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Voice Dictation of
Mandarin Chinese

Computer Data Entry
Without a Keyboard via Speech Recognition

the Chinese language is not alphabetic, and input of
Chinese characters into computers remains a difficult

“. problem even after decades of efforts made by many
people to overcome the problem. Voice dictation of Manda-
rin Chinese with a very large vocabulary is believed to be the
perfect solution, but this is highly challenging speech-
recognition problem with many technical issues
yet unsolved. The characteris-
tics of Mandarin Chinese, sig-
nificantly different from those
of most alphabetic western lan-
guages, lead to the fact that
many special measures and
unique approaches that con-
sider the feature structure of the
language are believed to be the
key to providing better solu-
tions to the problem. Such spe-
cial measures and unique
approaches are the primary fo-
cus of this article.

In this article we analyze the charac-
teristic structure of Mandarin Chinese
and discuss related issues. The primary fo-
cus is then on the key technology regarding
the problem, including the basic architecture
for Mandarin dictation, acoustic modeling/process-
ing, and linguistic modeling/processing. Some typical proto-
type systems, other related applications, and initial industrial
efforts and products are finally presented to indicate the feasi-
bility of the key technology discussed.

Chinese Data Entry: Problems and Solutions

More than 25 years after the computer was introduced into
the Chinese community, the input of Chinese characters
(ideographs) into computers is still a very difficult and un-
solved problem. The primary reason is that the Chinese lan-
guage is not alphabetic. Every Chinese character is a
beautiful but complicated square graph, with most of the
characters composed of different radicals organized in a
highly artistic but irregular manner, and there are at least
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10,000 different commonly used Chinese characters [1]. A
list of some typical Chinese characters is shown in Fig. 1.
These represent good examples of the 10,000 commonly
used Chinese characters.

Today, for the input of Chinese characters into comput-
ers, more than 200 different methods
have been developed based on
mapping from keyboards origi-
nally designed for alphabetic
languages to these Chinese

characters. However, almost

none of these methods can

provide users with a conven-
ient input system as efficient
as those for alphabetic lan-
guages. These methods are ei-
ther too slow, too complicated,
orrequire special training. For ex-
ample, the radical input systems
usually have special rules too diffi-
cult to memorize, while the phonetic-
symbol input systems are usually too

slow. The radical input systems generally
require fewer keystrokes per character on av-
erage for typing and, therefore, are fastest. How-
ever, the necessary special
mapping rules make them very dif-
ficult to learn and very easy to for-
get if not frequently used. This is
why entering Chinese characters quickly into computers us-
ing such radical input methods has become a special profes-
sional skill in the Chinese community while the majority of
people are actually unable to use theses methods in daily
work or life.

LIN-SHAN LEE

On the other hand, for a typical phonetic symbol input sys-
tem, the typing of four to six keystrokes is usually needed to
enter a Chinese character, in which two to five keystrokes are
for the phonetic symbols, one for the tone, and very often one
to two extra are needed to select the desired character from
among many homonym characters. This is because Mandarin
Chinese is a tonal language, and many homonym characters
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1. A list of typical Chinese character examples.

very often share the same pronunciation, as will be discussed
in more detail later on.

Some new techniques (such as Chinese language model-
ing) have been developed in recent years in which the selec-
tion of the desired character among homonym characters can
be performed automatically based on the context (with errors
to be corrected manually, of course), and some of them have
been bundled with efficient software packages such as WIN-
DOWS 95. Many users have found that these techniques pro-
vide a much more convenient user environment than before.
However, even with such special techniques, the overall in-
putspeed is still relatively slow as compared to entering west-
ern alphabetic languages; thus, these techniques are not
adequate and not widely used. Today, entering Chinese char-
acters into a computer has been a nightmare for many Chi-
nese people trying to use these keyboard input methods, and
many have eventually given up.

Taiwan is producing at very low cost a significant portion
of the personal computers used worldwide today, but only a
relatively small portion of the people in Taiwan are actually
using computers in their daily work or life. This is certainly
not because the cost of personal computers is too high. It is
believed that the major obstacle to popular use of computers
in Taiwan is the difficulties in entering Chinese characters
into computers.

The situation is very similar on the mainland of China.
When the whole world is currently moving toward a fully
computerized society at a very fast rate, pushed by ever-
developing information technology, the Chinese community,
including a quarter of the world’s population, still has diffi-
culties in using computers because of its language. The 1.2
billion Chinese people would spend a vast amount of money
purchasing computers, peripherals, networks, software pack-
ages, and other relevant products to computerize their com-
munities—if their language could be conveniently entered
into computers just as western alphabetic languages are. The
demand is there, the market will someday be huge, and the
potential impact on related areas is almost unlimited.

Handwritten Chinese character input is, of course, a possi-
ble solution, but handwriting is generally slow; therefore, it
can solve only a small part of the entire character input prob-
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lem mentioned above. Voice dictation, or speech input, on
the other hand., has been suggested as a perfect solution to this
problem for some time. Voice input is natural, fast, and con-
venient. The only problem is that the technology for voice
dictation is still not very mature and is highly challenging.
Many of the related problems, in particular those peculiar in
Mandarin Chinese, are yet to be solved. Today, there are on
the order of 100 research groups with thousands of people
working on this problem all over the world. Most of them are
working on the mainland of China, while the rest are in Tai-
wan, Hong Kong, Singapore, and other parts of the world.
This large number of research groups and researchers indi-
cates very well the potential impact of voice input for Manda-
rin Chinese.

The problem discussed here is, in general, voice dictation
of Mandarin Chinese, or speech recognition for Mandarin
Chinese with very large vocabulary and an almost unlimited
variety of texts (i.e., with almost all the possible application
domains, syntactic structures, and semantic relations existing
in the Chinese language, as will be made clear later on). This
is because the application is for input for computers, and ma-
terials or texts input into computers are generally assumed to
be arbitrary without any constraints. Of course, some specific
application domains may exist for each user, so the adapta-
tion of the system to the user-specific domain will be dis-
cussed later on in this article. Here, we simply assume
unlimited domains of texts.

