ethem. Introduction to machine learning (2nd 

ed.), MIT Press, 2010.

• Albert Nigrin, Neural Networks for Pattern Recognition(1st

ed.). A Bradford Book, 1993.

• Reference: Neural Networks for Machine Learning course

by Geoffrey Hinton, Coursera
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Spectrogram
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Spectrogram
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Gabor Features (1/2)

• 2-dim Gabor filters

– 2-dim Gaussian multiplied by 2-dim sine waves

– 2-dim convolution with the 2-dim (mel-) spectrogram

• Gabor Features

– a whole set of features defined by (𝑓0, 𝑡0, 𝜎𝑓
2, 𝜎𝑡

2, 𝑤𝑓, 𝑤𝑡)

– some of them simulating human perception to some degree

– spectrogram can be read by human expert in the past

– how these features are related to sounds represented by speech 

signals can be learned by machine 

𝐺 𝑡, 𝑓 =
1

2𝜋𝜎𝑓𝜎𝑡
𝑒𝑥𝑝

−(𝑓−𝑓0)
2

2𝜎𝑓
2 +

−(𝑡−𝑡0)
2

2𝜎𝑡
2 𝑒𝑥𝑝 𝑖𝑤𝑓 𝑓 − 𝑓0 + 𝑖𝑤𝑡(𝑡 − 𝑡0)
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Gabor Features (2/2)
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Integrating HMM with Neural Networks

• Tandem System
– Multi-layer Perceptron (MLP, or Neural Network) offers phoneme 

posterior vectors (posterior probability for each phoneme)

– MLP trained with known phonemes for MFCC (or plus Gabor) 

vectors for one or several consecutive frames as target

– phoneme posteriors concatenated with MFCC as a new set of 

features for HMM

– phoneme posterior probabilities may need further processing to be 

better modeled by Gaussians

• Hybrid System

– Gaussian probabilities in each triphone HMM state replaced by 

state posteriors for phonemes  from MLP trained by feature vectors 

with known state segmentation  
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Phoneme Posteriors and State Posteriors

• Neural Network Training

റ𝑥
റ𝑦

ℎ Phone

Posterior

State

Posterior

𝑃 𝑎 𝑥

𝑃 𝑏 𝑥
⋮

𝑃 𝑏–𝑎 1 – 𝑡 𝑥

𝑃 𝑏– 𝑎(2)– 𝑡 𝑥
⋮
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Integrating HMM with Neural Networks

• Tandem System

– phoneme posterior vectors from MLP concatenated with MFCC as 

a new set of features for HMM 

Feature
Extraction

MLP

concatenation
HMM

Training

Acoustic
Models

Lexicon
Language

Model

Decoding and
search

Input
speech

output
MFCC

Gabor
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Integrating HMM with Neural Networks

• Tandem System

– phoneme posterior vectors from MLP concatenated with MFCC as 

a new set of features for HMM 

Feature
Extraction

MLP

concatenation
HMM

Training

Acoustic
Models

Lexicon
Language

Model

Decoding and
search

Input
speech

output
MFCC

Gabor
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References

• References for Gabor Features and Tandem System

– Richard M. Stern & Nelson Morgan, “Hearing Is Believing”, IEEE 

SIGNAL PROCESSING MAGAZINE, NOVEMBER 2012

– Hermansky, H., Ellis, D.P.W., Sharma, S., “Tandem Connectionist 

Feature Extraction For Conventional Hmm Systems”, in Proc. 

ICASSP 2000. 

– Ellis, D.P.W. and Singh, R. and Sivadas, S., “Tandem acoustic 

modeling in large-vocabulary recognition”, in Proc. ICASSP 2001.

