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Spoken Content Retrieval—Beyond Cascading
Speech Recognition with Text Retrieval

Lin-shan Lee, Fellow, IEEE, James Glass, Fellow, IEEE, Hung-yi Lee, and Chun-an Chan

Abstract—Spoken content retrieval refers to directly indexing
and retrieving spoken content based on the audio rather than
text descriptions. This potentially eliminates the requirement of
producing text descriptions for multimedia content for indexing
and retrieval purposes, and is able to precisely locate the exact
time the desired information appears in the multimedia. Spoken
content retrieval has been very successfully achieved with the
basic approach of cascading automatic speech recognition (ASR)
with text information retrieval: after the spoken content is tran-
scribed into text or lattice format, a text retrieval engine searches
over the ASR output to find desired information. This framework
works well when the ASR accuracy is relatively high, but be-
comes less adequate when more challenging real-world scenarios
are considered, since retrieval performance depends heavily on
ASR accuracy. This challenge leads to the emergence of another
approach to spoken content retrieval: to go beyond the basic
framework of cascading ASR with text retrieval in order to have
retrieval performances that are less dependent on ASR accuracy.
This overview article is intended to provide a thorough overview
of the concepts, principles, approaches, and achievements of
major technical contributions along this line of investigation. This
includes five major directions: 1) Modified ASR for Retrieval Pur-
poses: cascading ASR with text retrieval, but the ASR is modified
or optimized for spoken content retrieval purposes; 2) Exploiting
the Information not present in ASR outputs: to try to utilize the
information in speech signals inevitably lost when transcribed
into phonemes and words; 3) Directly Matching at the Acoustic
Level without ASR: for spoken queries, the signals can be directly
matched at the acoustic level, rather than at the phoneme or word
levels, bypassing all ASR issues; 4) Semantic Retrieval of Spoken
Content: trying to retrieve spoken content that is semantically
related to the query, but not necessarily including the query terms
themselves; 5) Interactive Retrieval and Efficient Presentation of
the Retrieved Objects: with efficient presentation of the retrieved
objects, an interactive retrieval process incorporating user actions
may produce better retrieval results and user experiences.
Index Terms—Spoken content retrieval, spoken term detec-

tion, query by example, semantic retrieval, joint optimization,
pseudo-relevance feedback, graph-based random walk, unsuper-
vised acoustic pattern discovery, query expansion, interactive
retrieval, summarization, key term extraction.
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I. INTRODUCTION

T ODAY the Internet has become an everyday part of human
life. Internet content is indexed, retrieved, searched, and

browsed primarily based on text, and the success of these capa-
bilities has not only changed our lives, but generated a very suc-
cessful global industry in Internet-based content and services.
Although multimedia Internet content is growing rapidly, with
shared videos, social media, broadcasts, etc., as of today, it still
tends to be processed primarily based on the textual descriptions
of the content offered by the multimedia providers.
As automatic speech recognition (ASR) technologies con-

tinue to advance, it is reasonable to believe that speech and
text offerings will eventually be symmetric, since they are al-
ternative representations of human language, in the spoken and
written form, respectively, and the transformation between the
two should be direct and straightforward. With this perspec-
tive, spoken content retrieval, or indexing and retrieving multi-
media content from its spoken part, is an important key to easier
browsing and retrieving of multimedia content in the future. In
cases where the essence of themultimedia content is captured by
its audio, especially for broadcast programs, lectures, meetings,
etc., indexing and retrieving the content based on the spoken
part not only eliminates the extra requirements of producing the
text description for indexing purposes, but can precisely locate
the exact time when the desired information appears in the mul-
timedia. The basic scenario for spoken content retrieval is there-
fore the following: when the user enters a query, which can be
either in textual or spoken form, the system is expected to search
over the spoken content and return relevant hits, possibly in-
cluding the corresponding multimedia (e.g., video).
In recent years, spoken content retrieval has achieved signif-

icant advances by primarily cascading ASR output with text in-
formation retrieval techniques [1]–[8]. With this approach, the
spoken content is first converted into word sequences or lattices
via ASR. In order to cope with ASR errors, lattices have been
used to represent the spoken content instead of a single word se-
quence [9]–[13], and subword-based techniques have been used
to some extent to address the out-of-vocabulary (OOV) problem
[11]–[14]. For a subsequent user query (represented by lattices
if spoken [8]), the text retrieval engine searches over the ASR
output, and returns the relevant spoken content.
The cascade approach was very successful for the task of

Spoken Document Retrieval (SDR, the term frequently used for
this task earlier) track of Text REtrieval Conference (TREC),
and achieved similar retrieval performance when compared
with retrieval performance from human transcriptions. For
this task, the word error rates (WERs) were 15-20%, which
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were not too far from the accuracy of the approximate manual
transcriptions, and both the queries and target documents were
relatively long which made good retrieval performance easier.
Therefore, initially, spoken document retrieval was considered
to be a “solved” problem [15]. Many successful applications
were developed based on this framework, such as SpeechFind
[16], PodCastle [17], GAudi (short for Google Audio Indexing)
[18], MIT Lecture Browser [19] and NTU Virtual Instructor
[20], [21]. However, the cascade approach was subsequently
found to work well mainly for relatively high ASR accuracies,
because the achievable retrieval performance is inevitably
highly dependent on ASR quality. It naturally becomes less
adequate when more challenging real-world tasks were con-
sidered, such as the use of short queries to retrieve short voice
segments from telephone conversations, meetings, academic
lectures, or shared videos, for spontaneous speech with OOV
words, varying acoustic conditions and higher WERs [9].
One obvious solution to rectify these issues is to reduce the

WERs of ASR systems. Much research continues to be devoted
to reducing ASRWERs, and significant improvements continue
to be achieved [22]–[37], based on which very good improve-
ments on spoken content retrieval performance were also re-
ported [38]–[47]. However, wemust assume that spoken content
on the Internet is produced by millions of different speakers, in
different parts of the world, in thousands of different languages,
on unlimited topics, and under widely varying acoustic condi-
tions. It is therefore difficult to imagine that ASR technology
will be capable of transcribing all such spoken content with low
enough WERs to enable good spoken content retrieval. This is
the motivation for the emergence of other approaches in this
area as explained below.
In recent years, researchers have begun to explore alternative

strategies to surmount the limitation of spoken content retrieval
performance imposed by the inevitable and uncontrollable ASR
errors, i.e., to find new rationales or frameworks for spoken con-
tent retrieval beyond the conventional framework of directly
cascading a text retrieval engine on top of an ASR module. Sev-
eral innovative directions have been developed, achieving re-
trieval performance less constrained by ASR accuracies. These
emerging research directions are what is being referred to as
“Beyond Cascading Speech Recognition with Text Retrieval”
in this overview article.
This article is thus intended to provide a thorough overview

of the concepts, principles, approaches, and achievements of
major technical contributions along these new directions, with
the hope that researchers can find it easier to explore additional
possibilities for future development in the promising area of
spoken content retrieval. Since this article is not going to cover
all aspects of spoken content retrieval, particularly the most
common approach of cascading speech recognition with text re-
trieval, the reader is referred to several excellent tutorial chap-
ters and papers [1]–[3], [7]. Instead, this article will focus on
the distinct subject of “Beyond Cascading Speech Recognition
with Text Retrieval”. This will be categorized into five major
directions as very briefly summarized below.
1) Modified Speech Recognition for Retrieval Purposes: This

approach uses cascading ASR and text retrieval, but the

ASR module is optimized for retrieval performance. This
idea originated from the observation that retrieval per-
formance is not always directly related to ASR accuracy,
which led to research aimed at jointly optimizing ASR
and retrieval, instead of doing them separately.

2) Exploiting Information not present in ASR outputs: Some
potentially useful information, such as the temporal struc-
ture of the signal, is inevitably lost when speech signals are
decoded into phonemes or HMM states in standard ASR.
Therefore, it is possible to augment ASR output with com-
plementary information to enhance retrieval performance.

3) Directly Matching on Acoustic Level without ASR: When
the query is spoken, it can be directly matched with spoken
content at the acoustic level, instead of at a symbolic
level, so that no standard ASR module is needed. All
the problems with ASR such as recognition errors, the
OOV problem, the need for matched annotated corpora
for training acoustic models, etc. are all automatically
eliminated.

4) Semantic Retrieval of Spoken Content: Spoken content
semantically related to the query does not always contain
the query terms. For example, with the query of “White
House” many target objects regarding the president of
United States may not include the query terms “White
House” but should be retrieved. Many semantic retrieval
techniques originally developed for text retrieval for
such purposes are useful, but very interesting approaches
specifically for spoken content were also developed.

5) Interactive Retrieval and Efficient Presentation of Re-
trieved Objects: The high degree of uncertainty in ASR
may be properly taken care of by efficient user interaction
learned from spoken dialogues. However, spoken content
is difficult to display visually on a screen, and is not as easy
to, for example, scan and select by a user, as compared
to text. Thus, technologies such as automatic key term
extraction, title generation, summarization, and semantic
structuring of spoken content are crucial for user-friendly
interfaces that enable easier access to the retrieved objects.

The remainder of this article is organized as follows.
In Section II, we first provide some necessary background
knowledge regarding spoken content retrieval. The five major
emerging directions, as summarized above, are introduced in
Sections III, IV, V, VI and VII. Finally, the concluding remarks
and the prospects for this area are given in Section VIII.

II. BACKGROUND KNOWLEDGE

In this section we provide background material for spoken
content retrieval, primarily for the framework of cascading
speech recognition and text information retrieval, but also
for useful methods beyond the cascading framework. More
complete information can be found elsewhere [1]–[3], [7].

A. Task Description for Spoken Content Retrieval

Spoken content retrieval refers to the task whereby a user en-
ters a query, and the system retrieves the information the user
wishes to find from a spoken archive, or a large collection of
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Fig. 1. The basic framework of cascading speech recognition with text re-
trieval.

spoken audio data. The query entered by the user can be ei-
ther in text or spoken form. The user usually tends to use short
key terms as queries [48]. The retrieved items for spoken con-
tent retrieval are audio signals (sometimes video). Using spoken
queries to retrieve text-based content is another widely studied
topic usually referred to as voice search [49], and is out of the
scope of this paper.
When the user enters a key term as the query, and the system

aims at returning the utterances containing the query term, or
the exact occurrence time spans of the query term, the task is re-
ferred to as Spoken Term Detection (STD) [50]. Currently, there
are major research efforts for spoken content retrieval that focus
on this task [51], [52]. Sometimes this task is also referred to
as keyword spotting. However, conventionally “keyword spot-
ting” refers to a task with a pre-defined keyword set, or all key-
words are known in advance, but for STD the query can be any
term, including OOV words. STD can be insufficient though,
because a user can prefer to be offered all spoken content rele-
vant to the query, regardless of whether the query terms are in-
cluded or not. The task of returning objects semantically related
to the query but not necessarily including the query is referred
to as semantic retrieval in this article, and which was referred to
as spoken document retrieval in some research initiatives [15],
[53]–[55]. For semantic retrieval, the retrieval target can be ei-
ther individual utterances or spoken documents, where the latter
includes multiple consecutive utterances with a coherent topic.
Topic boundaries of spoken documents in a spoken archive are
naturally given in some cases, or can be found by topic segmen-
tation techniques [56].

B. The Framework of Cascading Speech Recognition with
Text Retrieval

An intuitive approach for spoken content retrieval is to use
an ASR module to transcribe the spoken content into text first,
and then apply text information retrieval on the transcriptions.
There are usually two stages cascaded in typical spoken content
retrieval systems as shown in Fig 1, for either STD or semantic
retrieval. In the first stage (the upper half of Fig. 1), the spoken
content is processed into transcriptions or lattices by the ASR
module, based on an acoustic model, a lexicon, and a language
model. In the second stage (the lower half), after the user enters a
query, the text retrieval engine searches through the recognition
outputs (either transcriptions or lattices) to find the relevant time
spans or utterances for STD, or relevant utterances or spoken

documents for semantic retrieval. The returned time spans, ut-
terances or spoken documents are assigned scores. Only objects
with scores exceeding a threshold are shown to the users, ranked
according to the scores.

C. Evaluation Metrics

Because the STD and semantic retrieval scenarios are par-
allel, most evaluation metrics described here can be used for
both tasks, and therefore the objects here refer to either time
spans or utterances in STD, and utterances or spoken documents
in semantic retrieval. The evaluation metrics are separated into
two classes [57], as described next.
1) Evaluation of Unranked Retrieval Results: The retrieval

performance is evaluated based on the correctness of the re-
trieved objects only, while the order of the objects in the returned
lists is not considered.
Precision, Recall and F-measure are standard metrics. Pre-

cision is the fraction of retrieved objects which are relevant,
and recall is the fraction of relevant objects which are retrieved.
F-measure then integrates precision and recall. Another evalu-
ation metric for unranked retrieval results is the Actual Term
Weighted Value (ATWV) [50] whose spirit is very similar to
F-measure. ATWV has been widely used to evaluate STD sys-
tems today.
2) Evaluation of Ranked Retrieval Results: Most commercial

search engines display their retrieval results as ranked lists, and
the user’s satisfaction is highly dependent on the order of the
list, so evaluating the order of the ranked list is important.
Precision@N is the precision measure of the top N returned

objects. R-precision is similar to precision@N, except that
varies for each given query and is set to the total number of rel-
evant objects for the query in the target database.Mean Average
Precision (MAP) [58] is themean of the Average Precision over
the testing queries. The average precision for the retrieval results
of a query is defined as in (1),

(1)

where is the number of relevant objects for the query in the
target database, is the total number of objects in the returned
ranked list, is the precision for the top objects in
the list (i.e., Precision@k), and is an indicator function
which equals to one if the item at rank is a relevant object,
and zero otherwise. The value of MAP can also be understood
as the area under the precision-recall curve [57].

D. Lattices

STD based on the one-best transcription is relatively straight-
forward because the text retrieval engine can search through the
transcriptions of the target spoken archive, and the desired ob-
jects can be found. However, ASR errors degrade performance,
especially if the error rates are high. In order to have better per-
formance, given an utterance, the retrieval engine may consider
not only the word sequences with the highest confidence, but
all sequences of alternative hypotheses whose confidences are
high enough, organized as a lattice as the example in Fig. 2, in
which each arc represents a word hypothesis. In this way,
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Fig. 2. An example of a lattice.

even though the one-best transcription is not correct, it is pos-
sible to find the correct words or word sequences in the lat-
tice. Therefore, lattices are usually preferred for STD, especially
when the accuracy in the one-best transcriptions is relatively
low [9]. However, too many incorrect word hypotheses in the
lattices can also lead to problems. Various approaches, based on
posterior probabilities or confidence measures, have been used
to try to filter out some of the incorrect word hypotheses, as ex-
plained below.
With lattices, an STD system usually returns the time spans

of arc sequences whose hypotheses exactly match the query
at the relevant time spans. The confidence scores of the returned
time spans are the posterior probabilities of the corresponding
arc sequences [10]–[13], [59], [60]. The posterior probability
of an arc sequence within the lattice of an utterance , ,
is in (2).