Although the focus here is only transcription of input
speech waveforms into corresponding texts without trying to
understand the meaning of the text, the goal of very large vo-
cabulary and almost unlimited texts already leads to substan-
tial difficulties for the problem. On the other hand, when we
look at the speech-recognition technology available today
[2-12], it is now generally realized that speech-recognition
technology has matured to a point where the achievable
scope of tasks, accuracy, speed, physical size, and the cost of
such systems are almost simultaneously crossing the thresh-
old for practically usable systems. Some applications have al-
ready been developed and used, and many others are being
contemplated today.
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In communities with alphabetic languages such as
North America and Europe, although speech-dictation
technology for very large vocabulary is very well devel-
oped [13-22], even with some very convenient products
available on the market [23], the most successful products
accepted by users are still those for special-domain appli-
cations with limited vocabulary such as telephony serv-
ices. Much of the efforts in product development in the
industry probably are also in this direction. A possible rea-
son for this fact is that the input of alphabetic languages
into computers is already convenient via keyboards, as
compared to the high complexity, cost, and inevitable er-
rors usually associated with the very-large-vocabulary
speech-recognition technology.

Such a situation is, however, more or less reversed in the
Chinese community. The input of the language into comput-
ers is very difficult, but the processing of the language using
computers is really necessary. Several preliminary polls indi-
cate that quite a large number of users are ready or even wait-
ing to purchase whatever products become available to them
even with relatively high cost and high rate of errors, or cum-
bersome or unnatural operations, as long as the products
work reasonably. This strong and urgent demand 1s the major
drive for the large number of research groups that are focus-
ing their work in this direction. The goal for special-domain
applications with limited vocabulary such as telephony serv-
ices, on the other hand, is of course very important as well,
but it seems to have become kind of secondary for the Chi-
nese language.

Although speech-recognition technology for very large
vocabulary is very well developed for quite a few languages,
the problem for Mandarin Chinese could be very different
due to the very special structure of the Chinese language, as
will be discussed below. It is believed that many unique
measures and special approaches for voice dictation of Man-
darin Chinese can be developed based on the characteristics
of the Chinese language, which are not only of scientific in-
terest, reflecting the key behavior of the Chinese language,
but even of very good reference value for developing the
technology for other languages. In this article such key issues
and special measures currently seen in this area will be pre-
sented. In the Chinese language, there exist hundreds of dia-
lects sounding significantly different from one another
although they use the same written characters, but Mandarin
is the only official one widely used by all the people for many
years. Although there has been some work done on a few dia-
lects [24], we focus on Mandarin only. Also, although there
are many research groups working on related problems [25-
31], our focus is primarily based on the work done and experi-
ences learned at National Taiwan University and Academia
Sinica at Taipei, simply because this is the part of the work
the author is most familiar with. Some work done by several
other groups will also be mentioned or briefly discussed, but
it is not our intention to survey completely all of the work
done by the many research groups all over the world.
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Characteristic Structure
of the Chinese Language

The total number of Chinese characters is unknown, but at
least some 10,000 of them are commonly used. A Chinese
word is composed of one to several characters. The combina-
tion of one to several of such characters gives an almost un-
limited number of words, in which at least some 100,000 are
commonly used and can be found in different versions of dic-
tionaries and texts on different subjects. Some commonly
used words are composed of only one character, and many of
these mono-character words appear very frequently in daily
language (such as the mono-character words standing for
“1s,” “I,” “no,” etc.) Since this magazine cannot print Chinese
characters in the text, the Chinese characters for these mono-
character words are listed in (a) of the box titled “List of Chi-
nese Characters and Words Referred to in the Text,” hereafter
referred to as “box.”

A nice feature of the language is that all the characters are
monosyllabic, and the total number of phonologically al-
lowed syllables is only about 1345. In other words, this lim-
ited number of syllables represents a much larger number of
monosyllabic characters, and the combinations of these
many characters in turn provide an almost unlimited number
of words. This is why this monosyllable-based structure is
usually taken as the first key to Mandarin speech recognition
with very large vocabulary, because accurate recognition of
these 1345 Mandarin syllables, if achievable, already covers
the whole language, including all possible characters and
words. In other words, the syllable seems to be a very natural
recognition unit in Mandarin speech recognition with very
large vocabulary, although this is probably not true in other
alphabetic western languages.

Of course, this small number of syllables also implies a
large number of homonym characters sharing the same sylla-
ble and a high degree of ambiguity. For example, on average
every syllable is shared by about 7 to 8 (10,000/1345) charac-
ters, each of which can form either a mono-character word or
many poly-character words with preceding or following
characters in the sentences and so on, as will be discussed in
more detail later on. This one-to-many mapping relation from
syllables to characters is certainly another key issue in Man-
darin speech recognition with very large vocabulary. On the
other hand, almost all Chinese characters have their own
meanings; i.e., almost each character represents a morpheme
or a smallest meaningful unit in the language, and there is al-
most always a one-to-one mapping relation between charac-
ters and morphemes. This is why many of the characters can
form mono-character words by themselves, and why the
combination of several characters gives an almost unlimited
number of poly-character words. In fact, with this property
many new words can be easily generated everyday by mak-
ing new combinations of characters. For example, the combi-
nation of the two characters standing for “electricity” and
“brain,” respectively, becomes a new bi-character word
standing for “computer” (see (bl) of the character box).