– “Improved Tonal Language Speech Recognition by Integrating 

Spectro-Temporal Evidence and Pitch Information with Properly 

Chosen Tonal Acoustic Units”, Interspeech, Florence, Italy, Aug 

2011, pp. 2293-2296.
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Deep Neural Network (DNN)

• Deep Neural Network (DNN): 
– Neural network with multiple hidden layers

– architecture: with input റ𝑥, N hidden layers and output റ𝑦

• Property: 
– able to deal with huge and complicated structure of data

• Difficulties: 
– large quantities of labelled data needed for training

– very long training time needed

– solution: Restricted Boltzmann Machine for initialization

ℎ(1) = 𝑓(𝑊0,1 റ𝑥 + 𝑏0,1)

ℎ(𝑛) = 𝑓(𝑊𝑛−1,𝑛ℎ
(𝑛−1) + 𝑏𝑛−1,𝑛)

റ𝑦 = 𝑔(𝑊𝑁,𝑁+1ℎ
(𝑁) + 𝑏𝑁,𝑁+1)

റ𝑥 റ𝑦

ℎ(1) ℎ(𝑁)
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Restricted Boltzmann Machine

• Restricted Boltzmann Machine (RBM): 
– a generative model for probability of visible examples (p(v))

– with a hidden layer of random variables (h)

– topology: undirected bipartite graph

– W: weight matrix, describing correlation between visible and hidden layers

– a, b: bias vectors for visible and hidden layers

– E: energy function for a (v,h) pair

– RBM training: adjusting W, a, and b to maximize p(v)

• Property: 
– finding a good representation (h) for v in unsupervised manner

– Using large quantities of unlabelled data
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RBM Initialization for DNN Training

• RBM Initialization 
– weight matrices of DNN initialized by weight matrixes of RBMs

– after training an RBM, generate samples in hidden layer used for next layer of 

RBM

– steps of initialization (e.g. 3 hidden layers)

1. RBM training

2. sampling

… …

3. RBM training

…

4. sampling

5. RBM training

6. copy weight and bias as initialization

input samples

DNN

7. back propagation

37



Deep Neural Network for Acoustic Modeling

• DNN as triphone state classifier
– input: acoustic features, e.g. MFCC
– output layer of DNN representing triphone states
– fine tuning the DNN by back propagation using labelled data

• Hybrid System 
– normalized output of DNN as posterior of states p(s|x)
– state transition remaining unchanged, modeled by transition probabilities of 

HMM

…

s1

s2

sn

…

a11

a12

a22

ann

MFCC frames (x)

DNN
HMM
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Bottleneck Features from DNN

…… ……

xi

Size of output layer
= No. of states

……

……

new feature 𝑥𝑖
′

P(a|xi) P(b|xi) P(c|xi)

Acoustic feature

DNN
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References for DNN

• Context-Dependent Pre-trained Deep Neural Networks for Large 

Vocabulary Speech Recognition
– George E. Dahl, Dong Yu, Deng Li, and Alex Acero

– IEEE Trans. on Audio, Speech and Language Processing, Jan, 2012

• A fast learning algorithm for deep belief
– Hinton, G. E., Osindero, S. and Teh, Y

– Neural Computation, 18, pp 1527-1554, 2006

• Deep Neural Networks for Acoustic Modeling in Speech Recognition
– G. Hinton, L. Deng, D. Yu, G. Dahl, A.Mohamed, N. Jaitly, A. Senior, V. 

Vanhoucke, P. Nguyen, T. Sainath, and B. Kingsbury

– IEEE Signal Processing Magazine, 29, November 2012

• Deep Learning and Its Applications to Signal and Information Processing
– IEEE Signal Processing Magazine, Jan 2011

• Improved Bottleneck Features Using Pretrained Deep Neural Networks
– Yu, Dong, and Michael L. Seltzer

– Interspeech 2011

• Extracting deep bottleneck features using stacked auto-encoders
– Gehring, Jonas, et al. 