(2)

where is an allowed word sequence in ( ) con-
taining the arc sequence ( ), and the posterior of
the word sequence given the lattice as in (3).

(3)

where and are the likelihoods for observing the
utterance given the word sequences and based on the
acoustic model set, and and are the prior probabili-
ties of or given by the language model.
For efficient search, the lattices should be indexed, and the

n-gram inverted index is one way to index the lattices [9],
[61]–[65]. In the n-gram inverted index, the information about
which word or subword n-gram appears in which lattice is
stored. Theoretically, the inverted index should contain all pos-
sible word or subword n-grams with different lengths, but when
n is large, the number of distinct n-grams can be huge. Another
approach for indexing the lattice structures is representing the
lattices as weighted automata and building an index for all
of the possible sub-strings contained in the lattices, which is
considered more efficient than the n-gram inverted index [66].
Under this general framework, the index itself is a weighted
finite state transducer (WFST) whose inputs are queries rep-
resented as text strings, and the outputs are lists of time spans
and their scores [66], [67]. When the input query is in audio
form, it is also transcribed into a lattice. All the text strings in
the query lattice are then used to search over the WFST index,
and the final results are the union of the results for each text

string. This search process can be efficiently implemented by
representing the query lattice as a WFST too, and composing
the query WFST with the index WFST [68], [69].
The arcs in the lattices can be gathered into clusters to form

sausage-like structures to make the indexing task easier and re-
duce the memory requirements. Examples of such sausage-like
lattice-based structures include Confusion Networks (CN) [70],
[71], Position Specific Posterior Lattices (PSPL) [10], [72],
[73], and others [74], [75].

III. OUT-OF-VOCABULARY QUERIES

If a word spoken in the audio is not present in the lexicon
of the recognizer, it can never be correctly recognized. There-
fore, if a query contains Out-of-Vocabulary (OOV) words, for
STD, the retrieval system cannot find the arc sequences of the
query even if the retrieval process is conducted on the lattices,
since the lattices are constructed with hypotheses of words in the
lexicon. Unfortunately, since the users usually enter queries for
those theywish to findmore information about, the less common
words and topic-specific words constitute a good portion of the
queries, and many of such words are OOV. Therefore, the per-
centage of OOV queries was found to be higher than 15% on a
real system [76].
Searching over the transcriptions or lattices based on sub-

word units has been a good approach to tackling the OOV
problem to some extent. Even though the OOVwords cannot be
recognized, they can be represented as sequences of subword
units, therefore it is possible to find them if the recognition
outputs are also represented in subword units [11]–[14],
[77]–[86]. These include subword-based lattices in which the
arcs are subword hypotheses instead of word hypotheses, or
word/subword hybrid lattices, e.g. some arcs in the lattices are
word hypotheses, while some others are subword hypotheses
[77], [87], [88]. During retrieval, when a query (OOV or not)
is entered, it is also converted into a sequence of subword units
and then matched with the subword unit sequences in these lat-
tices. Given an OOV query in text form, grapheme-to-phoneme
(or letter-to-sound) techniques are needed to estimate the sub-
word sequences for the OOV word [69], [83], [89]–[91], and
including multiple alternatives weighted by their confidences
is helpful [69], [89]. Subword units may offer better recall for
OOV queries as discussed above, very often at the price of
lower precision. For example, the subword unit sequence for
a query may appear exactly in some utterances consisting of
completely different words.
A wide range of subword units has been used in sub-

word-based retrieval, roughly divided into two categories:
linguistically motivated units (obtained based on some knowl-
edge about the specific language, with good examples include
syllables [78], [92], [93], characters (for Mandarin) [78], [92],
[93], phonemes [80], or subphone units [84]), and data driven
units (derived from the corpora utilizing statistical and/or in-
formation theoretic principles [14], [79], [81], [82], [94], with
the statistical morphs [81], [82], [94] learned from the training
corpus as a good example). There are certainly other ways to
address the OOV issues in addition to using subword units [79],
[95], but left out here for space limitation.
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IV. SCORE NORMALIZATION

For the unranked evaluation measures such as ATWV
(Section II-C1), a threshold determining whether an object is
considered as relevant is required. However, the characteristics
of the queries are usually very diverse. A threshold value good
for one query may ruin the performance of another. One way
to solve this problem is to estimate a query-specific threshold
for each query [13], [96], and another way is to normalize the
score distribution of the objects for each query to generate
commensurate score distributions for different queries [41],
[42], [97]–[99].

A. System Combination

It has been well known in ASR that system combination usu-
ally provides improved performance [24]. Because word-based
approaches suffer from OOV words and as a result have lower
recall, while subword-based approaches result in higher recall
but at the price of lower precision, an integration of systems
using different units may yield better performance. Therefore,
in addition to generating better recognition output with system
combination, it is also possible to perform the combination in
the retrieval stage, for example, first generating individual re-
trieval results from different recognition outputs produced by
different ASR systems, and then integrating the retrieval results
[78], [100]–[103]. The confidence scores of each object can be
the weighted sum of the confidence scores based on each in-
dividual recognition output, with weights either learned from
training data [101], [102], or optimized based on some evalu-
ation metrics such as MAP [103], [104]. The score normaliza-
tion introduced in Section II-F is also helpful here. It was found
that normalizing the confidence scores from different recogni-
tion outputs before integrating them may end up with better per-
formance [42].

V. MODIFIED SPEECH RECOGNITION
FOR RETRIEVAL PURPOSES

In this section, we present the first major direction: modified
speech recognition for retrieval purposes.
Motivation: There are several other application tasks in

which ASR has been integrated with some downstream pro-
cessing components in tandem. For example, a spoken language
translation (SLT) system is a cascade of ASR and machine
translation. In these tasks, although the overall performance
heavily depends on the ASR accuracy, the relationship between
the overall performance and the accuracy of the ASR module
is usually not exactly in parallel. This is reasonable. The tradi-
tional word error rate for ASR, which treats all word errors as
equally bad, is not necessarily the best measure in calibrating
the behavior of the ASR module in these different tasks. Obvi-
ously, different word errors have different impact on different
tasks (e.g. some function words are important for translation
while some others are not); the ASR module minimizing the
traditional word error rate therefore inevitably leads to only
suboptimal overall performance for different application tasks.
This is why it was found that in these cases learning ASR and
the downstream subsystems jointly by optimizing the overall
performance of the respective application tasks is better than

optimizing the ASR module and the downstream processing
separately [105]. For example, in SLT, ASR and machine
translation have been jointly learned to optimize the bilingual
evaluation understudy (BLEU) score [106].
For spoken content retrieval considered here, various studies

also pointed out that the traditional word error rate is not always
directly related to retrieval performance. First, the terminologies
or topic-specific terms constitute a good portion of the queries,
so the recognition errors of these terms may have larger influ-
ence on retrieval performance, whereas the recognition errors
for function words like “the” and “a” have almost no impact.
More precisely, the error rates for named-entities were shown to
be more correlated with retrieval performance than the normal
word error rates treating all recognition errors equally [54], and
error rates for those more informative terms weighted by inverse
document frequencies were found to be a more accurate indi-
cator for the retrieval performance than the conventional word
error rates [107]. Also, it was pointed out that substitution errors
have larger influence on retrieval than insertions and deletions
because an substitution should be considered as two errors for
retrieval [108]; missing the query term in a relevant document
may make the document considered as irrelevant, while adding
a spurious word into an irrelevant document may make the doc-
ument considered as relevant. Moreover, ASR errors replacing
a word by a semantically dissimilar word were shown to have
more impact on retrieval performance than a word with close
meaning [109]. Another interesting observation is that although
better language models were shown to reduce the ASR error
rate, this did not always translate to better STD performance
[39], [110], [111]. This is probably because language models
tend to bias the decoding towards word sequences frequently
appearing in the training data of the language models, but in the
training data the terminologies or topic-specific terms often used
in the queries are usually rare [111]. In addition, because usually
lattices instead of one-best transcripts are used in spoken con-
tent retrieval, expected error rate defined over the lattices should
be in principle a better predictor of retrieval performance than
the error rate of one-best transcriptions [112].
Although it is not easy to try to handle each of the above ob-

servations individually, it seems plausible that trying to opti-
mize the ASR module and the retrieval module jointly based on
some overall performance for retrieval may provide additional
gains as compared to simply minimizing the traditional word
error rates for the ASR module alone, as will be discussed more
below.

VI. RETRIEVAL-ORIENTED ACOUSTIC MODELING

Three related but different approaches for retrieval-oriented
acoustic modeling have been proposed in recent years. They are
briefly summarized here.
1) Weighted Discriminative Training: Discriminative

training techniques such as minimum classification error
(MCE) [113] and minimum phone error (MPE) [30], [114]
training have been widely used to obtain better HMM acoustic
models, and recently the state-level Minimum Bayes risk
(sMBR) [115] training has been shown to be one of the most
effective discriminative training methods for acoustic models
with deep neural network (DNN). In these methods, a new set



1394 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 23, NO. 9, SEPTEMBER 2015

of acoustic model parameters is estimated by maximizing
an objective function 1,

(4)

(5)

where is the -th training utterances, the reference
transcription of , an allowed word sequence in the lattice

, the accuracy estimated for by comparing
with , the posterior probability of the path

given as defined in (3) (here the acoustic model parameters
in the ASR module are included as a subscript to emphasize

this probability depends on 2), and is the total number of
utterances in the training set. Obviously, maximizing
means maximizing the expected accuracy.

in (5) is usually defined in a way that the ac-
curacies of different words, phonemes or states are equally
weighted. However, because optimizing recognition accuracy
may not optimize the retrieval performance, the definition
of can be target dependent. In weighted MCE
(W-MCE) [117]–[120], the words in a pre-defined keyword
set can have higher contributions to than other
words, so the acoustic models can learn to prevent making
mistakes when recognizing the words in the keyword set.
W-MCE was shown to yield better retrieval performance than
the original MCE on Switchboard [118], [119]. With the same
principle, when training the DNN acoustic models, by making
those states belonging to the pre-defined keywords have more
contributions to , the keyword-boosted sMBR [121]
is capable of detecting more keywords while reducing false
alarms on the NIST Open Keyword Search Evaluation in 2013
(OpenKWS13)3. Of course very often in spoken content re-
trieval the user queries cannot be known beforehand, but there
exist ways to find the terms with higher probabilities to be used
as queries [122]. Therefore, it is certainly possible to generalize
these approaches to other scenarios of spoken content retrieval.
2) Retrieval-Oriented Whole Word Modeling: The above ap-

proaches emphasize the keywords, but the optimized acoustic
models are also used for other words. A further step forward
can be taken by considering the keyword spotting scenario, and
training the whole-word models for the keywords only if the
keywords have sufficient examples in training data. In this way,
the whole-word models can better capture the variability of the
keywords and thereby deliver better performance than the con-
ventional phone-level models [123], [124]. A good example in
this category is the point process model (PPM) used in keyword
spotting, in which the keywords are detected based on the timing
of a set of phonetic events (or “landmarks”) found in the speech
signals [125]–[127].

1The MCE, MPE and sMBR can all be formulated as optimizing (5) with
different definitions for [116].

2For in (3), the acoustic model scores is actually computed
based on the acoustic model parameters . Therefore, in (3) depends on
. This is not mentioned in Section II-D.
3An overview of NIST OpenKWS13 can be found at: http://www.sig-

nalprocessingsociety.org/technical-committees/list/sl-tc/spl-nl/2013-08/sltc-
newsletter-august-2013-overview-of-the-nist-open-keyword-search-2013-
evaluation-workshop/

Fig. 3. The framework of re-estimating acoustic model parameters to optimize
the overall retrieval performance under relevance feedback scenario.

3) Retrieval-oriented Acoustic Modeling under Relevance
Feedback Scenario: Relevance feedback [128] well used in text
retrieval is useful to integrate the ASR and retrieval modules as
a whole and optimize the overall retrieval performance, rather
than considering them as two cascaded independent compo-
nents [129]–[132], as shown in Fig. 3. When a query is entered
by the user, the system offers a ranked list of retrieved objects
to the user. If the user gives some feedback to the system, for
example, selecting items 1 and 3 as shown in Fig. 3 (implying
relevant) but not item 2 (probably implying irrelevant), a new
set of acoustic models can then be re-estimated on-line based
on the feedback. Because the scores used for ranking the
objects depend on the acoustic models, the objects below item
3 not yet viewed by the user can thus be re-ranked. In this way,
the acoustic models can be “adapted locally” considering the
specific query and the corresponding feedback entered by the
individual user, resulting in “query-specific” acoustic models,
to be used for the unlimited number of acoustic conditions for
the spoken content. This framework has been successfully ap-
plied on STD with utterances as the retrieval target [129]–[132]
as briefly explained below.
In STD with utterances as the retrieval target, when the query
is entered, all utterances in the spoken archive are ranked

according to a confidence score , where is the set of
acoustic model parameters. The expected frequency of the query
in the utterance , , is an example of .

(6)

Equation (6) is parallel to the core part of (5), except that
in (5) is replaced by , the occurrence count

of the query in an word sequence which the lattice
allows. Given positive and negative (or relevant and irrele-
vant) examples for a certain query from the user relevance
feedback as explained above, the system estimates a new set
of acoustic model parameters by maximizing an objective
function very similar to (4) and (5) as in Section III-B1, but
with different definitions of as explained below. With the
new set of acoustic models , (6) is modified accordingly4, and
the retrieved results not yet viewed by the user are re-ranked.
The objective function in (4) can be the sum of the differences

between all positive and negative example pairs here,

(7)

4With the new acoustic models to update in (6), only in
(6) have to be changed without generating new lattices, so updating
on-line is not computation-intensive [129].
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where and are respectively positive and negative example
utterances. By maximizing (7) as in (4), the system tries to learn
a new set of models which better separates the scores of rel-
evant and irrelevant utterances.
Also, it has been shown that maximizing below is

equivalent to maximizing a lower bound of the retrieval perfor-
mance measure MAP in Section II-C2 [133], [134]:

(8)

where is 1 if , but 0 other-
wise. hence represents the number of positive/negative
example pairs for which the score of the positive example is
greater than that of the negative example. In addition, it will be
beneficial to include the large number of unlabeled data in the
training process by assuming the unlabeled objects are irrele-
vant. below realizes the above idea.