A very large number of compound words can also be gen-
erated by concatenating shorter words; for example, the con-
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List of Chinese characters and words referred to in the text

(a) Examples of frequently used mono-character Chinese words

A(is), #&(I), #F(no)

(b) Open vocabulary nature of Chinese language
(b1) &(electricity)+ A(brain) —> & A&(computer)
(b2) & (high)+ i#(speed) + 2%-(highway) > & ik 2 #%-(freeway)
(b3) & M (Taiwan)+ X % (university) — & # X % (Taiwan University)
(b4) T4e(work) + ZH(progressivesuffix) — T4 F (is working)
(b5) & # X #(Taiwan University) — #% A (Taiwan University)

(c) Different meaning of the words in Fig.3
(c1) H#(advancing), #(closeto), #(forbidden)
(c2) i t&(memory), 4 # (techniques), #f # (discussions)
(c3) [jii-4][i-4] > % & (memory) , [i-4][li-4] > 4 Z (standing)
(c4) F(fighting), 4 (requesting)
(c5) #4(competition)

(d) Reasonable choices of words in the sentence of Fig.4(a)
(d1) & A%(computer) + # 4 (technology) — & A #4 (computer technology)
(d2) # #(change) + T (function word) — # % T (has changed)

(e) An example of Chinese words with multiple linguistic features
2 construct” as a verb , ” structure” as a noun
.#_ * ( w“ tl'l.l t” b 1] tl‘u i

(f) Generating rules for Chinese words
(f1) past tense of verbs
*%(eat) + & — <4 i (ate)
# (see) + & — A8 (saw)
(f2) combining two nouns with specific linguistic categories into a compound noun

# (pig) + ™ (meat) - # A (pork)

(2) The four-character words standing for “sound of gold and jade”
AR 2 K, 42 28

(h) Simple phrases by concatenating a frequently used word with a preceding
or following word

% (in)+ # E(evening ) > % % L (in the evening )
#l(to)+ % 4u(Taipei) — #| 4 db(to Taipei)
£ R.(beauty ) + € (function word ) - £ & 9 (beautiful )

(i) The old Chinese saying
& A% (the integration of great efforts made by many people can build a castle )
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catenation of the words standing for “high,” “speed,” and
“highway,” respectively, is a new word standing for “free-
way” (see (b2) of the box), and the concatenation of the words
standing for “Taiwan” and “university” is a new word stand-
ing for “Taiwan University,” which is also considered a sin-
gle word (see (b3) of the box).

Furthermore, a very large number of word variants can be
generated by adding some components such as a suffix; for ex-
ample, the word standing for “work” becomes a word standing
for *is working” by adding the progressive suffix (see (b4) of the
box). Moreover, a longer word is very often arbitrarily abbrevi-
ated into a shorter new word; for example, the word representing
“Taiwan University” using four characters is very often re-
placed by a short version composed of the first and third charac-
ters (sec (b5) of the box). As aresult, the Chinese language really
has a very open vocabulary with an unlimited number of words.
This open vocabulary nature is the third key issue for Mandarin
speech recognition with very large vocabulary.

Another very important feature of Mandarin Chinese is
certainly the existence of tones for syllables. Chinese is a to-
nal language; in general, every syllable or character is as-
signed a tone, and the tones have lexical meaning. There are
basically four lexical tones, i.e., the high-level tone (usually
referred to as Tone 1), the mid-rising tone (Tone 2), the mid-
falling-rising tone (Tone 3), the high-falling tone (Tone 4),
and one neutral tone (Tone 5). It has been shown [32-35] that
the primary difference among the tones is in the pitch con-
tours; there exist standard patterns for the pitch contours for
the four lexical tones but not for the neutral tone, and the pitch
contours are essentially independent of the vocal tract shape
or parameters of the syllables. One example is shown in Fig.
2, where the pitch frequency contours for the syllable [ba]
with the four lexical tones and the neutral tone [ba-1], [ba-2],
[ba-3], [ba-4], and [ba-5] produced by the same speaker in
isolated syllable mode are plotted as functions of time. (The
transliteration symbols used in this article are the Mandarin
Phonetic Symbols II (MPS II). The number following each
syllable denotes the tone of the syllable.)

It can be found that although the carrying syllable [ba] is
the same, the pitch frequency contours are quite different for
the five different tones. In fact, it is well known that the four

lexical tones (Tones 1, 2, 3, 4) are primarily characterized by
their pitch contour patterns as shown in this figure, but the
pitch contours of the neutral tone (Tone 5) do not necessarily
form a specific pattern. If the differences among the syllables
due to tones are disregarded, i.e., the five syllables, [ba-1],
[ba-2], [ba-3], [ba-4], and [ba-5], are considered as a single
“base syllable” [ba] (i.e., the syllable structure carrying the
tones), then only 408 “base syllables™ instead of 1345 “tonal
syllables” (i.e., the syllables including the tones), as men-
tioned previously, are required to cover all the pronunciations
for Mandarin Chinese. From now on, we will use the words
“tonal syllable” and “base syllable” in this article to avoid any
confusion. As a result, every tonal syllable can, in fact, be
considered as the combination of two independent parts, a
tone among the five possible choices and a base syllable
among the 408 possible candidates disregarding the tones.
This also means that recognition of tonal syllables, if desir-
able, can similarly be divided into two parallel procedures,
i.e., recognition of the tones and recognition of the base sylla-
bles disregarding the tones, respectively.

For the first key issue, the monosyllable-based structure of
the Chinese language, because the 1345 tonal syllables can be
considered as being combinations of the 408 base syllables
and the 5 different tones, possible recognition of the 408 base
syllables thus should be considered. We now look at these
408 base syllables. First, all of the 408 base syllables are open
syllabic in structure; i.e., they always end with vowels with
the exception of vowels plus nasals -n and -ng. This is one of
the primary reasons why the total number of these base sylla-
bles is not large. Secondly, even though the total number is
not large, recognition of these 408 base syllables is, in fact,
difficult because there exists a total of 38 confusing sets in
this vocabulary. Good examples of such confusing sets in-
clude the A-set: {[a], [ba], [pa], [ma], [fa], [da], [ta], [nal, [1a],
[ga], [kal, [ha], [ja], [cha], [sha], [tza], [tsa], [sa]}: and the
AN-set: {[an], [ban], [pan], [man], [fan], [dan], [tan], [man],
[lan], [gan], [kan], [han], [jan], [chan], [shan], [ran], [tzan],
[tsan], [san]}.