– ICASSP 2013 40



Convolutional Neural Network (CNN)

• Successful in processing images

• Speech can be treated as images

Spectrogram

Time

Fr
eq

u
e

n
cy
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a2

a1 b1

b2

Max
Max

Max 
pooling

Convolutional Neural Network (CNN)

• An example
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CNN

Convolutional Neural Network (CNN)

• An example
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CNN

Image

CNN

Replace DNN by CNN

Convolutional Neural Network (CNN)

Probabilities of states

• An example
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Memory
Cell

Long Short-term Memory (LSTM)

Input Gate

Output Gate

Signal control 
the input gate

Signal control 
the output gate

Forget 
Gate

Signal control 
the forget gate

Other part of the network

Other part of the network

(Other part of 
the network)

(Other part of 
the network)

(Other part of 
the network)

LSTM

Special Neuron:
4 inputs, 
1 output
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𝑧

𝑧𝑖

𝑧𝑓

𝑧𝑜

𝑔 𝑧

𝑓 𝑧𝑖

multiply

multiply Activation function f(⋅) is 
usually a sigmoid function

between 0 and 1 for

opening and closing the gate

c

𝑐′ = 𝑔 𝑧 𝑓 𝑧𝑖 + 𝑐𝑓 𝑧𝑓

ℎ 𝑐′𝑓 𝑧𝑜

𝑎= ℎ 𝑐′ 𝑓 𝑧𝑜

𝑔 𝑧 𝑓 𝑧𝑖

𝑐′

𝑓 𝑧𝑓

𝑐𝑓 𝑧𝑓

𝑐

Long Short-term Memory (LSTM)

46



x1 x2 Input

• Simply replacing the neurons with LSTM
–original network

𝑎1 𝑎2

…
…

…
…

𝑧1 𝑧2

Long Short-term Memory (LSTM)
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x1 x2

+

+

+

+

+

+

+

+

Input

𝑎1 𝑎2

4 times of parameters

Long Short-term Memory (LSTM)

48



References

Long Short-term Memory (LSTM)

• Graves, N. Jaitly, A. Mohamed. “Hybrid Speech Recognition with Deep 
Bidirectional LSTM”, ASRU 2013.

• Graves, Alex, and Navdeep Jaitly. "Towards end-to-end speech recognition 
with recurrent neural networks." Proceedings of the 31st International 
Conference on Machine Learning (ICML-14). 2014.

Convolutional Neural Network (CNN)

• Convolutional Neural Network for Image processing
– Zeiler, M. D., & Fergus, R. (2014). “Visualizing and understanding convolutional 

networks.” In Computer Vision–ECCV 2014

• Convolutional Neural Network for speech processing
– Tóth, László. "Convolutional deep maxout networks for phone recognition." 

Proc. Interspeech. 2014.

• Convolutional Neural Network for text processing
– Shen, Yelong, et al. "A latent semantic model with convolutional-pooling 

structure for information retrieval." Proceedings of the 23rd ACM International 
Conference on Conference on Information and Knowledge Management. ACM, 
2014.
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• Input words represented by 

1-of-N encoding

[ 0 0 0 ⋯ 0 1 0 0 ⋯ 0 ]

• Output layer gives the 

probabilities of words given 

the history

Prob 𝑤𝑗= 𝑖 ቚℎ𝑗

• Example:
P=120,  H=800

• Continuous space language 

modeling

Neural Network Language Modeling

vocabulary size
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x(t):input layer

y(t): output layer

s(t): hidden layer

Previous word, using 1-of-N 
encoding 
0 0 0 ……… 0 0 1 0 0 0 …

Vocab. size

Recursive structure preserves 
long-term historical context.

Probability distribution of 
next word, vocabulary size.