(9)

where is an unlabeled utterance within the returned list,
and is a weighting parameter. Experimental results showed
that all the object functions in (7) to (9) improved the retrieval
performance, was superior to , while further
outperformed [129].

A. Retrieval-Oriented Language Modeling
In keyword spotting, it was found that boosting the probabili-

ties of n-grams including query terms by repeating the sentences
including the query terms in the language model training cor-
pora improved the detection performance in the evaluations of
DARPA’s Robust Automatic Transcription of Speech (RATS)
program [135] and the NIST OpenKWS13 Evaluation [136].
Similar concept was also used in neural network based language
models (NNLM) [28], whose input is a history word sequence
represented by a feature vector, and the output is the proba-
bility distribution over the words. NNLMs are trained by min-
imizing an objective function representing the differences be-
tween words in the training corpus and the output distributions
given their history word sequences. It was found that NNLM
decreased the word error rate and perplexity, but may hurt STD
performance at the same time [39], so new training strategy for
NNLM was proposed [47]. In the new strategy, if a word is less
frequent in the training corpus (which has higher probability to
be the query term), in the objective function the difference mea-
sure obtained between this word and the output distribution of
NNLM was weighted, and thus the NNLM learned to prevent
making mistakes on the words with larger weights. It was found
that this training strategy improved the STD performance on
Vietnamese in the NIST OpenKWS13 Evaluation [47]. NNLMs
trained in this way were also found to offer higher word error
rates and perplexity compared with the conventional NNLM,
which is another evidence to support that ASRmodule specially
designed for spoken content retrieval is a reasonable direction.

B. Retrieval-Oriented Decoding
It has been proposed that the search with OOV queries can

be achieved in two steps [110]. In this framework, each utter-
ance has a word-based and a subword-based lattices. When an

OOV query is entered, in the first step, a set of utterances which
possibly contain the OOV query is obtained by searching over
the subword-based lattices. Decoding these utterances with a
new lexicon including the OOV terms in the query and then
searching over the new lattices thus obtained can yieldmore pre-
cise results compared to the subword-based retrieval, but gen-
erating new lattices on-line is not tractable. Therefore, instead
of generating new lattices, this approach inserts the word arcs
whose hypotheses are the OOV terms into the word-based lat-
tices. The time spans of these arcs are those obtained in the first
step. Then the word-based lattices are re-scored to obtain the
acoustic likelihoods and language model scores of the new arcs,
and the second step retrieval is conducted on the re-scored lat-
tices. Here the system only re-scores the existing lattices instead
of decoding the utterances, so this framework can be realistic.
For OOV queries, this framework achieved 8.7% relative im-
provement over subword-based retrieval on MIT iCampus lec-
ture set [110].
Sometimes even in-vocabulary query terms in the utterances

cannot be found in the lattices, because the hypotheses for
those in-vocabulary query terms have relatively low language
and/or acoustic model scores, and therefore they are pruned
when generating the lattices. This is especially serious for
keywords which is rarely used and thus have low language
model scores. Subword-based retrieval may address this issue
as mentioned, but the retrieval results based on subwords can
be noisy with poor precision. Another solution to this problem
is to increase the depth of the word lattices, but this may
seriously increase the computation and memory requirements.
A more realistic solution is to give different words different
pruning thresholds during decoding [97], [135]5. By giving the
interested keywords much lower pruning thresholds compared
with normal terms, this method obtained better performance
than the subword-based solution [97].

C. Retrieval-Oriented Confusion Models

Some effort has been made to model the occurrence of the
recognition errors in a systematic way, referred to as confusion
models here, and to try to optimize such models to have better
retrieval performance. There can be at least three ways to
achieve this goal: Query transformation [95], [137], [138] (to
transform the word or subword sequence of each query into the
sequences that the query tends to be mis-recognized to, and the
new set of sequences are used to retrieve the lattices), Spoken
Content transformation [139]–[141] (to transform the recog-
nition output for the spoken content instead of the query), and
Fuzzy match [142]–[146] (defining a distance between different
word or subword sequences, and the lattices containing word
or subword sequences sufficiently close to the query being
retrieved).
In all the above, a confusion model describing how the con-

fusion of a word or subword sequence is to the other is needed.
Usually this model is represented as a by matrix, where
is the number of subword units considered6. In this matrix,

the value of the element at -th row and -th column indicates

5Also called white listing [97] or keyword-aware pruning [135].
6Although the confusion of subword n-grams or words can be considered,

they are not widely used because of lack of training data.
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the probability that the -th subword unit may be misrecog-
nized as the -th subword unit (therefore this matrix is not sym-
metric). The confusion between the word or subword sequences
can then be obtained. It has been proposed to learn such confu-
sion models or matrices by optimizing the retrieval evaluation
metrics using a set of training queries and the corresponding
audio [137], [139], [140]. For the experiments of STD on Fisher
corpus, the model thus learned yielded 11% relative improve-
ments in terms of Figure of Merit (FOM) over the baseline
without transformation [140].

D. Jointly Optimized Discriminative Model Integrating
Recognition and Retrieval
A very interesting different approach is to try to define a func-

tion which can map the acoustic features of an utter-
ance and a query to a confidence score , to be used
to rank the utterances just as in (3). In this way the
speech recognition and retrieval are integrated in a single func-
tion , which can be optimized by learning from some
overall retrieval goal. Encouraging results have been obtained
on STD with some preliminary approaches along this direction
[147]–[151]. In these approaches, the above confidence score is
formulated as in (10).

(10)

where is any signal segment in the utterance ( ),
is the vector of a set of features describing the likeli-

hood that appears in (explained below), is a weight vector
to be learned from training data, and is interpreted as
the confidence that appears in . In (10), the score of the most
confident signal segment , that is, the signal segment with the
largest among all possible , is the confidence score
for the utterance . The feature vector can include var-
ious kinds of information useful for STD, such as the outputs of
the phoneme classifiers based on different models (e.g. gaussian
mixture model, recurrent neural networks, etc.) and the outputs
of articulatory feature classifiers [147]–[151]. Although there is
an exponential number of possible segments in which may
make (10) intractable, with carefully designed feature vector

, dynamic programming algorithm can efficiently solve
(10) [147]. With a set of training queries and their relevant and
irrelevant utterances, can be learned to maximize the evalu-
ation metrics of STD. Because only a single vector is used
here to model both ASR and retrieval in a very different frame-
work, it may not be easy to compare directly these approaches
with conventional approaches using state-of-the-art ASR mod-
ules. However, these approaches have been shown to work very
well in the setting of very limited training data, for which it may
not be feasible to train an ASR module reasonably well [147],
[148]. For the experiments on Switchboard, the approach based
on (10) outperformed the baseline with an ASR module using
phone-based HMMswhen the training audio size is over a range
from 500 to 5000 utterances [148].

VII. EXPLOITING THE INFORMATION NOT PRESENT
IN STANDARD ASR OUTPUTS

In this section, we present the second major direction: ex-
ploiting information not present in ASR outputs.

A. Motivation
In addition to the posterior probabilities from the lattices in

(2) to be used as the confidence scores for retrieval, other useful
cues for confidence score estimation were found in the lattices.
One example is the context of the retrieved objects within the
lattices [152]–[156]. Another example is the outputs of an OOV
detector which detects the presence of an OOV word by ana-
lyzing the score distributions of the arcs in the lattices [157]. If
the input query is OOV, and a time span is detected as an OOV
word, the corresponding confidence score can be boosted [158].
On the other hand, when speech signals are decoded into tran-

scriptions or lattices in ASR, much of useful information are no
longer present, for example, the temporal variation structure of
the signals. Therefore, when the retrieval processes were ap-
plied on top of the ASR outputs, it is a good idea to consider
if the information not present in ASR outputs can be used in
enhancing the retrieval performance. A good example is to in-
clude prosodic cues, and another series of work tried to perform
query-specific rescoring using such information.

B. Incorporating Prosodic Cues
Duration related cues have been shown useful, such as the

duration of the signal segments hypothesized to be the query
divided by the number of syllables or phonemes in the query
(or the speaking rate), and the average duration of the same syl-
lables or phonemes in the target spoken archive [149], [150],
[159]–[162]. This is because extremely high or low speaking
rate or abnormal phoneme and syllable durations may imply
that the hypothesized signal segment is a false alarm. The max-
imum, minimum and mean of pitch and energy in hypothesized
signal segments were also found to be useful [159], [160], since
extreme values of pitch and energy usually cause more ASR er-
rors [163], thus helpful to identify the false alarms. Moreover,
it was found that the results of landmark and attribute detection
(with prosodic cues included) can reduce the false alarm [164].
Thorough analysis for the usefulness of different kinds of cues
also indicated that the cues related to duration are very useful
cues [159], [160].
To integrate the different cues such as thosementioned above,

regardless of whether obtained in ASR outputs or not, the STD
problem has been formulated as a binary classification problem
[159], [160], [165]. Each candidate object is represented as a
feature vector , with each component in for a cue (e.g.
posterior probabilities, confidence scores, duration or pitch re-
lated features, etc.). Then a classifier can learn to classify those
objects to be true or not based on its feature if a set
of training queries and their associated true/false examples are
available. Such classifiers can be any kind of binary classifiers
including support vector machines (SVMs), deep neutral net-
works (DNNs) and so on.

C. Query-specific Rescoring Based on Pseudo-relevance
Feedback (PRF)
In STD after a query is entered, the system can focus on lo-

cating the time spans of only the specific query terms in the
spoken archive, not any other phoneme sequences or any other
terms or words. This implies the possibility of learning query-
specific rescoring approaches; i.e., the goal is focused on simply
exploiting the specific acoustic characteristics of a given query.
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Fig. 4. The pseudo-relevance feedback (PRF) framework of training query-
specific rescoring approaches for spoken term detection (STD).

This is quite different from the conventional ASR, for which the
occurrence of all possible phonemes and words have to be con-
sidered. The concept of such query-specific rescoring makes it
possible to consider the acoustic characteristics of the specific
query which is not present in ASR transcriptions. This is easier
to achieve (the scope is limited) than to consider the situations
for all possible phonemes or words. Although this sounds im-
practical since we need training data for each query, but can ac-
tually be realized with pseudo-relevance feedback (PRF). Also,
different from ASR tasks in which only the input utterance is fo-
cused on, for the STD tasks, all signal segments hypothesized to
be the query in the whole target spoken archive can be explored.
Pseudo-relevance feedback (PRF), also known as blind

relevance feedback, has been successfully applied on different
retrieval domains including those for text [166]–[170], image
[171], [172] and video [173]–[175]. When applied in STD
scenario, it can be used to obtain a query-specific training set
to train query-specific rescoring approaches. The framework is
shown in Fig 4. A first-pass retrieval is performed first using
some scores such as those in (2) or (6), with results not shown
to the user. A small number of retrieved objects with the highest
scores is then taken as “pseudo-relevant,” and sometimes
some objects with the lowest scores as “pseudo-irrelevant”
in addition. Not all these examples are labelled correctly, but
they should have signal characteristics reasonably similar or
dissimilar to the possible acoustic characteristics of the query
since they are found from the whole target spoken archive in
the first-pass retrieval. These positive and negative examples
are then used to train a query-specific rescoring model to
rescore and re-rank the objects in the first-pass retrieved list.
The system finally displays the re-ranked results to the user.
Several ways to realize this query-specific rescoring are in the
next subsection.

D. Different Approaches for the Query-specific Rescoring
1) Query-specific Detector: One way to realize query-spe-

cific rescoring is to learn the query-specific detectors7, whose
inputs are the hypothesized regions for a specific query, and the
outputs are whether the hypothesized regions are correct [177],

7The concept is similar to “utterance verification” or “confidence score esti-
mation” [176], although the scenarios may not be the same.

Fig. 5. Feature vector representations. Left half: a hypothesized region of the
query term from the lattice. Right half: the feature vector .

[178]. Here the hypothesized region is defined as the segment of
acoustic vectors (e.g.MFCCs) corresponding to an arc sequence
in the lattice, which has the highest confidence score among

all arc sequences in the lattice with their hypotheses being the
query as shown in the left half of Fig. 5. In the right half
of Fig. 5, a hypothesized region is divided into a sequence of
divisions based on the HMM state boundaries obtained during
the lattice construction. Each division is then represented by a
vector which is the average of the acoustic vectors in it. All these
averaged vectors in a hypothesized region are then concatenated
to form a feature for the hypothesized region . For -state
phoneme HMMs and a query term including phonemes,
the dimensionality of such a feature vector is times
the dimensionality of the acoustic vectors. The feature vector

thus capsules the acoustic characteristics of the hypothe-
sized region. Note that much of such information is lost when
the acoustic vector sequence is transformed into the lattice by
ASR. These features for the positive and negative examples can
then be used to train an SVM or DNN classifier. It was shown
that the re-ranked results yielded significant improvements over
the first-pass results on both course lectures and broadcast news
with SVM [177], and on TIMIT corpus with DNN [178]. This
approach can be equally applied when the retrieval objects are
utterances. The only difference is that the first-pass retrieved re-
sults in Fig. 4 are the lattices in the left half of Fig. 5 for the latter,
but directly the hypothesized regions for the former. Below we
always assume the retrieval target is the hypothesized region for
simplicity, although all mentioned are equally applicable for ut-
terances.
2) Exemplar-based Approach: Exemplar-based approaches

have been identified as a new paradigm which may enhance the
conventional HMM-based ASR [31]. The limited number of
parameters in HMMs are inadequate for representing the fine
details of the training audio signal set. Greatly increasing the
number of parameters may make the model over-fitted with the
training data. It was thus proposed to use the similarity between
the utterances being considered and a set of word or phoneme
examples in transcribing the utterances. Such approaches were
shown to be able to improve the conventional HMM-based
ASR, and referred to as the exemplar-based or template-based
ASR [31]. Such information as temporal structures or trajec-
tories of signals can be exploited in this way [31], hopefully
having the potential to address the deficiency of conventional
HMMs.
In STD, the above exemplar-based techniques have also

been considered. For an input query, assume some signal
segments corresponding to the query terms and some others
corresponding to other terms but easily mis-recognized as the
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query terms by conventional ASR techniques are available as
positive and negative examples. These examples can help to
rescore and re-rank the hypothesized regions obtained in the
first-pass retrieval. For example, those hypothesized regions
more similar to the positive examples than the negative ex-
amples are more likely to be truly relevant. This is formally
formulated as below. Given training examples for a given
query , , each has a label , where 1
for positive and for negative examples. The confidence
for a hypothesized region being the query can then be
represented as (11).