Conventionally, each Mandarin syllable is decomposed
into an “INITIAL/FINAL” format, in which “INITIAL”
means the initial consonant of the syllable while “FINAL”

200 T 1 T

150

50

Tone 1 Tone 2

Tone 3 Tone 4 Tone 5

1 1 1

0 20 40 60

Time

80 100 120 140

2. The pitch-frequency contours as functions of time for the syllable [ba] with the five different tones.
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3A partial list of a simplified example word lattice, where each circle is a mono-character word while each ellipse is a poly-character word.

means the vowel or diphthong part, but including an optional
medial or nasal ending. The FINAL is generally a tone-
carrying part. However, because the tones are handled inde-
pendently here, and only the 408 base syllables are consid-
ered, we also disregard the tones carried by the FINAL and
tentatively take the FINAL as a tone-independent part in this
article, except when otherwise mentioned. Each confusing
set mentioned above then consists of base syllables sharing
the same FINAL but with different INITIALSs.

IEEE SIGNAL PROCESSING MAGAZINE

Table 1 is alist of all the 408 base syllables, where the ver-
tical scale lists all 38 FINALSs (including a null FINAL) and
the horizontal 22 INITIALSs (including a null INITIAL). In
this table every phonologically allowed base syllable is as-
signed an identification number located at an appropriate
square, indicating the component INITIAL and FINAL. Each
row in the table then represents a confusing set (the A-set
mentioned above is the second row in the table). These 38
confusing sets for the 38 rows in Table 1 constitute the major
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problems to be solved in the acoustic recognition to be dis-
cussed below.

A good example is shownin Fig. 3 of the second key issue,
which is the large number of homonym characters sharing the
same tonal syllable and the high degree of ambiguity caused
by all the possible mono-and poly-character words formed by
these homonym characters for a sequence of tonal syllables.
Here, assume that a sequence of five tonal syllables, [tzeng-1]
[jiin-4] [jii-4] [i-4] [li-4], is correctly recognized, but that
each of them is shared by many possible homonym charac-
ters, which in turn can form many mono-and poly-character

words. All these word hypotheses can be used to construct a
very complicated graph called a word lattice, as shown in Fig.
3, on which every path is a possible solution for the sequence
of tonal syllables.

In Fig. 3, every circle represents a mono-character
word while every ellipse represents a poly-character
word. As can be seen, not only can a monosyllable like the
second one ([jiin-4]) in Fig. 3 represent many mono-
character words with different meanings such as “ad-
vancing,” “close to,” “forbidden,” etc.(see (cl) in the
box), but two adjacent tonal syllables such as the third

Table 1. The 408 base syllables in Mandarin speech. The number indicates the sequence number used in our database.
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and fourth ones ([jii-4] [i-4]) in Fig. 3 can represent more than
one bi-syllabic word such as those standing for “memory,”
“techniques,” and “discussions” (see (c2) in box). A tonal
syllable may even combine with other tonal syllables on both
sides to represent different bi-syllabic words such as the
fourth tonal syllable ([i-4]) in Fig. 3 with [jii-4] on its left to
represent a bi-syllabic word, *[jii-4] [i-4].” which means
“memory” as mentioned above, but [i-4] with [li-4] on its
right to represent another bi-syllabic word, “[i-4] [li-4],”
which means “standing” (see (¢3) in box), etc. Practically, the
problem is even much more complicated than the above be-
cause the tonal syllables are highly confusing and difficult to
recognize accurately; thus, a set of top n (n=10 or 20, for ex-
ample) tonal-syllable candidates will usually be consid-
ered for each syllable so that the correct tonal syllable is
sure to be included in the word lattice.

In this case, each of the n candidates may represent
many homonym characters, and the word lattice will be
much more complicated than thatin Fig. 3. For example, as
also shown in Fig. 3, when the first tonal syllable
([tzeng-1]) has a confusing candidate ([jeng-1]), many
mono-character words such as those standing for “fight-
ing” and “requesting” are added to the lattice (see (c4) in
box), and when the second tonal syllable ([jiin-4]) has a
confusing candidate ([jiing-4]), a new bi-syllabic word
standing for “competition” will be added when combined
with the next tonal syllable ([jii-4]) (see (c5) in box), etc. In
fact, Fig. 3isonly a very small partial list, and the real word
lattice can be much larger and more complicated. There-
fore, it is clear that in order to select the correct character
sequence, very powerful linguistic decoding techniques
are thus needed to find the best path on this lattice, as will
be discussed later on.

Input Mode During Dictation

Using an alphabetic language such as English as an example,
right now many very successful continuous-speech dictation
prototype systems with very large vocabulary have been de-
veloped in laboratories, but most of the products accepted by
the market are still primarily in the isolated-word mode [23,
36]. Apparently, for a laboratory prototype system to become
a product accepted by the market, there are still many issues

to be considered such as the complexity, cost, error rates, ro-
bustness with respect to different speakers, different user en-
vironmental noise, different text subjects and wording styles,
different spontaneous-like speaking modes, etc. All these is-
sues may increase the difficulties in making products for
continuous-speech dictation systems with very large vocabu-
lary commercially available. For dictation of Mandarin Chi-
nese, similar issues apparently exist. Certainly, input in the
continuous-speech mode is the most convenient, natural,
fast, and attractive, and prototype systems for such continu-
ous Mandarin speech recognition with very large vocabulary
have also been developed [37-39], but for products practi-
cally acceptable to users, other input modes should also be
considered.