Recurrent Neural Network Language Modeling(RNNLM)

V

U
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RNNLM Structure

x

𝑠𝑗 𝑡 = 𝑓 ෍

𝑖

𝑥𝑖(𝑡) 𝑢𝑗𝑖 +෍

𝑙

𝑠𝑙(𝑡 − 1)𝑤𝑗𝑙

𝑦𝑘 𝑡 = 𝑔 ෍

𝑗

𝑠𝑗(𝑡) 𝑣𝑘𝑗
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Back propagation for RNNLM

1. Unfold recurrent structure

2. Input one word at a time

3. Do normal back propagation

unfold 
through time
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• Yoshua Bengio, Rejean Ducharme and Pascal Vincent. “A
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• Holger Schwenk. “Continuous space language models,”

Computer Speech and Language, vol. 21, pp. 492–518, 2007

• Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan Černocký

and Sanjeev Khudanpur. “Recurrent neural network based
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Word Vector Representations (Word Embedding)

z1

z2

dog

cat

rabbit

…

1-of-N 
encoding

of the 
word wi-1

…
…

1

0

0

The probability 
for each word as 
the next word wi

…
…

z1

z2

➢Use the input of the 
neurons in the first layer 
to represent a word w

jump
run

flower
tree

➢Word vector, word 
embedding feature: V(w)

➢Word analogy task: (king)-
(man)+(woman)→(queen)

…
…
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…… ____   wi ____ ……

Word Vector Representations – Various Architectures

• Continuous bag of word (CBOW) model

• Skip-gram 

…… wi-1 ____ wi+1 …… Neural 
Network

wi

wi-1

wi+1

Neural 
Network

wi-1
wi

wi+1

predicting the word given its context

predicting the context given a word
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Weighted Finite State Transducer(WFST)

• Finite State Machine

– A mathematical model with theories and algorithms used to design computer programs 

and digital logic circuits, which is also called “Finite Automaton”.

– The common automata are used as acceptors, which can recognize its legal input strings.

• Acceptor

– Accept any legal string, or reject it

– EX: {ab, aab, aaab, . . .} = aa*b

• Transducer

– A finite state transducer (FST) is an extension to an acceptor

– Transduce any legal input string to another output string, or reject it

– EX: {aaa, aab, aba, abb} -> {bbb, bba, bab, baa}

• Weighted Finite State Machine

– FSM with weighted transition

– Two paths for “ab”

• Through states (0, 1, 1); cost is (0+1+2) = 3

• Through states (0, 2, 4); cost is (1+2+2) = 5

final stateinitial state

outputinput

weight
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WFST Operations (1/2)

• Composition
– Combining different levels of representation

– T is the composition of  T1 and T2 ⇒T ≡ T1° T2
– The fact that T mapping u to w, implying T1 mapping u to v, and T2 mapping v to 

w.
T1 T2

T = T1。 T2

𝑎𝑎 → 𝑏𝑎 ∶ 1.1
𝑏𝑎 → 𝑐𝑏 ∶ 1.4

𝑎𝑎 → 𝑐𝑏 ∶ 2.5
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WFST Operations (2/2)

• Minimization

– The equivalent automaton with least number of states and  least 

transitions

• Weight pushing

– Re-distributing weight among transitions while kept equivalent to 

improve search(future developments known earlier, etc.), 

especially pruned search

Weight 
Pushing

Minimization
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WFST for ASR (1/6)

• HCLG ≡ H ◦ C ◦ L ◦G is the recognition graph

– G is the grammar or LM (an acceptor)

– L is the lexicon

– C adds phonetic context-dependency

– H specifies the HMM structure of context-dependent phones

Input Output

H

C

L

G

HMM state sequence

triphone

Phoneme sequence

word

triphone

phoneme 

word

word
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WFST for ASR (2/6)

• Transducer H: HMM topology

– Input: HMM state sequence

– Output: context-dependent phoneme (e.g., triphone)

– Weight: HMM transition probability

/a00

𝑠0 𝑠0 𝑠0 𝑠1 𝑠1 𝑠2 𝑠2 𝑠2 → 𝑠ℎ − 𝑎ℎ + 𝑛 ∶ 𝑎00𝑎00 𝑎01⋯
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WFST for ASR (3/6)

• Transducer C: context-dependency

– Input: context-dependent phoneme (triphone)

– Output: context-independent phoneme (phoneme)

$ aba

a b
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WFST for ASR (4/6)

• Transducer L: lexicon

– Input: context-independent phoneme (phoneme) sequence

– Output: word

– Weight: pronunciation probability

𝑠, 𝑝, 𝑖𝑦, 𝑐ℎ → speech

𝑑ℎ, 𝑎𝑥 → the
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WFST for ASR (5/6)

• Acceptor G: N-gram models

• Bigram

– Each word has a state

– Each bigram w1w2 has a transition w1 to w2

– Introducing back-off state b for back-off estimation.