(11)

where represents the similarity between the hypoth-
esized region and the example , and are the weights
for example . Intuitively, should be close to the label ,
i.e., 1 for positive and for negative examples. Practically the
weights can be learned [179]8. There are also various
ways to obtain the similarity between a hypothesized
region and an example, both represented as acoustic vector se-
quences. One way is to represent the acoustic vector sequences
by fixed length feature vectors as in Fig 5 [180], and then com-
pute the similarity between the two fixed length feature vectors.
Another way is to use dynamic time warping (DTW) to eval-
uate the similarity between two acoustic vector sequences with
different lengths [181]–[183]. DTW will be further discussed
later on in Section V. This approach was shown to yield signifi-
cant improvements on both course lectures [181] and broadcast
news [184]9. This approach was also shown to offer improve-
ment additive to the retrieval-oriented acoustic modeling under
relevance feedback scenario in Section III-B3 [129].

E. Graph-based Approach

The query-specific rescoring based on PRF in the last subsec-
tions can be taken one step further. It is reasonable to expect that
globally considering the similarity structure among all hypoth-
esized regions obtained in the first pass, rather than relying on
the assumptions of examples in PRF, can better re-rank the hy-
pothesized regions. This can be formulated as a problem using
graph theory [180]–[183], [185]. As shown in Fig. 6, for each
query a graph is constructed, in which each node repre-
sents a hypothesized region for the query from the first pass,
and two nodes are connected if the similarity between the two
corresponding hypothesized regions is high. The edge weights

between the nodes and are the similarity between
them, as in the left half of Fig. 6, which can be estimated with
different approaches including DTW.
One way to exploit the graph structure in Fig. 6 is to use the

minimum normalized graph cut [180]. The minimum normal-
ized graph cut [186] splits the nodes in a graph into two disjoint
groups, where the inter-group edge weights are low, and the
inner-group edge weights are high. Since the true hypothesized
regions corresponding to the query term should have relatively

8This approach is referred to as kernel-based binary classifier [179].
9In these experiments, the weights were simply set as for

positive and negative examples.

Fig. 6. The graph constructed for all hypothesized regions obtained in the first-
pass retrieval with a query . Each node in the graph represents a hypothe-
sized region, and the edge weights represent the acoustic similarities between
the nodes.

similar acoustic characteristics, or be strongly connected on the
graph, so minimum normalized graph cut can separate true and
false hypothesized regions into two groups. To determine which
group is for the true hypotheses, the system samples one node
and asks the user to label whether it is true. Minimum normal-
ized graph cut also provides each node a score representing the
tendency of belonging to the two groups [180], so the hypothe-
sized regions can be ranked according to this score.
Another way to exploit the graph structure is using the

random walk [181]–[183], [185], which does not use any
labelled data. The basic idea is that the hypothesized regions
(nodes) strongly connected to many other hypothesized regions
(nodes) with higher/lower confidence scores on the graph
should have higher/lower scores. The original confidence scores
of the hypothesized regions, which is based on the posterior
probabilities from the lattices, therefore propagate over the
graph, and then a set of new scores for each node are obtained
accordingly. This approach is similar to the very successful
PageRank [187], [188] used to rank web pages and compute an
importance score for each page. Similar approaches have also
been found useful in video search [189], [190] and extractive
summarization [191], [192], in which the similarities are used
to formulate the ranking problem with graphs.
In this approach, given the graph for a query , each hypoth-

esized region is assigned a new confidence score evaluated
with graph ,

(12)
where is the original confidence score from lattices
such as those in (2) or (6), is the set of nodes having con-
nection with , is a node in , and is the edge
weight between and , but normalized over all edges con-
nected to :

(13)

where is the similarity between and . in (12) is
an interpolation weight. Here (12) implies depends on
two factors, the original scores in the first term and the
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scores propagated from similar hypothesized regions in the
second term. The weight normalization in (13) implies the score
of node is distributed to all nodes having connection with
. Although it is possible to use in (12) for ranking

directly, integrating with the original score
again by multiplying them was shown to offer even better per-
formance.
The graph-based approach with random walk was shown to

yield dramatic improvements on retrieval over a spoken archive
produced by a single speaker, for example, course lectures. This
is reasonable because for the same speaker the similarity among
realizations of the same query terms are relatively high, based
on which the random walk is able to very well enhance the con-
fidence scores. In the experiments on lectures for a course taught
by a single instructor, 21.2% relative improvement for speaker
independent recognition was obtained. It also yielded 13% rela-
tive improvement for a set of OOV queries on audio recordings
of McGill course lectures [193] with several speakers [185],
and 6.1% relative improvements on broadcast news with many
speakers [184]. The graph-based approach with random walk
was also shown to outperform the exemplar-based approach
with examples from PRF [181]. This is because the exemplar-
based approach only considers those information for objects
most confident to be relevant or irrelevant, whereas the graph-
based approach globally considers all the objects retrieved in
the first pass.

VIII. DIRECT MATCHING ON ACOUSTIC LEVEL WITHOUT ASR

In this section, we present the next major direction: direct
matching on acoustic level without ASR.

A. Motivation

There can be either text or spoken queries. Entering the
queries in spoken form is attractive because this is the most
natural user interface. Smartphones and hand-held or wearable
devices make spoken queries an even more natural choice.
Retrieving spoken content with spoken queries is also referred
to as query-by-example. In principle, query-by-example is more
difficult than using text queries because both the content and
the queries are to be recognized and include recognition errors.
Since the spoken queries are usually short without context
information, often including OOV words and entered under
uncontrolled conditions, resulting in relatively low recognition
accuracies. However, the spoken queries also offered a new
direction which was never possible for text queries; that is, be-
cause both the content and the queries are in speech, it becomes
possible to match the signals directly on acoustic level without
transcribing them into phonemes or words. Spoken content
retrieval becomes possible without ASR.
Giving up ASR inevitably gives up much useful informa-

tion offered by ASR, but also implies all the difficult problems
ever considered for retrieval with ASR are automatically by-
passed or eliminated. Such problems include the difficult prob-
lems of OOV words, recognition errors, low accuracies due to
varying acoustic and noisy conditions, as well as the need for
reasonably matched corpora (and annotating them) for training
the acoustic/language models to transcribe the spoken content.

For low-resourced languages with scarce annotated data, or lan-
guages without written forms, recognition seems even far from
possible. In particular, it makes great sense to bypass the need
for the huge quantities of annotated audio data for supervised
training of acoustic models. This is why this direction is also
referred to as unsupervised retrieval of spoken content, or unsu-
pervised STD. This direction exactly matches the target of the
SpokenWeb Search (SWS) task [194]–[197]10, a part of theMe-
diaEval campaigns [198], and some results in the program will
be mentioned here. A complete overview of the approaches de-
veloped in SWS in 2011 and 2012 is available [199].
The work along this direction can be roughly divided into two

categories: DTW-based andmodel-based. The former compares
the signals by template matching based on the very successful
approach of dynamic time warping (DTW), while the latter tries
to build some models for the signals and wish to benefit from
the nice properties of acoustic models.

B. DTW-based Approaches

The most intuitive way to search over the spoken content
for a spoken query is to find those audio snippets that sound
like the spoken query by directly matching the audio signals.
Since the audio events in speech signals can be produced at dif-
ferent speeds with different durations, the spoken content and
the spoken query are hardly aligned at the same pace. The dy-
namic time warping (DTW) approach [200] was invented to
deal with exactly such problems. DTW allows a nonlinear map-
ping between two audio signals or feature vector sequences,
namely the query sequence and the document sequence, and
produce a minimum distance between the two based on an op-
timal warping path found by dynamic programming.
Assume we are given a query sequence

and a document sequence , where and
are frame-based acoustic feature vectors (e.g. MFCCs).

Let be the pairwise distance between the acoustic
feature vectors and , also referred to as local distance.
The goal of DTW is to find a warping path on the -plane
as in Fig. 7 with the lowest total distance accumulating all

along the path from to ; this represents
the matching of to . For the circled path in
Fig. 7 and . The spoken documents can than be
ranked based on this lowest distance.
1) Segmental DTW: The classical DTW algorithm simply

tries to match two sequences and primarily end-to-end
[201], different from the task considered here. Because the
spoken query is usually only a small part in a spoken docu-
ment , we need to locate the spoken queries in the documents.
This is why segmental DTW is needed.
The segmental DTWwas first used in unsupervised discovery

of speech patterns from spoken documents [202], [203], but it
can also be used here. The naming of “segmental” refers to parti-
tioning the -plane into several overlapping diagonal bands
each with a different starting point and a bandwidth. For ex-
ample, in Fig. 7, a diagonal band starting from (1,1) with band-
width 4 is shown in dark points. Segmental DTW then iterates

10It was renamed as “Query by Example Search on Speech Task” (QUESST)
in 2014.
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Fig. 7. The matching of query to document ( , ). With
segmental DTW, the diagonal band starting from (1,1) with bandwidth set to 4
gives each point on the diagonal path (squares) an allowance of 4 points
on both sides for both and (rectangles), and therefore confines the warping
paths to the darkened region. Slope-constrained DTW permits a warping path
(circles) that goes from (1,1) to (20,10) if each frame in query is allowed to
match at most 2 frames in document , and vice versa, but there is no such path
in segmental DTW with bandwidth equal to 4.

through all diagonal bands, finding one optimal warping path
withminimum accumulated distancewithin each diagonal band.
Each diagonal band serves as a candidate location of the spoken
query, with allowed temporal distortion defined by the width of
the band.
2) Subsequence DTW and Slope-constraints: In segmental

DTW, the spoken query and the matched signal segment in the
spoken document can have lengths differ at most by the width of
the diagonal band. It works fine with signals of similar speaking
rates, but could be problematic in real world applications. Ob-
servations over the audio data indicate that the length of the
spoken query can be more than twice as long as the same term
in the spoken content such as broadcast news, specially because
users tend to slow down their voice query to make the pro-
nunciations clear [204]. When the speaking rates differ widely,
the longer the query, the wider the duration difference. In order
to handle this problem, subsequence DTW [201], [205]–[207]
gives up the diagonal bands of segmental DTW, but considers
the best match between the query sequence and every possible
subsequence of the document exhaustively by dynamic pro-
gramming. This approach turned out to be very useful.
Another approach is to apply to the local distance a penalty

multiplicand, which exponentially grows with the number of
query frames matched to the same document frame [208], or
the local slope of the warping path. Similar penalty is applied
whenmultiple document frames weremapped to the same query
frame, but the collected distance for the same query frame is
further normalized by the count of the corresponding document
frames; this ensures the final accumulated distance is equally
contributed by every frame in the query regardless of how many
frames was mapped to each of them. A similar approach, slope-
constrained DTW, was also proposed [204]. In this approach,
each frame in query is allowed to match at most a certain
number of frames in document , and vice versa. For example,

as shown in Fig. 7, the warping path (circles) is for slope-con-
strained DTW that each frame in document is allowed to
match at most 2 frames in query . It was shown that such
slope-constrained DTW offered similar retrieval performance
to segmental DTW, but greatly outperformed segmental DTW
when the speaking rate difference is large [204].
3) Acoustic Feature Vectors and Distance Measures used in

DTW: It is important how one specifies , and evaluates the
local distance . The simplest way is to use MFCCs for
, and Euclidean distance for , but this approach

implies that MFCC sequences with large distances are from dif-
ferent terms, which is not necessarily true. The posteriorgrams
(vectors of posterior probabilities for a set of classes) have been
used by most work to incorporate the acoustic feature distribu-
tion into distance measures.
Gaussian posteriorgrams have been used for and
[209]–[211]. To generate Gaussian posteriorgrams, a

Gaussian mixture model is trained, and each signal frame is
then represented by the vector of the posterior probabilities of
being generated from each Gaussian. The Gaussians can be
viewed as anchor points in the MFCC space, and the posterior
probability translates to the normalized distance to the mean
of each Gaussian. It was also proposed to use an multilayer
perceptron (MLP) to transform the MFCCs into phonetic poste-
riors [208]. Though supervised MLP training was needed in this
way, the MLP trained from another annotated corpus (probably
in a different language) can be used instead [206], [212], [213]
because the MLP’s phone posterior output can always serve as
features, even for a phone set different from that for the target
audio. The bottle-neck features derived from MLP can further
be used to generate Gaussian posteriorgrams [214], [215]. The
local distance for such posteriorgrams, Gaussian or phonetic, is
very often defined as the negative log of the inner product;

(14)

Other concepts of defining the features were also proposed,
including model posteriorgrams (will be mentioned again in
Section V-E) [216], [217], RBM posteriorgrams [218] and
intrinsic spectral analysis (ISA) features [219], [220]. The
performance comparison for spoken term discovery task was
reported for different feature representations and distance
measures [221].