First, taking into account the monosyllable-based struc-
ture of Mandarin Chinese previously discussed, the easiest
input mode is certainly via the isolated tonal syllables; i.e.,
the user can produce a sentence in the form of a sequence of
isolated tonal syllables separated by pauses. Although this
mode of input is too awkward and almost impossible for al-
phabetic languages, it is in fact very feasible for a
monosyllable-based language like Mandarin Chinese [40].
Because every character (produced as a tonal syllable) is a
morpheme with its own meaning, every native speaker of
Mandarin Chinese learns these characters produced as iso-
lated tonal syllables one by one in school. Itis, therefore, very
easy and convenient, though not very natural, for a native
speaker to produce a Mandarin sentence as a sequence of iso-
lated tonal syllables. In fact, sequences of isolated tonal sylla-
bles appear to be a rather acceptable and an even more
enunciated form of pronunciation in the Chinese language.
Thus, it was proposed some years ago that an isolated-
syllable-based recognition system is the most feasible ap-
proach to developing Mandarin dictation systems for very
large vocabulary and almost unlimited texts, at least in the
early stages [40]. In this way, the difficulty of handling the
complicated problem of co-articulation across syllables in
continuous-speech recognition can be avoided

There are also some minor reasons for using isolated tonal
syllables as recognition units. For example, all Mandarin syl-
lables are open syllabic in structure; i.e., they always end with
vowels, with the exception of vowels plus the nasals -n and

Table 2. Statistics for a lexicon of 50,000 most frequently used words.

(oumberof charactersy | Number of Words TonalSyllable Stings Base.Syllable Stings
I 4861 1157 402
2 35178 32084 24152
3 5305 5274 5251
4 4278 4267 4262
5 380 380 380
Total 50000 43162 34447
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-ng, as mentioned previously. This makes endpoint detection
relatively easy for isolated tonal syllables. Of course, on the
other hand, technical disadvantages exist in using isolated to-
nal syllables as units, in addition to the fact that such an input
mode is slow and not very natural. For example, the relatively
small number of tonal syllables implies a very large number
of homonym characters and, therefore, a very high degree of
ambiguity in selecting the accurate output sequence of char-
acters, as has been discussed previously and shown in Fig. 3.
This was the rationale when several prototype systems were
developed based on the isolated-syllable input mode [40-42].
As an example, a Chinese sentence with meaning “‘the prog-
ress of computer technology has changed the living and
working style of human-beings” as shown in Fig. 4(a) can be
uttered character by character (or syllable by syllable) by the
user in this way during dictation, as depicted in Fig. 4(b).
On the other hand, considering the experiences with alpha-
betic languages, a very straightforward approach for the input
mode is in isolated words [36]; i.e., the user can produce a sen-
tence in the form of a sequence of isolated words separated by
pauses. From the user’s point of view, to utter a poly-syllabic
word continuously as a tonal syllable string is much more natu-
ral than to do so as several isolated tonal syllables, and fewer

pauses implies faster input speed as well. From the speech-
recognition technology point of view, there are certainly fur-
ther advantages. First, although there are many homonym
characters sharing the same tonal syllable as discussed previ-
ously, the number of homonym poly-character words sharing
the same tonal-syllable string is apparently much smaller,
and there are many combinations of several tonal syllables
that do not even correspond to any word.

To illustrate this, Table 2 presents the statistics of a lexi-
con composed of the most frequently used 50,000 words in
daily Mandarin Chinese, in which the words are categorized
according to their length or the number of component char-
acters (or tonal syllables) in the words. The first column of
the number of words indicates that about 70% of the most
frequently used words are bi-character, and that about 10%
are mono-character. The second column is the number of
different tonal-syllable strings associated with each cate-
gory of words. Here it can be found that 4861 mono-
character words share 1157 tonal syllables, and 35,178 bi-
character words share 32,084 tonal-syllable strings. How-
ever, for words with three or more characters, there is al-
most a one-to-one correspondence between the words and
the tonal-syllable strings. The right column is the number of

,fg.__f_.ﬁg.ﬁ-.;’(‘
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(a) (The progress of computer technology has changed the living and working style of human-beings)
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4. Different input modes: (a) the original sentence, (b) isolated syllables (characters), (¢) isolated words, (d) different segmentations of
the sentence into words, (e-f) two possible partitions of the sentence into prosodic segments.
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different base-syllable strings, in which it can be seen that for
words with three or more characters, the tones become almost
redundant because of, again, one-to-one mapping between
the words and the base-syllable strings. In such a situation,
the recognition of words is clearly much easier by matching
the input utterances with the words in a lexicon, as long as a
lexicon is given. Secondly, the word boundaries as indicated
by the pauses between the utterances produced by the user
represent very good information for directly finding the cor-
rect words within the very complicated word lattice. If we
look at the word lattice shown in Fig. 3, when all the words
are segmented by pauses between utterances, the large, com-
plicated word lattice will be automatically broken down into
a series of smaller, simpler word lattices. The problem will
still be difficult but much easier to handle than that in the
isolated-syllable mode. Thirdly, the words are the building
blocks of the sentences and carry a plurality of syntactic and
semantic information, much more than characters do. Such
information can be very useful for identifying the correct sen-
tences represented by the utterances if such information can
be properly integrated into the speech recognition processes.
This was the rationale when several prototype systems were
developed based on the isolated-word mode [28-31]. As an
example, when the sentence used in Fig. 4(a) is uttered by the
user word by word, the segmentation of this sentence into
words can have the form listed in Fig. 4(c).