– An unseen w1w3 bigram is represented as two transitions: an ε-transition 

from w1 to b and a transition from b to w3.
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WFST for ASR (6/6)

• Acceptor U: utterance

– Transition between the state labeled t-1 and the state labeled t giving 

the posterior probabilities for all HMM states given frame t

• Decoding
– 𝑤′ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑤 𝑈。 𝐻。𝐶。𝐿。𝐺
– 𝐻。𝐶。𝐿。𝐺 replacing the conventional tree structure expanded by 

lexicon trees, built off-line

– 𝑈。 𝐻。𝐶。𝐿。𝐺 constructing a graph given U, over which all 

constraints or criteria for search can be applied

frame 2 frame 3frame 1
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Prosodic Features (І) 

P1

P2
d1

d2

• Pitch-related Features (examples in Mandarin Chinese)
– The average pitch value within the syllable

– The maximum difference of pitch value within the syllable

– The average of absolute values of pitch variations within the syllable

– The magnitude of pitch reset for boundaries

– The difference of such feature values of adjacent syllable boundaries ( P1-P2 , 
d1-d2 , etc.)

– at least 50 pitch-related features
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• Duration-related Features (examples in Mandarin 

Chinese)

– at least 40 duration-related features

• Energy-related Features
– similarly obtained

syllable boundary syllable boundarypausepause

end of utterancebegin of utterance

A B C D Eba

Prosodic Features (Ⅱ)

 Pause duration  b

Average syllable duration

(B+C+D+E)/4 or ( (D+E)/2 + C )/2

Average syllable duration ratio

(D+E)/(B+C) or (D+E)/2 /C

 Combination of pause & syllable

features (ratio or product)

C*b , D*b, C/b, D/b

 Lengthening C / ( (A+B)/2 ) 

 Standard deviation of feature values
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Random Forest for Tone Recognition for Mandarin

• Random Forest 

– a large number of decision trees 

– each trained with a randomly selected subset of training data and/or a 

randomly selected subset of features

– decision for test data by voting of all trees

• • •
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Recognition Framework with Prosodic Modeling

• Rescoring Formula:

λl ,λp: weighting coefficients

( ) ( ) ( )( ) log log logl pS W P X W P W P F W = + +
Prosodic

model

• An example approach: Two-pass Recognition
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Personalized Recognizer and Social Networks

• Personalized recognizer is feasible today

– Smart phone user is personal

• each smart phone used by a single user

• user identification is known once the smart phone is turned 

on

– Personal corpus is available

• Audio data easily collected at server

• Text data available on social networks
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Recognition Module in the Cloud
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Language Model Adaptation Framework
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Recognizing Code-switched Speech

• Definition
– Code-switching occurs from word to word in an utterance

– Example : 當我們要作 Fourier Transform的時候

“Host” language “Guest” language

Code-switched System

Viterbi
Decoding

這個complexity很高
我買了iPad的配件

Speech Utterance
Mandarin English

Acoustic Model

Mandarin English

Language Model

Mandarin English

Lexicon

• Speech Recognition
– Bilingual acoustic models, language model, and lexicon

– A signal frame may belong to a Mandarin phoneme or an English phoneme, a Mandarin 

phoneme may be preceded or followed by an English phoneme and vice versa, a Chinese 

word may be preceded or followed by an English word and vice versa (bilingual triphones, 

bilingual n-grams, etc.)
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Recognizing Code-switched Speech

• Code-switching issues

– Imbalanced data distribution

• There are much more data for host language but only very limited for guest 

language

• The models for guest language are usually weak, therefore accuracy is low

– Inter-lingual ambiguity

• Some phonemes for different languages are very similar but different  (e.g.