C. Speed-up Approaches for DTW

One of the major issues of DTW is the high computation de-
mand. One way to speed up DTW is to parallelize the task by
distributing the workload to multiple processors on multi-core
servers [222] or graphics processing units (GPUs) [223]. The
other way is to develop some speed-up approaches to reduce
the computation requirement of DTW, sometimes at the price of
degraded performance. In most cases, the performance can be
preserved by performing a second pass rescoring using DTW
on the reduced search space after the first pass filtering using
speed-up approaches. The speed-up approaches are discussed
below.
1) Segment-based DTW: Both the spoken query and the

spoken documents are divided into segments of acoustically



LEE et al.: SPOKEN CONTENT RETRIEVAL—BEYOND CASCADING SPEECH RECOGNITION WITH TEXT RETRIEVAL 1401

similar frames and , where is the -th segment of
the query, and is the -th segment of the document, each
consisting of a number of frames. Hence, the DTW is reduced
to finding a warping path in the -plane of segments based
on a carefully designed local distance of . Everything
for the segment-based DTW is very similar to the original
frame-based DTW, except the path searching time is reduced
significantly [224]. The signal segments can be generated using
the hierarchical agglomerative clustering (HAC) approach
[225] by minimizing the total variance greedily when merging
two adjacent clusters into one in each iteration. This approach
provides a much faster, though coarser, first-pass filtering
for selecting possible hypothesized utterances to be used in
second-pass rescoring using frame-based DTW.
2) Lower Bound Estimation: This approach has been pro-

posed for DTW-KNN ( -nearest neighbor) search [226], and
used in segmental DTW for STD [227], [228]. The basic idea
is to compute the lower bound of the local distance for each
frame in the query off-line, which can be achieved by taking
the maximum value of the posteriorgram in the window without
knowing the query frame. Since the goal is to find the -nearest
snippets in the spoken archive, the snippets are sorted by their
lower bound estimation. Starting from the one with the least
lower bound, snippets are rescored again and put into a priority
queue of size . The rescoring process hits an early break when
the next snippet to run the DTW has higher lower bound than
the -th smallest DTW distance in the queue.
3) Indexing the Frames in the Target Archive: In addition to

the path search, another heavy computational cost is from the
local distance calculation. To find the path on the -plane,
the local distance for almost every pair of a frame in the query
and that in the spoken documents in the target archive is to
be computed. This requires a great deal of computation, even
though some frames in the archive are very dissimilar to others.
A more clever way is to try to index all the document frames in
the target archive. Then for each frame in the query, only those
frames that are similar enough to it are to be extracted for local
distance calculation.
A very efficient frame indexing approach was proposed for

this purpose [229], [230] by applying locality sensitive hashing
techniques on the frames [231], which was shown to be a good
approximation for the cosine similarity. Using randomly gener-
ated hyperplanes, the posteriorgram space is decomposed into
many cone-like regions. These hyperplanes serve as hashing
functions, mapping posteriorgrams to one of its sides. For ex-
ample, by using 64 random hyperplanes, posteriorgrams are
transformed into 64 bit values, each bit corresponding to the
sides of the hyperplane (the bit value is 1 if the posteriorgram
is on one side of the hyperplane, and 0 if it is on the other side).
A much simpler approximation for inner product can then be
performed by the exclusive-or operation instead of the ham-
ming weight calculation. The posteriorgrams in the documents
are therefore sorted by the integer values of their hash values.
When searching for document frames similar to a query frame,
document frames with integer values within a predefined radius
is returned; thus the higher bits are assured identical to the query
frame’s hash value, whereas lower bits may differ. Since all bits
are equally important, several permutations of hash values were

performed and sorted; all document frames obtained with each
of these permutations are returned if the value is within the ra-
dius. This provides a fast filtering to reduce the search space
from the whole target content to a limited set of hypothesis
frames. Experiments showed that a factor of more than three
thousands of real time speedup was achieved by this approach.
4) Information Retrieval Based DTW (IR-DTW): This ap-

proach [232] was proposed to further speed up the DTWprocess
after the indexed frames in the documents in the target archive
were retrieved by the hashing techniques as described above.
Instead of going through all points on the -plane to check
whether a document frame should be retrieved, a vector of re-
trieved document frames and a vector of extendable path end lo-
cations were recorded. In this way the complexity is no longer
proportional to the total length of the target archive, but lim-
ited by the number of frames returned by the frame indexing
approach. By applying path constraints similar to the conven-
tional DTW, and using the frame matching count as a simple
measure to estimate the path distance, hypotheses similar to the
query can be identified.

D. Modeling Acoustic Patterns for Model-based Approaches
Matching the speech frames with DTW-based approaches is

precise and effective, but without ASR much of the underlying
linguistic information has been overlooked in the matching
process. For example, the speech signals for the same word
but produced by different speakers may be very different, as a
result the DTW-based approaches may not be able to identify
they are referring to the same word, although this is easy with
ASR if the recognition is correct.
The above problem comes from the fact that the acoustic

characteristics of the speech signals for the same phoneme may
vary significantly. In ASR, we use Gaussian mixture models
(GMM) or deep neural network (DNN) to model the variations
or distributions of such acoustic characteristics based on states
in HMMs. The warping function in DTW effectively plays
the role of state transitions in HMMs to some extent, but the
GMM/DNN modeling of the acoustic characteristic distribu-
tions in ASR is actually missing in DTW-based approaches.
The posteriorgrams obtained with either GMM or DNN cer-
tainly represent ways to take care of the roles of GMM/DNN,
although these posteriorgrams are generated primarily in an
unsupervised way and are thus less precise.
On the other hand, speech signals are made of patterns much

longer than frames, and the repetitions of similar patterns
form the concept of phonemes, syllables and other phono-
logical units. Higher level linguistic units such as words or
phrases are then composed of such low level phonological
units, and it is these higher level linguistic units which carry
semantic information, including the queries we consider here.
With a highly effective ASR, speech signals are transcribed
into meaningful lexical units such as words, although with
recognition errors. When ASR is not performed here with the
various considerations mentioned above, it is still possible
to learn similar concepts and approaches from ASR, i.e., to
train acoustic models to describe the variations or distributions
of the acoustic characteristics for some fundamental units in
speech signals. The huge target spoken archive can serve as
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the natural training data for such models, but the difference is
that there is no human annotation for the target spoken archive,
or the models have to be trained in an unsupervised way. This
is reasonable nowadays because huge quantities of spoken
archives are available everywhere, but it is very difficult to
have human annotation for them.
This leads to the second category of approaches considered

here: model-based approaches. Without human annotation, we
do not have phonetic knowledge of the audio data any more, but
we can identify similar signal patterns having similar acoustic
characteristics, referred to as “acoustic patterns” here. Hence,
the purpose is to automatically discover the set of acoustic pat-
terns describing the target archive, and train acoustic models for
them using the data in the target archive. The approaches here
are based on a set of such models trained in an unsupervised
way without human annotation. For retrieval purposes, these
acoustic patterns should cover the entire target archive, and it
is desired that these acoustic patterns can be consistent to some
underlying linguistic units such as phonemes. These goals are
difficult to achieve, but important along this direction. In this
subsection we will first very briefly review some popular ap-
proaches for unsupervised discovery of acoustic patterns from
an audio data set (the target archive), and training models for
these patterns. Use of these models in spoken content retrieval
is then presented in the next subsection.
1) Bottom-up Modeling: Most approaches for modeling the

acoustic patterns follow a three-phase recursive procedure in-
cluding signal segmentation, unit clustering and model training
in each iteration [85], [202], [209], [216], [233]–[239]. In other
words, the signals in the archive are first segmented into small
units, the units are then clustered into groups based on their
acoustic characteristics, and pattern models are finally trained
for each group. This process can then be repeated iteratively.
A unified nonparametric Bayesian model was developed for
jointly modeling the above three subproblems together [217].
In this model, each pattern model is an HMM, and the seg-
ment boundaries and the pattern each segment belongs to are
hidden variables. This model tries to find the HMM parame-
ters and the hidden variables best representing the audio data
collection jointly. These automatically discovered patterns rep-
resent phoneme-like (or subword-like) patterns on the highest
level in most cases. The above approaches were then extended
to include higher level units during training [240], for example,
word-like patterns were discovered by identifying the subword-
like patterns frequently appearing together. In this way, a lex-
icon of word-like patterns can be learned and an n-gram lan-
guage model can be trained on top of these word-like patterns.
Semantics were then more or less revealed with these word-like
patterns. Experimental results indicated that subword-like pat-
terns generated in this way had high correlation with phoneme
identities.
All of the above approaches generate the models bottom-up.

Although these approaches modeled the acoustic behavior of
the target spoken archive reasonably well, in most cases they
tend to over-cluster the different realizations of the same pho-
netic identity, e.g., multiple models were very often generated
for the same linguistic units such as phonemes. This is reason-
able because different realizations for the same phoneme may

behave very differently acoustically when produced by different
speakers, in different contexts, or under different acoustic con-
ditions. Without human annotation, there is no way to indicate
they belong to the same phoneme, and as a result the machine
clusters them as different patterns.
For the task of spoken content retrieval, good acoustic pat-

terns need to have high coverage over almost all realizations of
the same linguistic identity such as a phoneme. This means the
ability for such patterns to model sound characteristics under
various conditions is almost indispensable. For example, the
realizations of the same vowel produced by male and female
speakers are very often split into different acoustic patterns
when discovered without human annotation. Without knowing
these different patterns refer to the same vowel, we may be
able to find only those terms spoken by female speakers when
searching with a female spoken query. This is a very chal-
lenging problem for approaches along this direction.
2) Top-down Constraints: It has been observed that

word-level patterns are easier to identify across speakers than
phoneme-level ones [241]. The similarity between the realiza-
tions of the same phoneme but produced by different speakers
is usually relatively hard to identify, but on the word level, the
similarities are very often much more striking. For example,
we can usually observe similar formant contours, and similar
temporal alternation between voiced/unvoiced segments and
low/high frequency energy parts.
With the above observation, a new strategy that tempers the

subword-like pattern models obtained from bottom-up training
with top-down constraints from the word level was proposed
[241]. The repeated word-level patterns are first discovered
from the spoken content using techniques such as segmental
DTW mentioned in Section V-B. For the realizations of the
same word-level pattern, DTW alignment between them is then
performed. Because they probably have the same underlying
subword unit sequences, the DTW aligned acoustic features
should therefore map to the same subword units even though
they are not acoustically similar. This approach was tested
on a task defined earlier [221] different from STD (given a
pair of audio segments, the system determined whether they
belonged to the same words), but not for STD yet. It was found
that the top-down constraints were capable of improving the
performance by up to 57% relative over the bottom-up training
alone [241].
3) Transfer Learning: Practically, acoustic patterns do not

have to be discovered from scratch. Because all languages are
uttered by human beings with a similar vocal tract structure
and thereby share some common acoustic patterns, the knowl-
edge obtained from one language can be transferred onto other
languages. For resource-rich languages like English, because a
huge amount of audio has been collected and annotated, high
quality acoustic models are available, and the phonemes rep-
resented by these models are known. To transfer the knowl-
edge from a resource-rich language, the target audio (probably
in a different language) is decoded by the recognizer of the re-
source-rich language into phonemes of the resource-rich lan-
guage, which can be directly used as acoustic patterns in the
following spoken content retrieval task, or taken as the initial
models for the bottom-up modeling approach [210]. Since the
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acoustic patterns for one language usually cannot be completely
covered by the phoneme set for another and the target audio may
include more than one languages, transfer learning from several
resource-rich languages, or decoding the target audio with rec-
ognizers of several different languages, was shown to be very
helpful [210], [211], [242]–[247].

E. Model-based Approaches in Spoken Content Retrieval

With the acoustic patterns discovered and trained from the
target spoken archive, different approaches can be applied to
perform the model-based signal matching without ASR. Below
we present some good examples.
1) Model Posteriorgrams for DTW: A very popular approach

is transforming the frame-based acoustic features in both the
spoken query and documents into the pattern posteriorgrams, or
each signal frame is represented by the posterior probabilities
for all acoustic patterns. The DTW-based approaches men-
tioned in Sections V-B and V-C can then be directly applied.
Experiments on the TIMIT corpus showed that compared to the
Gaussian posteriorgrams [209] and RBM posteriorgrams [218],
the pattern posteriorgrams from the nonparametric Bayesian
model mentioned in Section V-D relatively improved the
precision by at least 22.1% [217]. It was also shown that the
posteriorgrams for the unsupervised acoustic patterns even out-
performed the phone posteriorgrams derived from supervised
phoneme recognizers if the latter were trained with corpora not
matched to the target audio [216], [217], [248].
2) Matching the Query Frames with the Acoustic Pattern

Models for the Archive: With a complete set of subword-like
patterns, a lexicon of word-like patterns, and a language model
for word-like patterns [240], it is possible to decode the target
spoken archive off-line into word-like patterns composed of
subword-like patterns. The decoding is in exactly the same way
as the conventional ASR, but completely unsupervised, with
output being the word-like acoustic pattern sequences.
During retrieval, given a spoken query, each frame of acoustic

features in the spoken query is matched to the pattern model
sequences of the spoken documents in the archive, or evalu-
ated against the HMM states in the pattern models for the docu-
ments, very similar to the conventional ASR decoding for which
each frame of the input speech is evaluated against the HMM
states of the acoustic models [249]. When matching the frame-
based query features with the pattern models, a duration-con-
strained Viterbi algorithm [249] was proposed to avoid unre-
alistic speaking rate distortion through the matching process,
very similar to the slope-constrained DTW discussed earlier
in Section V-B, except for model-based approach here. The
spoken documents are then ranked based on the likelihoods ob-
tained with the Viterbi decoding.
Matching the signal frames in the spoken query with the

pattern models representing the target archive actually re-
quires much less computation as compared to the DTW-based
approaches, which matches the signal frames in the query
with the signal frames in the target archive as mentioned in
Sections V-B and V-C. This is because the numbers of signal
frames in the target archive can be huge, but the number of
acoustic patterns in the archive can be much less. Experimental

results showed a roughly 50% reduction in computation time
needed and 2.7% absolute MAP improvement as compared to
the segmental DTW approach in Section V-B on a Mandarin
broadcast news corpus [250].
3) Query Modeling by Pseudo Relevance Feedback: The

spoken query can also be represented by pattern models.
However, the acoustic patterns are discovered from the archive
and therefore can be slightly far from the query. One way
to take care of this problem is to train special models (and
anti-models) for the query, instead of using the pattern models
discovered from the spoken archive. This can be achieved by
the pseudo-relevance feedback (PRF) approach introduced in
Section IV-C [249], [251]. In this approach, a list of hypoth-
esized regions for the spoken query is first generated in the
first-pass retrieval, which can be achieved with any unsuper-
vised approach introduced in this section, either DTW-based,
or model-based. The top several hypothesized regions on this
list that are most possible to be the query are regarded as
pseudo-positive examples, while the hypothesized regions that
have the lowest confidence scores on the list are regarded as
pseudo-negative examples. The pseudo-positive and -negative
examples are then used to train respectively a query model and
an anti-query model online for exactly the specific query. The
final confidence scores of all hypothesized regions on the list
are then the likelihood ratio evaluated with the query model
and anti-query model for the query.
With this approach, context dependencies among acoustic

events inside the queries are better characterized with the query
model, while minor signal differences that distinguish the true
hypotheses from the false alarms are emphasized by the likeli-
hood ratio. Experimental results showed that this approach of-
fered improved performance if applied on top of either DTW-
based or model-based approaches on the TIMIT corpus, Man-
darin broadcast news and MediaEval 2011 Spoken Web Search
corpus [249], [251].
4) Multi-level Pattern to Pattern Matching across varying

Model Configurations: Both the spoken queries and documents
can be decoded using the acoustic patterns automatically dis-
covered from the archive, and represented as acoustic pattern
sequences. In this way, the matching between the query and the
documents is reduced to comparing the acoustic pattern indices
in the pattern sequences, and the on-line computation load can
be further reduced because the efficient indexing methods for
text content like inverted indexing [252] or WFST-based in-
dexing [66] can be applied. In addition, it was proposed in a
recent work that the multi-level sets of acoustic patterns based
on varying HMMmodel granularities (number of states per sub-
word-like pattern model or temporal granularity , number of
distinct subword-like patterns or phonetic granularity ) are
complementary to one another, thus can jointly capture the var-
ious signal characteristics [253]. It was shown that performing
the matching simultaneously over many multi-level sets of pat-
terns is easy, and the integrated scores can offer significantly
better performance. This is presented in more details below.
Let denote the subword-like pat-

terns in a pattern set. A similarity matrix of size is first
constructed off-line, for which the element is the simi-
larity between any two pattern HMMs and in the set.
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Fig. 8. The matching matrix in (16) for and
with subsequence matching (red) or DTW (blue and thicker).