However, when the goal is the development of a practical,
usable system, a major problem appears inevitably for the
above isolated-word mode. As mentioned previously, the
Chinese language is of open vocabulary in nature. There is an
unknown number of commonly used words. Arbitrarily tak-
ing a few available dictionaries, the numbers of words in-
cluded may be around 30,000, 50,000, 80,000, 160,000, or
even 200,000. Those dictionaries with smaller vocabulary
are not necessarily a subset of those with larger sizes. Even in
a dictionary with 200,000 words, many commonly used
words appearing frequently in daily language can be easily
identified that are not in such a dictionary. The reasons are
primarily those mentioned previously; i.e., new words can be
easily generated everyday along with a large number of com-
pound words, word variants, abbreviations, and so on. In
other words, a lexicon commonly accepted by all the users
does not exist.

Another related issue that causes more serious problems
should also be discussed here. In a normally printed or writ-
ten Chinese sentence, there are no natural word boundaries.
As shown in Fig. 4(a), the sentence can be looked upon as a
sequence of words as well as a sequence of characters. In al-
phabetic languages, there is always a space between two
words, which serves as the word boundary, so words are well
defined. However, this is not the case for the Chinese lan-
guage. As a result, words in Chinese are actually not well-
defined, and the segmentation of a sentence into words is
definitely not unique. Every user may have his own choice of
words and segmentation. For example, as shown in Fig. 4(d),
every line segment under the characters in the sentence indi-
cates a reasonable choice of word.
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For example, the segment of the characters representing
“computer” is a word, that representing “‘technology” is also a
word, but that representing “computer technology” is definitely
a compound word (see (d1) in box). The segment of charac-
ters representing “change” is a word, but that representing
“has changed” is a word variant, with the additional character
reasonably taken as a function word (see (d2) in box), and so
on. Apparently the way shown in Fig. 4(c) is simply one out
of the many ways this sentence can be segmented into words.
The nonexistence of a commonly acceptable lexicon and a
fixed way of segmentation of sentences into words thus actu-
ally makes the input mode of isolated words practically use-
less. The users won’t be able to memorize all the words
chosen by the designer in the lexicon and stored in the ma-
chine and segment the desired sentences into the words listed
in that lexicon.

The above problem leads to a different concept, i.e., the
input mode of isolated prosodic segments instead of iso-
lated words. A prosodic segment is an utterance easily pro-
duced by the user as a breath group, which is usually
composed of a few words and is linguistically defined by
syntactic or prosodic boundaries in the sentences. The pro-
sodic segmentation of a given sentence is generally not
unique. The same user may segment the same sentence
twice with different results. However, rules for construc-
tion of such prosodic segments using several words appar-
ently exist and can be found at least partially [43]. A good
example is shown in Figs. 4(e) and (f), in which the same
sentence is segmented in two different ways into three
(Fig. 4(e)) or four (Fig. 4(f)) prosodic segments. Both
ways are very natural when a native speaker of Mandarin
Chinese produces the sentence as a few segments.

Practically, from the viewpoint of the user, when dictating
a long sentence it is very natural for him to make breaks to
breathe, and he usually also needs to stop and think in com-
posing the text being entered next. Therefore, the input mode
for isolated prosodic segments is very reasonable. On the
other hand, from the viewpoint of speech-recognition tech-
nology, constructing the prosodic segments from a few
words automatically solves the problem of ambiguities in
word segmentation and words being not well-defined.
However, in this way, most of the advantages of isolated-
word-mode speech recognition previously mentioned can
still be preserved to some extent in this mode. Compared to
recognition in the continuous-speech and complete-
sentence mode, prosodic segments are shorter in duration
and simpler in structure, so it will be easier to implement
and may be able to solve various problems in product de-
velopment as discussed before. At least in the opinion of
this author at the time of this writing, the input mode of iso-
lated prosodic segments is certainly a very feasible ap-
proach for developing useful Mandarin dictation systems
for a large number of users [44].

Finally, the input mode for continuous speech and com-
plete sentence is, of course, the most attractive mode, if the
required high complexity of technology and high degree of
robustness can be taken care of, and if the cost can be kept
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reasonable. There are, however, more problems to be solved
in this case.

The Syllable-Based Architecture for
Mandarin Dictation

Before going into the detailed technologies, here a special ba-
sic architecture for Mandarin dictation will first be presented,
considering the special structure and characteristic features
of the Chinese language discussed above. All the detailed
technologies to be discussed below are primarily based on
this architecture. A brief review for the general approaches
for voice dictation of western alphabetic languages will be
given first for comparison purposes.

Hundreds of different approaches have been proposed for
voice dictation of western alphabetic languages with very
large vocabulary. Many successful experimental prototype
systems or even relevant products have been developed and
either tested with satisfactory performance or made commer-
cially available on the market, based on these approaches
[13-22]. Although the details of each of these approaches can
be quite different from one to another, the basic idea under
these approaches may be explained by some simple common
concepts. First, a set of basic acoustic units of the target lan-
guage is defined, usually including phonemes, phones, or
other similar phone-like-units (PLUs), subword units, or
even smaller or larger units. In order to consider the co-
articulation effects across such units in speech signals, some
degree of context dependency is usually developed for these
units, with the “tri-phone™ being a very good example.

In the “tri-phone” approaches, the preceding and follow-
ing phones on both sides of a given phone need to be consid-
ered when modeling the given phone, since different
preceding or following phones actually make the acoustic
properties of the given phone different. As a result, many dif-
ferent models are needed to describe the acoustic nature of a
given phone with different context dependency on both sides.
Hidden Markov models (HMMs) [2, 12], which are currently
the most useful and popularly accepted models for describing
speech signals, for each of such basic units (e.g., the “tri-
phone”) are then constructed with parameters trained from a
large amount of speech data. When an unknown speech utter-
ance is received, searching/matching processes between the
unknown utterance and the HMMs of the basic units con-
structed as mentioned above are performed to identify the
possible presence of such basic units in the unknown utter-
ance. This part is usuvally referred to as acoustic process-
ing/recognition in the area of voice dictation with very large
vocabulary.

