Your browser does not support the video tag. Please use IE9+ or Google Chrome.
PowerPoint 簡報
(Lab531, 55:31)
04:00
1. (P.11 of 3.0)
00:42
2. Fourier Transform
00:13
3. (P.11 of 3.0)
00:40
4. Fourier Transform
00:03
5. Slide 4
00:04
6. Slide 5
00:02
7. See Fig. 3.6, 3.7, p.193, 195, Fig, 4.2, p.286 of text
00:07
8. Considering x(t), x(t)=0 for | t | > T1construct
00:02
9. Considering x(t), x(t)=0 for | t | > T1Fourier series for Defining envelope of Tak as X(jω)
00:03
10. Considering x(t), x(t)=0 for | t | > T1
01:16
11. spectrum, frequency domainFourier Transform
00:02
12. Considering x(t), x(t)=0 for | t | > T1
00:05
13. Considering x(t), x(t)=0 for | t | > T1Fourier series for Defining envelope of Tak as X(jω)
00:01
14. Considering x(t), x(t)=0 for | t | > T1
01:08
15. spectrum, frequency domainFourier Transform
00:38
16. Convergence IssuesGiven x(t)
00:28
17. Convergence IssuesIt can be shown
00:02
18. Convergence IssuesDirichlet’s conditions
00:06
19. Convergence IssuesIt can be shown
00:06
20. Convergence IssuesDirichlet’s conditions
00:24
21. Convergence IssuesIt can be shown
00:24
22. Convergence IssuesDirichlet’s conditions
00:58
23. Examples
00:36
24. Examples
04:09
25. Fourier Transform for Periodic Signals – Unified FrameworkGiven x(t)
06:44
26. Unified Framework: Fourier Transform for Periodic Signals
02:45
27. Examples
00:45
28. 4.2 Properties of Continuous-time Fourier Transform
00:28
29. Linearity
00:06
30. 4.2 Properties of Continuous-time Fourier Transform
00:04
31. Linearity
00:07
32. 4.2 Properties of Continuous-time Fourier Transform
00:02
33. Linearity
00:28
34. Time Shift
02:50
35. Time Shift
00:04
36. Time Shift
00:01
37. Time Shift
00:03
38. Time Shift
00:06
39. Time Shift
00:25
40. Time Shift
00:01
41. Time Shift
01:23
42. Time Shift
00:01
43. Time Shift
00:11
44. Time Shift
00:01
45. Linearity
00:01
46. 4.2 Properties of Continuous-time Fourier Transform
00:20
47. Examples
00:01
48. 4.2 Properties of Continuous-time Fourier Transform
00:01
49. Linearity
00:02
50. Time Shift