(15)

where is the KL-divergence between the two pattern
HMMs evaluated with the states and summed over the states.
In the on-line phase, the following procedure is performed

for the entered spoken query and each document in the
archive for each pattern set. Assume for a given pattern set a
document is decoded into a sequence of patterns with in-
dices ( ) and the query into a sequence of
patterns with indices ( ). A matching matrix of
size for every document-query pair is thus constructed,
in which each entry is the similarity between acoustic pat-
terns with indices and as in (16) and shown in Fig 8 for a
simple example of and , where the element

is defined in (15),

(16)

It is also possible to consider the N-best pattern sequences rather
than only the one-best sequence here [253].
For matching the sub-sequences of with , the elements in

the matrix in (16) are summed along the diagonal direction,
generating the accumulated similarities for all sub-sequences
starting at all pattern positions in as shown in Fig. 8 (red).
The maximum is selected to represent the relevance between
document and query on the pattern set as in (17).

(17)

It is also possible to consider dynamic time warping (DTW) on
the matrix as also shown in Fig. 8 (blue and thicker) [253].
The relevance scores in (17) obtained with all

pattern sets based on different model granularities are then
averaged, and the average scores are used in ranking all the
documents for retrieval. The experiments performed on the
TIMIT corpus showed that by integrating the scores obtained
with 20 sets of subword-like patterns (
distinct subword-like patterns, states per
pattern HMM), this approach significantly outperformed the
DTW-based approach in Section V-B by 16.16% in terms of
MAP at reduced online computation requirements [253].

IX. SEMANTIC RETRIEVAL OF SPOKEN CONTENT
In this section, we present the next major direction: semantic

retrieval of spoken content.

A. Motivation and Background
Most techniques presented above are primarily for STD.

Here we shift the focus to semantic retrieval of spoken content.
Semantic retrieval has long been highly desired, for which all
objects relevant to the query should be retrieved, regardless
of including the query terms or not. For example, for a query
of “White House,” all utterances regarding to the president of
United States should be retrieved, although many of them do
not include the query “White House”. This problem has been
widely studied in text information retrieval with many very
useful approaches available. Taking the one-best transcriptions
from the ASR module as the text, all those technique devel-
oped for text information retrieval can be directly applied to
semantic retrieval of spoken content, but the ASR errors may
seriously degrade the performance. Therefore, special tech-
niques for semantic retrieval of spoken content are necessary.
Most of these techniques borrowed some concepts from text
information retrieval, but considering the special problems
with spoken content. Below, we first very briefly introduce the
basic concepts of some techniques for text information retrieval
which are useful for spoken content, although much complete
information should be found elsewhere [252], [254]. The way
to adopt techniques for text retrieval under the framework of
cascading speech recognition with text retrieval will then be
described. The techniques beyond the cascading framework
then follow.

B. Basic Concepts in Text Information Retrieval useful for
Semantic Retrieval of Spoken Content
The basic vector space model and language modeling

retrieval approach described below provide very good frame-
works on top of which query/document expansion techniques
can be applied. These techniques were designed for text re-
trieval, but equally applied for spoken content.
1) Vector Space Model [255] : In this model, documents

and queries are respectively represented as vectors and .
When the user enters a query , the documents are ranked
according to the relevance scores , which is the cosine
similarity between and . Each component of and cor-
responds to a term . Typically in text information retrieval, the
terms can be single words, keywords or longer phrases, while
for spoken content, subword units or subword unit n-grams are
widely considered in addition in order to alleviate the OOV
problem. Very often the information based on words and sub-
word units are complementary. The values of the components
in the vectors and corresponding to a term is represented
as and below. Although there exist different
ways to define and , TF-IDF weighting or its
variants is the most popularly used. In this weighting scheme,

is defined as (18) and (19).

(18)
(19)

where is the total occurrence count for the term in the
document , or term frequency (TF), and is the inverse
document frequency (IDF). is the total number of documents
in the target database, and is the number of documents

containing the term in the target database. emphasizes
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those terms appearing in only very few documents, because
they are usually more informative. The definition of is
parallel to , except that in (18) should be replaced
by .
A major issue in semantic retrieval is that many documents

relevant to the query do not necessarily contain the query terms.
The IDF here is helpful in this issue. For example, consider
the user enters a query “Information Retrieval,” which includes
two terms, “Information” and “Retrieval”. Some relevant docu-
ments may only contain the term “Retrieval” but not the whole
query of “Information Retrieval”. However, if the IDF of the
term “Retrieval” is high because it appears only in very lim-
ited number of documents, those documents containing only the
term “Retrieval” may still have high relevance scores without
“Information”. On the other hand, the IDF of the term “Infor-
mation” may be much lower because this term appears in many
other documents, so those documents including the term “In-
formation” but not the term “Retrieval” have much lower rel-
evance scores. In this way, some documents having only parts
of the query but semantically related to the query may also be
retrieved.
2) LanguageModelingRetrievalApproach[256], [257] : The

basic idea for this approach is that the query and document
are respectively represented as unigram language models

and , or term distributions and , where
is a term11. The relevance score used to rank the doc-
uments with respect to the given query is then the inverse
of the KL-divergence between and :

(20)

That is, documents whose unigram language models are similar
to the query’s unigram language model are more likely to be rel-
evant. A document’s unigram language model is estimated
based on the terms in document as in (21) below.

(21)

where is as in (18), and is usually further interpo-
lated with a background model for smoothing before being used
in (20). It has been shown that such smoothing strategies implic-
itly give higher weights to those rare but informative terms very
similar to the inverse document frequency in (19) [258], which
is helpful for semantic retrieval. for the query is parallel
to (21), except that in (21) is replaced with .
3) Query/Document Expansion: Query and document ex-

pansion are usually applied to address the problem that all terms
in the query are not in the relevant documents, for example,
the query is “airplane,” whereas there is only “aircraft” in the
relevant documents. For document expansion, with latent topic
analysis approaches [259]–[262] such as probabilistic latent
semantic analysis (PLSA) [260] and latent Dirichlet allocation
(LDA) [261], each document vector or document language
model can be expanded by assigning non-zero weights in (18)
or non-zero probabilities in (21) to those terms not appearing
in the document but found semantically related to its content

11There are works to extend the language model from unigrams to also in-
cluding n-grams and grammars, but out of the scope here [256].

[263]–[266], e.g. adding the term “airplane” to those documents
have “aircraft” only, based on the information that the terms
“airplane” and “aircraft” may appear in very similar topics.
Query expansion can be achieved in similar ways by latent
topic analysis, but it was found empirically not as effective
as document expansion [267], probably because the queries
are usually too short to reliably estimate its latent topics.
More effective query expansion is very often realized with
pseudo-relevance feedback (PRF) mentioned in Section IV-C,
i.e., those words appear repeatedly in the documents retrieved
in the first pass with the highest scores, but much less frequently
in other documents in the target database, can be properly
considered and added to the query [167], [169], [268]–[272].
The above document and query expansion techniques devel-
oped for text information retrieval can be directly applied on
the transcriptions of the spoken content as well [263], [273],
[274]. For spoken content retrieval, external information from
the web was also shown to be helpful for the expansion of both
documents and queries to mitigate the effects of unavoidable
ASR errors [275]–[278].
The vector space model and language modeling retrieval ap-

proach provide very good frameworks on top of which query
and document expansion techniques can be applied in addition.
For vector space model, query expansion can be achieved by
adding to the original query vector with the average of the
document vectors for the pseudo-relevant documents, and sub-
tracting the average of the vectors for all documents in the data-
base excluding the pseudo-relevant ones [272], so as to add to
the query the words appearing repeatedly in the pseudo-rele-
vant documents, but remove from the query those frequently ap-
pearing in other documents. For the language modeling retrieval
approach, the query expansion can be formulated by component
mixture models [270]. The language models for the pseudo-rel-
evant documents are assumed to be the interpolation of a lan-
guage model primarily for the query-related terms and a back-
ground model for general terms, with document-dependent in-
terpolation weights between the two (e.g. if an irrelevant doc-
ument is taken as pseudo-relevant, this document’s weight for
the model for query-related terms should be very low). These
document-dependent weights and the two component mixture
models are unknown, but can be estimated from the term dis-
tributions in the pseudo-relevant documents. Given the estima-
tion, the language model for query-related terms serves as the
new query model and is used to replace in (20). In addition,
regularizing the estimation process by the original query lan-
guage model was shown to yield better retrieval performance,
and this approach is known as the query-regularized mixture
model [167], [259], [260], [263], [265], [266].

C. Estimating TF/IDF Parameters Over Lattices

Because the techniques mentioned in Section VI-B above
were developed for text without errors, the ASR errors may seri-
ously degrade the performance. If the term frequencies
in (18) and (21) or inverse document frequencies in
(19) are directly counted from the one-best transcriptions, they
can be very different from the true values in the spoken content.
Therefore, better estimation of these parameters from lattices
is crucial. Because the query/document expansion techniques
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work on top of the vector space model or the language mod-
eling retrieval approach, better TF/IDF parameters are expected
to offer better performance.
The expected term frequencies estimated from the

lattices are widely used to replace the original term frequencies
when applying the vector space model in (18) and lan-

guage modeling approach in (21) [71], [279], [280].

(22)

which is parallel to (6), except that the query and the utterance
in (6) are respectively replaced by the term and the spoken

document . By replacing with , the vector
space model and the language modeling retrieval approach can
be very well enhanced [279], [281].
Inverse document frequency for a term , in (19), is

another important parameter for not only the vector space model
here, but also many other applications such as summarization
and key term extraction. According to (19), inverse document
frequency is defined based on , the number of documents
in the target database that mention the term . However, there
actually does not exist a well-known good way to estimate this
number from lattices [279]12.
One way to compute in (19) is to define it to be

using (22) [82]. However, obtained in
this way is certainly quite different from the original idea of
inverse document frequency. Another way to obtain is
to take those documents with expected frequencies of ,

in (22), exceeding a threshold as containing , but
there seems to be no good principle in selecting this threshold
[71]. There was still another relatively sophisticated approach,
in which is modeled as a linear combination of more than
a hundred cues with weights learned from training data [282].
This approach was compared with estimated on one-best
transcriptions or obtained from with a heuristically set
threshold, and was shown to yield better retrieval performance
based on vector space model [282].

D. Better Estimation of Term Frequencies Beyond Directly
Averaging over the Lattices

estimated in (22) inevitably suffers from the recogni-
tion errors with performance depending on the quality of the lat-
tices. Therefore, some techniques for better calibrating
beyond directly averaging over the lattices have been proposed
and were shown to offer better results.
For one example, the values of can be modeled as

the weighted sum of the scores based on a set of cues obtained
from the lattices. With the weights for the cues learned from the
training data, better closer to the true frequency count
than (22) was shown to be obtainable [283]. Another example
is based on the context consistency of the term considered. Be-
cause the same term usually have similar context, while quite
different context usually implies the terms are different [152].
Therefore, whether a term exists in a spoken document can
be judged by not only the scores of the arcs hypothesized to
be , but also the word hypotheses of the arcs surrounding the

12Obviously, it is not a good idea to consider a spoken document with the
term in the lattices as truly containing the term .

term in the lattices of . With some documents containing and
not containing the term as positive and negative examples, a
support vector machine (SVM) can be learned to discriminate
whether a spoken document truly contains the term based on
the context of . Then can be better calibrated by de-
creasing the value if the document is regarded as not con-
taining by the SVM and vice versa. Although this approach
needs the training data for all the terms to train an SVM for
every term considered, the training data needed can actually be
obtained by pseudo-relevance feedback (PRF) [284] mentioned
in Section IV-C in practice. calibrated in this way was
shown to be able to enhance the document representation in the
language modeling retrieval approach, based on which better
performance with query expansion was obtained [284].
It is also possible to incorporate some information lost

during ASR to better estimate than that in (22)
using approaches found useful in Section IV, for example,
the graph-based approach solved with random walk as in
Section IV-E [281], [285]. In this approach, all the arc se-
quences whose hypotheses are a specific term in the lattices
obtained from all spoken documents in the whole target archive
are clustered into groups based on their time spans, such that
those with time spans highly overlapped are in the same group.
Each group is represented as a node in a graph for the term as
in Fig. 6, and the edge weights between two nodes are based
on the acoustic similarities evaluated with DTW distances
between all pairs of acoustic vector sequences corresponding
to two arc sequences respectively belonging to the two groups.
The initial score of each node is the summation of the posterior
probabilities of all its elements. The random walk algorithm
is then performed, and the scores propagated. The new scores
for all the groups in the spoken document are summed over
to form a new estimation of the term frequency to
replace in (22). The above graph construction and
random walk are repeated for all (such as all the words in the
lexicon). Different from in (22) which only considers
the information from a single lattice, here the acoustic similarity
among all arc sequences whose hypotheses are the considered
term in the lattices of all documents in the entire archive is
considered. Experiments performed on Mandarin broadcast
news showed that better retrieval performance using document
expansion with latent topic analysis and using query expansion
with the query-regularized mixture model was achieved [281],
no matter the terms are words, subword units, or segments of
several consecutive words or subword units [281].