The outcome of the above acoustic processing/recogni-
tion processes for an unknown speech utterance may be much
more complicated than a single sequence of identified basic
units. For example, different possible segmentation of the un-
known utterance into basic units may result in different se-
quences of basic units, the same segment of speech signal in
the unknown utterance may be identified as a part of different
basic units, and many basic unit candidates may be identified
for the same segment of speech signal in the unknown utter-
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ance. In most approaches a lexicon of all possible words is
used here. Each word in the lexicon is represented as the con-
catenation of the basic units chosen.

By matching the above-mentioned complicated outcome
obtained in the acoustic processing/recognition processes
with the component basic units in all the words in the lexicon,
a set of all possible word hypotheses that may appear in the
unknown utterance can be found with some temporal order-
ing relation among them. So, these word hypotheses together
with their ordering relation can be organized to construct a
word lattice (or a word graph) very similar to that in Fig. 3,
except those synchronized columns defined by the tonal syl-
lables in Fig. 3 do not exist since the tonal syllable is not nec-
essarily used here. Also, each node in the lattice is now a
word hypothesis in the alphabetic language.

Some extra knowledge may be used in the construction
of the word lattice. For example, the word bi-gram (the
probabilities to find a specific word given the preceding
word) can be obtained by statistically analyzing a large text
corpus (more details will be explained later on in this arti-
cle) or similar information. Some decoding processes are
then performed on the word lattice to find the best path in the
lattice or the best sequence of words as the dictation output.
This is based on the scores of the words obtained from the
scores of the component basic units evaluated in the acous-
tic recognition processes and some language models. The
language model describes the possible relations among the
words in the sentences of the language, with the word bi-
gram mentioned above being a good example for language-
model parameters.

Another very frequently used set of language-model pa-
rameters is the word tri-gram (more details about language
models will be given later on). The language models provide
linguistic constraints regarding how words can be used to
construct grammatical and reasonable (or statistically prob-
able) sentences, and they are therefore very useful in finding
the best sequence of words in a word lattice. This part is usu-
ally referred to as linguistic processing/decoding in the area
of voice dictation with very large vocabulary.

The above-mentioned general approach for voice dicta-
tion with very large vocabulary for western alphabetic lan-
guages looks quite reasonable, and it would probably work
equally well with Mandarin Chinese, too. However, it is be-
lieved that with the special structure and various characteris-
tic features of Mandarin Chinese, better recognition
architecture, different from the above, considering such
structure and features may be found. Systems developed
based on such a special recognition architecture may perform
much better in various aspects including computational load
and accuracy and robustness with respect to different vari-
abilities.

First of all, the monosyllable-based structure is a unique
feature of Mandarin Chinese. As mentioned previously, each
tonal syllable represents many homonym characters, each of
which is almost always a morpheme with its own meaning,
and combinations of several of these characters give an open
vocabulary of almost unlimited words. As a result, the tonal
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5. (a) The syllable-based architecture for voice dictation of Mandarin Chinese. (b) The simplified time-aligned syllable lattice obtained
in the acoustic recognition processes. In some cases the tonal-syllable candidates are not time-aligned as shown here.

syllable in Mandarin Chinese carries a plurality of linguistic
information, which is never true in other alphabetic lan-
guages. In other words, in alphabetic languages a single sylla-
ble alone usually doesn’t mean anything except for special
cases, but in Mandarin Chinese each single tonal syllable
alone is the pronunciation of many characters, and each char-
acter has its own meaning.

Secondly, the tonal syllable in Mandarin Chinese is of
some kind of “equal distance™ to the other two important lin-
guistic units, the phone (or other PLUs) and the word. As will
be described in more detail later on, a Mandarin tonal syllable
is most frequently composed of two to four phones, while, as
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discussed previously, most frequently used Chinese words
are composed of two to four characters (or syllables). Some
special tonal syllables include only one phone, while some
special words include only one character (or tonal syllable).
Because the phone (or other PLUSs) is the basic unit for acous-
tic processing/recognition and the word is the basic unit for
linguistic processing/decoding, an intermediate unit of tonal
syllable carrying plurality of linguistic information makes
great sense in voice dictation with very large vocabulary. For
example, the construction of word lattices based on possible
candidates of tonal syllables can be much more reliable with
much less ambiguity than on possible candidates of phones.
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Thirdly, also mentioned previously, all Mandarin tonal
syllables are open syllabic with a very simple structure, i.e.,
an INITIAL followed by a FINAL. Also, the total number of
phonologically allowed Mandarin tonal syllables is relatively
limited (only 1345). Both of these make the recognition of
Mandarin tonal syllables a practical, reasonable, and feasible
task, although the confusing sets in the base syllables also
make the recognition of base syllables relatively difficult.

Finally, since each character has its own meaning, word
boundaries within Chinese sentences do not exist, and since
the words are not well defined in Chinese language, the char-
acter itself becomes a very good unit to develop language
models for Chinese language. In other words, other than us-
ing word bi-grams or word tri-grams and so on, the character
bi-gram or character tri-gram (i.e. the probabilities to find a
specific character given the preceding one or two characters)
and so on are found very useful as well. In this sense a tonal
syllable (or character) in Mandarin Chinese sometimes really
corresponds to a word in alphabetic languages. All these dis-
cussions lead to the special recognition architecture pre-
sented below, which is a syllable-based architecture
significantly different from those for alphabetic languages.