00:02
51. Time Shift
00:02
52. Time Shift
00:06
53. (P.18 of 4.0)
01:15
54. cos 𝜔 0 𝑡 𝐹 𝜋 𝛿 𝜔− 𝜔 0 +𝛿 𝜔+ 𝜔 0 , 1 2 [ 𝑒 𝑗 𝜔 0 𝑡 + 𝑒 −𝑗 𝜔 0 𝑡 ] sin 𝜔 0 𝑡 𝐹 𝜋 𝑗 𝛿 𝜔− 𝜔 0 −𝛿 𝜔+ 𝜔 0 , 1 2𝑗 [ 𝑒 𝑗 𝜔 0 𝑡 − 𝑒 −𝑗 𝜔 0 𝑡 ]
00:01
55. (P.18 of 4.0)
00:02
56. Time Shift
00:02
57. Time Shift
00:07
58. Time Shift
00:01
59. Time Shift
00:01
60. Time Shift
00:01
61. (P.18 of 4.0)
00:22
62. cos 𝜔 0 𝑡 𝐹 𝜋 𝛿 𝜔− 𝜔 0 +𝛿 𝜔+ 𝜔 0 , 1 2 [ 𝑒 𝑗 𝜔 0 𝑡 + 𝑒 −𝑗 𝜔 0 𝑡 ] sin 𝜔 0 𝑡 𝐹 𝜋 𝑗 𝛿 𝜔− 𝜔 0 −𝛿 𝜔+ 𝜔 0 , 1 2𝑗 [ 𝑒 𝑗 𝜔 0 𝑡 − 𝑒 −𝑗 𝜔 0 𝑡 ]
00:15
63. (P.18 of 4.0)
00:34
64. cos 𝜔 0 𝑡 𝐹 𝜋 𝛿 𝜔− 𝜔 0 +𝛿 𝜔+ 𝜔 0 , 1 2 [ 𝑒 𝑗 𝜔 0 𝑡 + 𝑒 −𝑗 𝜔 0 𝑡 ] sin 𝜔 0 𝑡 𝐹 𝜋 𝑗 𝛿 𝜔− 𝜔 0 −𝛿 𝜔+ 𝜔 0 , 1 2𝑗 [ 𝑒 𝑗 𝜔 0 𝑡 − 𝑒 −𝑗 𝜔 0 𝑡 ]
00:10
65. (P.18 of 4.0)
00:11
66. cos 𝜔 0 𝑡 𝐹 𝜋 𝛿 𝜔− 𝜔 0 +𝛿 𝜔+ 𝜔 0 , 1 2 [ 𝑒 𝑗 𝜔 0 𝑡 + 𝑒 −𝑗 𝜔 0 𝑡 ] sin 𝜔 0 𝑡 𝐹 𝜋 𝑗 𝛿 𝜔− 𝜔 0 −𝛿 𝜔+ 𝜔 0 , 1 2𝑗 [ 𝑒 𝑗 𝜔 0 𝑡 − 𝑒 −𝑗 𝜔 0 𝑡 ]
00:46
67. Conjugation
00:18
68. (P.32 of 3.0)
00:07
69. Conjugation
01:21
70. (P.32 of 3.0)
00:03
71. Conjugation
00:12
72. (P.32 of 3.0)
01:04
73. Conjugation
00:01
74. (P.32 of 3.0)
02:16
75. Conjugation
00:02
76. (P.32 of 3.0)
00:01
77. Conjugation
10:27
78. 𝑅𝑒 ⋅ or ⋅
00:25
79. Time Reversal
00:54
80. (P.29 of 3.0)
00:02
81. x(t) both real and even
00:01
82. (P.29 of 3.0)
00:45
83. Time Reversal
00:01
84. (P.29 of 3.0)
00:53
85. x(t) both real and even
1. (P.11 of 3.0)
2. Fourier Transform
3. (P.11 of 3.0)
4. Fourier Transform
5. Slide 4
6. Slide 5
7. See Fig. 3.6, 3.7, p.193, 195, Fig, 4.2, p.286 of text
8. Considering x(t), x(t)=0 for | t | > T1construct
9. Considering x(t), x(t)=0 for | t | > T1Fourier series for Defining envelope of Tak as X(jω)
10. Considering x(t), x(t)=0 for | t | > T1
11. spectrum, frequency domainFourier Transform
12. Considering x(t), x(t)=0 for | t | > T1
13. Considering x(t), x(t)=0 for | t | > T1Fourier series for Defining envelope of Tak as X(jω)
14. Considering x(t), x(t)=0 for | t | > T1
15. spectrum, frequency domainFourier Transform
16. Convergence IssuesGiven x(t)
17. Convergence IssuesIt can be shown
18. Convergence IssuesDirichlet’s conditions