E. Query Expansion with Acoustic Patterns
For spoken content retrieval, even if the pseudo-relevant

spoken documents actually contain some terms suitable for
query expansion13, these terms may be OOV or incorrectly
recognized, never included in the transcriptions or lattices, and
therefore cannot help in query expansion. Subword-based query
expansion, in which suitable subword sequences are found in
the subword-based lattices for query expansion, can address
this problem to some extent [274], [287]–[290]. However,

13There were also interesting works for “query expansion” for STD, however
not for semantic retrieval purpose [286], but to expand the query with the terms
phonetically similar to the query. Here we refer to expanding the queries with
semantically related but phonetically different terms.
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Fig. 9. The framework of query expansion utilizing automatically discovered
acoustic patterns.

the subword-based lattices may have too many incorrect hy-
potheses, so the subword sequences corresponding to suitable
terms for query expansion may not be easy to find.
A new framework of query expansion for semantic retrieval

of spoken content was proposed as shown in Fig. 9, in which
a set of acoustic patterns automatically learned from the
target spoken archive in an unsupervised way as discussed in
Section V-D is utilized, with a goal to take care of the problem
mentioned above [291]. In this work, there are two levels of
acoustic patterns used, the word-like patterns, subword-like
patterns, plus the lexicon and the language model for the
word-like patterns as mentioned in Section V-D, all learned
from the target spoken archive [240] (lower middle of Fig. 9).
As shown of the lower half of Fig. 9, each spoken document
is represented in two different forms: lattices in text form
(hypothesis of each arc is a word or a subword unit) generated
by the conventional ASR module (bottom right corner of
Fig. 9), and the one-best acoustic pattern sequences for each
spoken document generated by a decoder very similar to ASR
module, except based on a set of acoustic/language models and
a lexicon for the automatically discovered acoustic patterns
[292] (bottom left corner).
When a text query is entered, the conventional retrieval en-

gine (upper right of Fig. 9) matches the query terms with the lat-
tices for spoken documents (in text form) to generate the first-
pass retrieval results14. The top-ranked documents are selected
as pseudo-relevant documents. The system then extracts the text
terms possibly related to the query from these pseudo-relevant
documents to generate the expanded query in text form (upper
middle of Fig. 9), which gives a new set of retrieval results via
the retrieval engine in text (upper left).
In addition, we have the second version of the expanded

query based on acoustic patterns. The acoustic patterns
(word-level or subword-level) repeatedly occurring in the
pseudo-relevant documents, probably corresponding to some

14Because the acoustic patterns are discovered in an unsupervised way, the
system never knows which text term or which phoneme an acoustic pattern cor-
responds to. But the query is in text, so the acoustic patterns cannot be used in
the first-pass retrieval.

query-related terms but being OOV or incorrectly recognized
therefore not present in the lattices obtained with ASR, are
also used to form the second expanded query composed of
acoustic patterns. Then the expanded query in acoustic patterns
is used to retrieve the spoken documents expressed in one-best
acoustic pattern sequences. In this way, the acoustic patterns
corresponding to some important query-related terms which are
OOV or incorrectly recognized by the conventional ASR can
be included in the expanded query, and the spoken documents
containing these acoustic patterns can thus be retrieved. The re-
sults for the two expanded queries are finally integrated (upper
left of Fig. 9) and shown to the user. Preliminary experiments
on broadcast news showed that the extra query expansion based
on acoustic patterns could offer extra improvements than the
conventional query expansion based on only the lattices in text
form [291].

F. Semantic Retrieval without ASR
Almost all approaches mentioned in Section V achieved

without ASR focused on the task of STD by matching the
signals directly on the acoustic level without knowing which
words are spoken. It seems all they can do is STD. Intuitively
semantic retrieval is difficult to achieve without knowing the
words, because the semantics or semantic relationships between
utterances are carried by or based on words. In experiments on
Mandarin Broadcast News [293], the DTW-based query-by-ex-
ample approach mentioned in Section V-B yielded an MAP
score of 28.3% for STD or to return all utterances containing
the query terms; but reduced to 8.8% only on the same spoken
archive with the same query set using same DTW-based ap-
proach when the goal was switched to semantic retrieval, or to
return all spoken documents semantically related to the query.
This is clearly because many of the spoken documents semanti-
cally related to the query didn’t contain the query terms, so the
DTW-based approaches simply had no way to retrieve these
documents. However, some recent work actually managed to
achieve the goal of semantic retrieval without ASR to some
initial extent as summarized below.
1) Query Expansion without Knowing the Words: When the

voice of “United States” is in the original spoken query, we can
expand this query with the audio of “America”. Then the spoken
documents including “America” but not the original query
“United States” can also be retrieved. This can be achieved with
an ASR module, but becomes difficult without ASR, because
the system doesn’t know which signal segment corresponds to
the words “United States” or “America”. Fortunately, the phe-
nomenon that semantically related terms frequently co-occur
in the same spoken documents remains true for automatically
discovered acoustic patterns with unknown semantics.
We can first use the conventional query-by-example approach

(e.g. DTW-based) to locate the documents containing the orig-
inal spoken query, and then find those acoustic patterns fre-
quently co-occurring with the query in the same documents. Al-
though which words these acoustic patterns correspond to are
not known at all, they may correspond to terms semantically re-
lated to the original query, so can be added to the original query
for expansion. However, the acoustic patterns corresponding to
function words usually appear frequently in most spoken docu-
ments including those retrieved in the first pass, therefore may
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also be added to the query and cause interferences. This is why
query-regularized mixture model [167] was used to filter out
such acoustic patterns for function words [293]. In addition,
those spoken documents retrieved by shorter acoustic patterns
in the spoken queries should be assigned lower relevance scores
[294] because very short acoustic patterns may correspond to
subwords rather than real terms. With these approaches, the
MAP scores of semantic retrieval without ASR for the exper-
iments on Mandarin broadcast news were improved from 8.8%
(DTW-based only) to 9.7% (with query expansion) [293], which
was still low, but the improvement was not trivial. This showed
that semantic retrieval without ASR is achievable to some ex-
tent, although remains to be a very challenging task.
2) Topic Modeling: Topic models learned from the target

archive can be helpful for semantic retrieval. The mainstream
topic modeling approaches developed for text such as PLSA and
LDA can be directly applied on the spoken content when tran-
scribed into text by ASR. This works even with a recognizer
for a language different from the target audio. For example, one
can transcribe the English audio with a Hungarian phone recog-
nizer, and take the Hungarian phone n-grams as words for topic
modeling [295].
Topic modeling can be performed on spoken content even

without ASR by taking the automatically discovered acoustic
patterns as words. With the topic models, for example, spoken
documents can be expanded by acoustic patterns semantically
related to its topics but originally not in the documents. The
word-level acoustic patterns can also be discovered jointly with
the latent topic models [296]. In this approach, segmental DTW
mentioned in Section V-B was employed first to discover a set
of audio intervals, and similar audio intervals very probably
sharing the same underlying text transcription were linked
together [234]. In this way, the audio intervals and their links
actually described the characteristics of the spoken documents
without knowing exactly which audio intervals may be in-
stances of which spoken words or phrases. As a result, based
on the characteristics of the documents, the acoustic patterns,
the probabilities of observing the acoustic patterns given the
latent topics, and the latent topic distribution for the spoken
documents were jointly learned from the spoken archive. This
approach has not yet been applied on semantic retrieval without
ASR at the time of writing this article, but the experiments
conducted on a set of telephone calls from the Fisher Corpus
have demonstrated that the framework successfully provided
a means of summarizing the topical structure of an spoken
archive by extracting a small set of audio intervals which are
actually instances of representative words or phrases for the
discovered latent topics [296].

X. INTERACTIVE RETRIEVAL AND EFFICIENT PRESENTATION
OF RETRIEVED OBJECTS

In this section, we present the next major direction: interac-
tive retrieval and efficient presentation of retrieved objects.

A. Motivation and Background
Most retrieval processes are completed interactively, even for

text retrieval. The system returns list of items found, the user
selects some of them, and the system further returns more infor-
mation and so on. This is because the users usually tend to enter

short queries not specific enough to describe what they actually
intend to find, so very often a few iterations are needed to locate
them. For text information, it is easy to extract some snippets
for the items found and list them on the screen, and it is easy for
the users to find out the desired items at a glance and click on
them. Therefore, interactive retrieval is straightforward.
For the spoken content, however, it is not easy to display the

retrieved items on the screen, and it is not easy for the user to
browse across them, simply because the items are audio (or plus
video) signals which can only be played back sequentially, and
it is not easy to verify if they include the desired information
without completely going through them. The high uncertainty
of ASR make the retrieval much less reliable and the interac-
tive process highly desired, but the difficulties in showing the
retrieved objects on the screen and having them browsed by
the user may make the interactive process very troublesome and
discouraging. For example, the subword-based approaches may
lead to relatively low precision for the retrieved items, and the
user may find it very boring to spend the time to go through the
retrieved objects because many of them are irrelevant. There-
fore, interactive retrieval in a way presenting the retrieved items
on screen in a comprehensible interface to enable the user to
easily navigate across them is crucial. As discussed below, to au-
tomatically extract key terms, summaries and generate titles for
spoken documents, to automatically construct semantic struc-
tures for the spoken content or the retrieved objects, and to offer
interactive retrieval in the form of spoken or multi-modal dia-
logues are possible solutions to these problems.
There have been extensive research aiming for efficient pre-

sentation and easy access of spoken (or multimedia) content de-
veloped in the past decades or so, some of which were under the
scenario of spoken content retrieval, but not all. A few examples
are below. The NewsTuner system [297] analyzed the latent se-
mantics of the news and talk radio programs and suggested pro-
grams to the user. The Broadcast News Navigator of MITRE
[298] answered questions for the news and offered summaries
for the news. The National Taiwan University (NTU) Broad-
cast News Navigator [299] was able to automatically generate
titles and summaries for news stories, and organize the news
stories in hierarchical structures labelled by automatically ex-
tracted key terms under the scenario of interactive spoken con-
tent retrieval [300]. The MIT Lecture Browser [19] automati-
cally segmented, transcribed and indexed course lectures and
offered efficient ways to retrieve the audio and video segments
of the lectures. The FAUVideo Lecture Browser displayed auto-
matically extracted key terms for access of video lectures [301].
National Taiwan University (NTU) Virtual Instructor15,

a course lecture system developed at NTU [20], [302], is a
good example for the concepts discussed here. Fig. 10 are the
example screenshots for the learner/system interactions with
the NTU Virtual Instructor for a course on Speech Processing
offered at NTU and supported by the system. In Fig. 10(a), a
learner entered the query “triphone” in the blank at the upper
right corner, and the retrieval system found a total of 163 utter-
ances in the course containing the query term “triphone”. The
learner can click the buttons “Play” and listen to the lectures

15http://sppc1.ee.ntu.edu.tw/loach/lecture_2/
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Fig. 10. Example screenshots of NTU Virtual Instructor: (a) spoken content retrieval with input query “triphone,” (b) slide, summary and keyterms for the slide
with title “5-7 Classification and Regression Tree (CART)” linked from the first item in (a), (c) example learning path for the key term “Entropy” recommended
by the system.

starting with these utterances, or click the links for the slides for
lectures including these utterances, for example the slide for the
first item with title “5-7 Classification and ……” (in the green
frame), to jump to the complete information for the slides. The
automatically extracted key terms for the slides are also listed
(in the blue frame for the first item) to help the user understand
what each slide is all about. If the learner clicked the link for
the slide, he saw the screenshot in Fig. 10(b), where he not only
had the slide as on the right, but found that the lecture for this
slide was 10 minutes and 23 seconds long (in the green frame),
and he could click the bottom “Play Summary” (with the red
edges) to listen to a summary of only 1 minute and 2 seconds
long. In addition, the learner saw the relationships between all
key terms used in this slide and other key terms used in this
course automatically extracted from the lectures (referred to as
the key term graph here). The key terms of this slide were in a
yellow bar (e.g. “classification and regression trees” on the left
of the yellow bar), while those key terms below the yellow bar
(e.g. “entropy”) were the other key terms used in this course
related to the one in the yellow bar. If the learner clicked the
key term “entropy,” as in Fig. 10(c), the system then showed

all slides in the course including this key term and where the
key term appeared the first time as an example learning path
recommended. Therefore, the learner can choose to learn more
about “entropy” sequentially from the beginning or towards
more advanced topics if needed.

B. Summarization, Title Generation and Key Term Extraction
for Spoken Documents
Displaying the automatically extracted summaries, titles or

key terms can be a good approach to facilitate the browsing
of the spoken content, specially across the retrieved objects as
summarized below.
1) Summarization: Spoken document summarization [303]

has been extensively investigated since 1990s for various
purposes not limited to retrieval. Spoken documents in varying
genre and domain were considered, including news [299],
[304]–[307], meeting records [308]–[311], lectures [302],
[312]–[314] and conversational speech [315]. Extractive sum-
marization is usually considered, for which the summary is
a set of utterances, phrases or speaker turns automatically
selected from a spoken document. The techniques of extractive
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spoken document summarization spans widely, and only a few
examples are mentioned here. A popularly used unsupervised
approach is the MaximumMarginal Relevance (MMR) method
[316]. It uses a greedy approach for utterance selection and
considers the trade-off between the importance of the utterances
and the redundancy among the selected utterances. Various
approaches were used to estimate the importance of utterances,
for example, topic analysis such as PLSA [317], [318]. An-
other well-known unsupervised approach is the graph-based
approach [192], [319], which analyzes the overall relationship
among the utterances of a spoken document with a graph using
approaches very similar to those explained in Section IV-E.
With the availability of a set of training documents and their
reference summaries, supervised learning can be used. In such
cases, the task of extractive summarization was very often
considered as a binary classification problem determining
whether to include an utterance in the summary [309], [320].
More sophisticated approaches were proposed recently which
enable the models to learn to select directly the best utter-
ance subset from a spoken document to be the summary by
considering the document as a whole [310], [321]–[324]. In
these latter approaches, the different goals such as including
important utterances and minimizing redundancy can be jointly
learned [321].
Spoken content retrieval and spoken document summariza-

tion share some common ground, since both of them need to
identify the important components or parts (e.g. keywords) in
spoken content. In the mainstream spoken document summa-
rization techniques, the spoken documents are first transcribed
into text by ASR, and approaches like MMR and graph-based
methods are applied on the ASR outputs. Considering the ASR
errors, multiple recognition hypotheses were used [325], and
utterances with lower probabilities of being erroneous are se-
lected (e.g. considering confidence scores) [326]. All these can
be regarded as the “cascading framework” of spoken document
summarization, kind of in parallel to the “cascading framework”
of spoken content retrieval. Approaches beyond the “cascading
framework” were also proposed. For example, just as ASR can
be optimized for spoken content retrieval in Section III, ASR
can also be optimized for summarization by considering the
word significance in minimum Bayes-risk decoding [327]. In
addition, the prosodic features can help not only retrieval as in
Section IV-B, but summarization too [321], [328]–[330], since
prosodic features help to identify the important part in speech.
As spoken content can be retrieved by transfer learning from
a different language or even without ASR in Section V, sum-
marizing English spoken documents using a Czech phone rec-
ognizer is achievable [331], and by taking the automatically
discovered acoustic patterns as words, MMR can also generate
good summaries without ASR [332].
2) Title Generation: One example approach is to learn a term

selection model, a term ordering model and a title length model
from the training corpus including text documents and their
human generated titles. The term selection model tells if a term
in a document should be selected and used in the title. This in-
cludes to select both key terms and the so-called “title terms”
(those are not key terms but usually appear in titles). The term
ordering model includes strong language models to make sure

the order of the selected terms is good and the title is read-
able. The title length model offers proper length for the title.
A Viterbi algorithm is then performed based on the scores from
these models over the words used in the summary to generate
the title [299], [333].
3) Key Term Extraction: TF-IDF in (18) has been well

known to be a good measure for identifying key terms [334],
[335], but other measures and approaches beyond the TF-IDF
parameters have also been investigated and shown to offer
better key terms [336]–[341]. For example, the feature pa-
rameters from latent topic models such as PLSA (key terms
are usually focused on small number of topics) [339], [341],
information from external knowledge resources like Wikipedia
[341], and prosodic features extracted from audio signals (key
terms are usually produced with slightly lower speed, higher
energy and wider pitch range) [340], [341] were found to be
useful, and machine learning models were able to provide
better solution if some training data with reference key terms
were available [336], [340].