ㄅ vs. B ), but may be produced very closely by the same speaker

– Language identification (LID)

• Units for LID are smaller than an utterance

• Very limited information is available

85%

15%

Statistics of DSP 2006 Spring

Mandarin English

這裡 是 在 講 Fourier Transform 的 性質

Mandarin MandarinEnglish

Language Identification
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Recognizing Code-switched Speech

• Some approaches to handle the above problems

– Acoustic unit merging and recovery

• Some acoustic units shared across languages: Gaussian, state, model

• Shared training data

• Models recovered with respective data to preserve the language identity

– Frame-level language identification (LID)

• LID for each frame

• Integrated in recognition
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Speech-to-speech Translation

• Language difference is a major problem in the globalized world

• For N languages considered, ~ N2 pairs of languages for translation

• Human revision after machine translation feasible

Source Language

Speech Text

Machine 

Translation

Speech

recognition

Text−to−speech
synthesis

input output

Target Language

Text Speech
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Machine Translation — Simplified Formulation

• Source language (Foreign) f: 
–word set (dictionary): F
–a sentence: f = f1f2…fj…fJ, fj∈F, J: number of words

• Target language (English) e: 
–word set (dictionary): E
–a sentence: e = e1e2…ei…eI, ei∈E, I: number of words

• Statistical Machine Translation (SMT) task: 
–model 𝑝 𝑒 𝑓
–given a new source language sentence 𝑓′, 𝑒′ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑒 𝑝 𝑒 𝑓′

–𝑒′ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑌(𝑓′) 𝑝 𝑒 𝑓′

𝑌(𝑓′): a smaller set of e considered
–𝑝 𝑒 𝑓 = 𝑝 𝑓 𝑒 𝑝(𝑒)/𝑝(𝑓) ∝ 𝑝 𝑓 𝑒 𝑝(𝑒) (Bayesian theorem)
–𝑝(𝑒): language model
–𝑝 𝑓 𝑒 : translation model
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Generative Models for SMT

• Language model (p(e)): 
–conventional n-gram model
–recurrent neural network
–domain adaptation can be applied (corpus collection needed)

• Translation model (p(f|e)):

–𝑝 𝑓 𝑒 = ∑𝑎 𝑝 𝑓 𝑒, 𝑎 𝑝(𝑎), 𝑎 : alignment 

–𝑝 𝑓 𝑒, 𝑎 : unit (word/phrase) translation model

–𝑝(𝑎): reordering model

–Example for an alignment:

He is a professor of NTU .

他是一位台大的教授。
e1 e2 e3 e4 e5 e6 e7

f1 f2 f3 f4 f5 f6 f7
For this example alignment a

𝑝(𝑓|𝑒, 𝑎)= p(He|他)*p(is|是)…

𝑝(𝑎)= p(a: He<-->他, is<-->是,….)

All probabilities trained with parallel

bilingual corpora aligned or not
83



Generative Models for SMT

• Unit translation model p(f|e,a): 

–Based on unit translation table:

–Examples:

–Tables can be accumulated from training data

p(book|書) 0.95

p(write|書) 0.05

p(walk|走) 0.8

p(leave|走) 0.2
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An Example of Reordering Model

• Lexicalized reordering model: 
–model the orientation
–orientation types: monotone(m), swap(s), discontinuous(d)
–Ex. p(他<-->He,是<-->is…)=p( {他,He,(m)}, {是,is,(m)}, {一位,a,(d)}, 

{台大,NTU,(s)}, {的,of,(s)}, {教授,professor,(d)} )

He is a professor of NTU .

他

是

一
位

台
大

的

教
授

。

m

m
d

s

s
d

Probabilities trained with 

parallel bilingual corpora
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Modeling the Phrases
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Decoding Considering Phrases

• Phrase-based Translation

– first source word covered

– last source word covered

– phrase translation considered

– phrase translation probabilities trained
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