19. Convergence IssuesIt can be shown
20. Convergence IssuesDirichlet’s conditions
21. Convergence IssuesIt can be shown
22. Convergence IssuesDirichlet’s conditions
23. Examples
24. Examples
25. Fourier Transform for Periodic Signals – Unified FrameworkGiven x(t)
26. Unified Framework: Fourier Transform for Periodic Signals
27. Examples
28. 4.2 Properties of Continuous-time Fourier Transform
29. Linearity
30. 4.2 Properties of Continuous-time Fourier Transform
31. Linearity
32. 4.2 Properties of Continuous-time Fourier Transform
33. Linearity
34. Time Shift
35. Time Shift
36. Time Shift
37. Time Shift
38. Time Shift
39. Time Shift
40. Time Shift
41. Time Shift
42. Time Shift
43. Time Shift
44. Time Shift
45. Linearity
46. 4.2 Properties of Continuous-time Fourier Transform
47. Examples
48. 4.2 Properties of Continuous-time Fourier Transform
49. Linearity
50. Time Shift
51. Time Shift
52. Time Shift
53. (P.18 of 4.0)
54. cos 𝜔 0 𝑡 𝐹 𝜋 𝛿 𝜔− 𝜔 0 +𝛿 𝜔+ 𝜔 0 , 1 2 [ 𝑒 𝑗 𝜔 0 𝑡 + 𝑒 −𝑗 𝜔 0 𝑡 ] sin 𝜔 0 𝑡 𝐹 𝜋 𝑗 𝛿 𝜔− 𝜔 0 −𝛿 𝜔+ 𝜔 0 , 1 2𝑗 [ 𝑒 𝑗 𝜔 0 𝑡 − 𝑒 −𝑗 𝜔 0 𝑡 ]
55. (P.18 of 4.0)
56. Time Shift
57. Time Shift
58. Time Shift
59. Time Shift
60. Time Shift
61. (P.18 of 4.0)
62. cos 𝜔 0 𝑡 𝐹 𝜋 𝛿 𝜔− 𝜔 0 +𝛿 𝜔+ 𝜔 0 , 1 2 [ 𝑒 𝑗 𝜔 0 𝑡 + 𝑒 −𝑗 𝜔 0 𝑡 ] sin 𝜔 0 𝑡 𝐹 𝜋 𝑗 𝛿 𝜔− 𝜔 0 −𝛿 𝜔+ 𝜔 0 , 1 2𝑗 [ 𝑒 𝑗 𝜔 0 𝑡 − 𝑒 −𝑗 𝜔 0 𝑡 ]
63. (P.18 of 4.0)
64. cos 𝜔 0 𝑡 𝐹 𝜋 𝛿 𝜔− 𝜔 0 +𝛿 𝜔+ 𝜔 0 , 1 2 [ 𝑒 𝑗 𝜔 0 𝑡 + 𝑒 −𝑗 𝜔 0 𝑡 ] sin 𝜔 0 𝑡 𝐹 𝜋 𝑗 𝛿 𝜔− 𝜔 0 −𝛿 𝜔+ 𝜔 0 , 1 2𝑗 [ 𝑒 𝑗 𝜔 0 𝑡 − 𝑒 −𝑗 𝜔 0 𝑡 ]
65. (P.18 of 4.0)
66. cos 𝜔 0 𝑡 𝐹 𝜋 𝛿 𝜔− 𝜔 0 +𝛿 𝜔+ 𝜔 0 , 1 2 [ 𝑒 𝑗 𝜔 0 𝑡 + 𝑒 −𝑗 𝜔 0 𝑡 ] sin 𝜔 0 𝑡 𝐹 𝜋 𝑗 𝛿 𝜔− 𝜔 0 −𝛿 𝜔+ 𝜔 0 , 1 2𝑗 [ 𝑒 𝑗 𝜔 0 𝑡 − 𝑒 −𝑗 𝜔 0 𝑡 ]
67. Conjugation
68. (P.32 of 3.0)
69. Conjugation
70. (P.32 of 3.0)
71. Conjugation
72. (P.32 of 3.0)
73. Conjugation
74. (P.32 of 3.0)
75. Conjugation
76. (P.32 of 3.0)
77. Conjugation
78. 𝑅𝑒 ⋅ or ⋅
79. Time Reversal
80. (P.29 of 3.0)
81. x(t) both real and even
82. (P.29 of 3.0)
83. Time Reversal
84. (P.29 of 3.0)
85. x(t) both real and even
0
/
85
Volume
1.0x
00:00
/
55:31