C. Semantic Structuring for Spoken Content
This includes global semantic structuring and query-based

local semantic structuring as explained below.
1) Global Semantic Structuring: This refers to the task of

globally analyzing the semantic structure of the target spoken
archive and building the relationships among the individual
spoken documents or other kinds of entities such as key terms
or named entities. The visualization of the relationships or the
structure allows the user to have a convenient and efficient
interface to navigate across the target spoken archive. Global
semantic structuring has been widely studied for text retrieval
and document archives, with WebSOM [342] and ProbMap
[343] as good examples, in which the relationships among
document clusters are visualized as a two-dimensional map.
Another good example is the Google Knowledge Graph [344],
which properly connects the entities about people, places and
things.
For spoken content, the BBN’s Rough’n’Ready system [345]

and the Informedia System at Carnegie Mellon University [346]
were earlier good examples analyzing the spoken documents
in the archive into topics and showing to the user. In the NTU
Broadcast News Navigator [347], the spoken documents in the
target archive were organized in a hierarchical two-dimensional
tree structure for efficient browsing with an example screenshot
shown in Fig. 11, in which the clusters of news stories were
shown as square blocks on the map and the distances between
the blocks reveal the semantic closeness between the clusters.
A small set of key terms automatically selected from the news
stories in a cluster shown on the block served as the label for
that cluster, allowing the user to extract the topics under each
cluster. All the clusters in Fig. 11 further belonged to a larger
cluster (the block in red) representing a more general concept in
another map on the upper layer as shown at the lower left corner
of Fig. 11.
In the NTU Virtual Instructor as mentioned above and shown

in Fig. 10, a key term graph was constructed from the entire
course as a different approach for global semantic structuring
[302]. All the key terms automatically extracted from the course
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Fig. 11. Hierarchical two-dimensional tree structure for global semantic struc-
turing of the spoken content.

were the nodes on the graph, with relationships among the key
terms evaluated in different ways based on different features
[302]. Only those key terms with high enough relationships in
between were connected by edges and shown in the block at
the lower left corner of Fig. 10(b). Each key term was further
linked to the lectures for all slides in which the key term was
mentioned. Therefore, the lectures for all slides for the entire
course were inter-connected through the key terms and the key
term graph. In this way, the learner can easily find out related
parts of the course and define his own learning path.
2) Query-based Local Semantic Structuring: There were ex-

tensive work on local semantic structuring for both text [348]
and spoken content [349], [350]. The retrieved objects for such
given query are clustered on-line with algorithms such as the Hi-
erarchical Agglomerative Clustering (HAC) to construct a topic
hierarchy [349], [350]. Each cluster of semantically similar ob-
jects is a node on the hierarchy, and one or few key terms are
selected from the cluster to be used as the label for the node.
In this way, the user can easily select or delete a node when
browsing over the hierarchy.

D. Interaction with Spoken or Multi-modal Dialogues
Interactive information retrieval (IIR) has been used for about

two decades to make the retrieval process more effective [351].
The Dialogue Navigator for Kyoto City [352] is a very good ex-
ample, which helps users navigate across Wikipedia documents
about Kyoto as well as the tourist information from the Kyoto
city government.
Fig. 12 is a possible interaction scenario for retrieving

broadcast news stories [353]. Suppose a user is looking for the
news about the meeting of US President Barack Obama with
the leader of China. He may simply enter the short query of
“US President” (U1), which is ambiguous since there are many
news stories on completely different topics in the archive re-
lated to “US President”. The system finds the retrieved objects
have topics diverging widely, thus asks the user for further
information (S1), and receives the next instruction, “Diplo-
matic issue”(U2). With this second instruction, the system finds
many news items retrieved with the query “US President” plus
“Diplomatic issue” have a common key term of Persian Gulf,
so the system further clarifies with the user if he wishes to find
news related to “Persian Gulf “(S2) and gets the answer “No”
(U3). This answer significantly narrows down the target, and

Fig. 12. An example scenario of interactive spoken content retrieval between
the system ( ) and the user ( ).

therefore the system offers a list of example items for the user
to select, very probably each of which represents a somewhat
different topic (S3). With the selection of the example spoken
document (U4), the system then has enough information to
retrieve the documents the user is looking for, so the final
retrieval results are presented to the user (S4).
The above interactive process is actually a multi-modal dia-

logue (spoken dialogue plus other means of interaction). Such
dialogue processes have been well studied for other tasks such
as air ticket booking, city guides, and so on [352], [354], [355],
so extending experiences in those tasks to interactive retrieval
is natural, for example, considering a statistical model such as
a Markov Decision Process (MDP) [356]. In MDP, the actions
taken by the system is chosen based on the states, which can be
one or more continuous or quantized values (here the estimated
quality of the present retrieved results based on all the input en-
tered so far by the user (U1,U2,U3,U4)). The system can take
different types of actions (e.g. asking for more information (S1),
requesting for confirmation with a key term (S2), returning a list
of examples for selection (S3), etc.) on different states to clarify
the user’s intention based on an intrinsic policy. This policy can
be optimized based on a pre-defined reward function with re-
inforcement learning (e.g. the fitted value iteration (FVI) [357]
algorithm) using a corpus of historical data of user interactions,
or simulated users generated based on some of such data [358].
The state can be estimated based on the values of some perfor-
mance measures of the retrieval results such as MAPmentioned
in Section II-C2 [353], [359], while the key terms can be ob-
tained as mentioned in Section VII-B3. As a result, the system
is able to choose the proper actions to interact with the user at
each stage of the retrieval process such that the retrieval perfor-
mance can be maximized while the extra burden for the user can
be minimized.

XI. CONCLUDING REMARKS AND PROSPECT
Many advanced application tasks of spoken language pro-

cessing were solved by cascading a set of modules in early
stages of developments. Take the spoken dialogue system as an
example, which was actually built in early years by cascading
ASR, natural language understanding, dialogue management,
natural language generation and TTS [360]. Today the spoken
dialogue is already a full-fledged independent area far beyond
the above cascading framework. Good examples include the di-
alogue managers based on Partially Observable Markov De-
cision Process (POMDP) taking the uncertainty of ASR and
spoken language understanding into considerations [361], and
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learning the policy of dialogue manager and natural language
generator jointly [362]. These novel techniques beyond the cas-
cading framework have turned the pages of the research and
development of spoken dialogues. Another example is speech
translation, in which jointly optimizing the ASR module and
its downstream text processing module is also considered as a
major trend [105]. We believe similar developments may be ex-
perienced in spoken content retrieval in the future.
Cascading ASR with text retrieval has been very successful

in this area, but inevitably becomes less adequate for more chal-
lenging real-world tasks. This is why the concepts beyond the
cascading framework become important, which is categorized
into five major directions as in Sections III, IV, V, VI and VII.
Below we make brief concluding remarks for each of them.
(1) Modified Speech Recognition for Retrieval Purposes

(Section III): Here the ASR and text retrieval are still cascaded,
but ASR is properly modified or learned for retrieval purposes.
Quite several approaches here are based on a known query set,
therefore limited to the scenario of keyword spotting currently.
Hence, one next step is to try to generalize these approaches
to unknown queries during training. Relevance feedback in
Section III-B3 is a good way to collect training data, not only
for learning retrieval-oriented acoustic models as mentioned
here, but for learning retrieval-oriented language models and
ASR output transformation, and it is also possible to replace
relevance feedback with PRF in Section IV-C. In the long
run, a more compact integration of ASR and retrieval may be
possible, and an initial version of it may be similar to the one
described in Section III-F.
(2) Exploiting Information Not Present in Standard ASR

Transcriptions (Section IV): The information in speech signals
but not present in ASR outputs can be better utilized. Quite
several approaches here used query-specific rescoring based on
the similarity between the signal segments in the target archive
hypothesized as the query. The similarity was usually computed
by DTW, but because DTW is limited in considering signal
distributions, replacing DTW by model-based approaches in
Sections V-D and V-E could be better. Because rescoring
is based on the first-pass results, the performance is limited
by the recall of the first pass. Improving the recall by fuzzy
matching or subword-based retrieval can make rescoring more
powerful [178], [363]. Of course, it would be very attractive
if we could use the information in the speech signals directly
without relying on the first pass, but no work in this way has
been reported yet.
(3) Directly Matching on Acoustic Level without ASR

(Section V): For spoken queries, the signals can be directly
matched on the acoustic level rather than the phoneme or
word levels, so all problems with ASR can be bypassed.
This matching can be based on DTW, but the model-based
approaches based on the acoustic patterns discovered from the
target spoken archive may be better in coping with the signal
variations. The achieved performance along this direction is
still not comparable with those with ASR. However, with the
Big Data generated every day and improved pattern discovery
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techniques, the performance gap may be narrowed, although
there is still a very long way to go.
(4) Semantic Retrieval of Spoken Content (Section VI): Re-

trieving semantically related spoken content not necessarily in-
cluding the query is still a very ambitious goal. It didn’t attract
as much attention as STD maybe because the entry barrier is
higher, including the difficulty of annotating semantically re-
lated query-document data sets for the experiments, and the an-
notation may even be subjective. With some benchmark data
sets becoming available in recent years, such as the semantic
retrieval task of NTCIR16 SDR [53] and Question Answering
for Spoken Web [294], more work can hopefully be developed
nowadays.
(5) Interactive Retrieval and Efficient Presentation of Re-

trieved Objects (Section VII): The spoken content is difficult
to be shown on the screen and browsed by the user, so the tech-
niques for efficiently presenting the retrieved objects on an in-
teractive interface are highly desired. Key term extraction, title
generation, summarization, and semantic structuring for spoken
content are all useful techniques for presenting the spoken con-
tent, but they are still very challenging tasks today, and better
approaches are yet to be developed. Learning the experiences
from text document processing area on these problems may be
helpful. Also, much more experiences in human-machine inter-
actions are still to be learned from the very successful discipline
of spoken dialogues.
On the other hand, most works along the above five directions

were proposed and developed individually. Very wide space for
integration among the five directions are actually possible, al-
though very limited results have been reported. Directions 1
(Section III) and II (Section IV) are actually orthogonal and
can be combined to offer better results. One such example was
mentioned at the end of Section IV-D2. Direction 3 (Section V)
doesn’t use ASR so sounds different, but the acoustic patterns in
that direction can be used with Direction 2 as mentioned above,
hopefully also helpful to Direction 1. Hence, we believe Di-
rection 3 is also orthogonal to Directions 1 and 2. Directions
4 (Section VI) and V (Section VII) are orthogonal to each other,
and orthogonal to Directions 1, 2 and 3, so they add two extra di-
mensions. Good examples are in Section VI-D (using Direction
2 in Direction 4) and Section VI-E and VI-F (using Direction
3 in Direction 4), although Direction 1 seemed not yet used in
Direction 4. The five directions open quite wide space for fu-
ture developments. Of course, we also look forward to seeing
extra directions beyond the above five directions we have seen
presently.
The success of text content retrieval is a major reason of how

the Internet has become an indispensable part of our daily lives.
If spoken content retrieval can be successful, our daily lives may
be further changed and very different. Consider an example sce-
nario referred to as spoken knowledge organization here [302].
With the necessity of life-long learning in the era of knowledge
explosion and the rapid proliferation of Massive Open Online
Courses (MOOCs), worldwide instructors are posting slides and
video/audio recordings of their lectures on on-line platforms,
and worldwide learners can easily access the curricula. How-
ever, a major difficulty for the learners is that it may not be
easy for them to spend tens of hours to go through a complete
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course, but the course content is usually sequential. It is not
easy to understand a lecture segment without learning the back-
ground, but it is even more difficult to find where the neces-
sary background is. Because the speech signals tell exactly the
knowledge being conveyed in these lectures, successful spoken
content retrieval technologies may be able to locate exactly the
parts of the course lectures matched to the learners’ needs, as
well as the necessary background or relevant information for
the required knowledge, all of which may spread over many dif-
ferent courses offered by many different instructors. This may
lead to the highly desired personalized learning environment for
the large number of worldwide online learners working on dif-
ferent task domains with different background knowledge and
widely varying learning requirements.
Another example scenario depicting the way our daily lives

may be changed and become very different because of suc-
cessful spoken content retrieval technologies is referred to as
multimedia information management here, or the technologies
that can find, filter, select and manage the information the
user needs from the heterogeneous multimedia resources over
the Internet. Assume a user types a query “David Beckham”
(the name of a globally renowned English former footballer),
in addition to offering the related web pages as what typical
search engines do today, the video recordings of the exciting
moments for the historic games David Beckham participated
in may also be retrieved from the video sharing platforms
based on the audio parts of the videos. The exciting moments
in each of these historic games can even be automatically
summarized by jointly analyzing the video frames and the
audio of the commentators. The interview videos with David
Beckham after these games and the videos about the stories
of David Beckham’s family lives and family members can
also be similarly linked. Note that for these videos the key
information is actually in the spoken part, so successful spoken
content retrieval technologies integrated with other information
management technologies may realize the above scenario.
However, today the search for such videos still rely on the
very limited text descriptions of the videos rather than the
spoken content, but only successful spoken content retrieval
can locate exactly the desired video frames carrying the desired
information. These example scenarios show that successful
spoken content retrieval may bring further major changes to our
daily lives. We are all working towards that goal, and looking
forward to its realization in the future.
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