The syllable-based architecture for voice dictation of
Mandarin Chinese is shown in Fig. 5(a). The primary differ-
ence is that here the purpose of the acoustic recognition pro-
cesses is to identify the presence of the tonal syllables,
instead of the phones (or other basic units), in the input
speech utterance, since the tonal syllable in Mandarin Chi-
nese carries so much linguistic information and all further
processing should be based on these tonal syllables. Of
course, on the other hand, the acoustic recognition processes
can still be based on HMMs of phones (or other basic units)
just as other alphabetic languages. The only difference is that
the intermediate unit of a tonal syllable is produced because
these tonal syllables make great sense due to the special struc-
ture of the language. Due to the high degree of confusion
among the base syllables as mentioned previously, each tonal
syllable is recognized as a set of possible tonal-syllable can-
didates and each candidate can have some acoustic recogni-
tion score. A tonal-syllable lattice can then be constructed
using these tonal-syllable candidates as shown in Fig. 5(b), in
which every column of nodes are the candidates for a tonal
syllable. Therefore each path on the lattice represents a possi-
ble tonal-syllable sequence for the input speech utterance.
There can be many different situations for the tonal-syllable
lattice here depending on different input modes and the exact
techniques used in the acoustic-recognition processes. For
example, if the input mode is in continuous speech, some rec-
ognition techniques may result in insertion/deletion of some
tonal syllables, so all the different paths in the lattice may not
include the same number of tonal syllables as shown in Fig.
5(b) and the tonal-syllable lattice may be more complicated.
The tonal-syllable lattice can then be transformed into a word
lattice primarily based on the words in the lexicon.

Linguistic decoding processes primarily based on the lan-
guage models are finally performed on the word lattice. The
latter parts seem very similar to those for alphabetic lan-
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guages, but can in fact be quite different as well. As has been
discussed previously, since the tonal syllables directly corre-
spond to characters with meaning, not only the word lattice
construction from the tonal-syllable lattice is straightfor-
ward, but different versions of language models based on
words and characters can be easily applied and integrated, as
will be clear later on. Also, as shown in Fig. 5(a), although the
primary knowledge sources for acoustic recognition, word-
lattice construction, and linguistic decoding are, respec-
tively, the acoustic models, the lexicon, and the language
models, they can apparently be cross-referenced to achieve
better results. For example, the extra knowledge from the
lexicon and the language models can definitely help in the
acoustic-recognition processes. etc. Moreover, even if the ar-
chitecture shown in Fig. 5(a) seems to have three distinct
stages, it doesn’t have to be implemented as consecutive
stages. For example, some processes may be overlaid to-
gether with corresponding knowledge sources properly inte-
grated. In the extreme case it is even possible that all the
processes shown in Fig. 5(a) can be performed in a single
stage using all available knowledge sources including the
acoustic models, the lexicon, and the language models, as
long as a good design for such a single-stage recognition
mechanism can be developed.

The syllable-based architecture for Mandarin dictation
had been proposed very early [45]. Today this architecture
still serves as the common concepts under the many different
approaches used by almost all research groups working on
this problem (with their works known to the public), although
probably with completely different detailed techniques to im-
plement these common concepts. This architecture is appli-
cable regardless of the input mode chosen and the advances in
various speech-recognition technologies because the special
structure of the Chinese language never changes. In the fol-
lowing sections we discuss the acoustic recognition pro-
cesses to identify the tonal syllables in the input unknown
speech utterance followed by word lattice construction and
linguistic decoding.

The Recognition of Tones

The recognition of the tones for the tonal syllables will be dis-
cussed first in this section. This is always a very special part of
Mandarin speech recognition because in most other languages
tones don’t have lexical meaning and are not necessarily con-
sidered. Because there are only five different tones (four lexi-
cal tones plus a neutral tone), recognition of the tones is
generally not too difficult although very high accuracy is not
easy to achieve. Substantial work on this problem was started
quite early [40, 46-49], and only a few examples will be sum-
marized here. In general, both hidden HMMs [12] and neural
networks [31] are almost equally successful with very similar
performance, and some other approaches also work well. The
four lexical tones are usually easier to recognize while the neu-
tral tone introduces most of the ambiguities.

As mentioned previously, unlike the four lexical tones, the
neutral tone does not have a specific pitch pattern; thus it is
easily confused with the other four lexical tones. Because syl-
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lables with the neutral tone usually are shorter in duration and
lower in energy, short-time energy is found useful in many
studies in addition to the apparent key features derived from
pitch-frequency contours. Many different feature vectors
have been used in various studies, and the following is simply
a typical example:

v=[p.-+l+p!’pul_p;!e.-+l+ener+l_e.f] (1)

where p, is the logarithmic value of the pitch frequency at
frame ¢, and ¢, is the logarithmic value of the short-time energy
at frame 1. Apparently, the first component represents the level
of the pitch frequency while the second is the local slope in the
pitch frequency. These two features alone already provide a
certain degree of recognition accuracy if a reasonable ap-
proach is taken, while the last two components about short-
time energy are very helpful for improving performance.

If the input is in the isolated syllable mode, both HMMs and
neural networks give very good results. The exact accuracy de-
pends on the training/testing speech database and the detailed
approaches. As a typical example, using training speech of less
than | minute, the recognition accuracy of 97.3% or higher
[49] can be achieved using standard HMM techniques without
special tuning in speaker-dependent tests, i.e., the machine is
trained by the voice of a single speaker and tested with differ-
ent voices produced by the same speaker. The results are then
averaged over a group of speakers. If the input is in the
isolated-word mode, the situation is still relatively simple. As
mentioned previously and shown in Table 2, for words with
three or more characters, the tones are actually redundant, and
there is really no need for tone recognition. For mono-
character words, tone recognition is simply the same as for iso-
lated syllables. The only different situation is for bi-character
words, in which the complicated tone-sandhi and co-
articulation effects do make the tone behavior relatively com-
plicated. However, because there are only five different tones
and two syllables, 552 context-dependent models will be suffi-
cient at most, if HMMs will be used for example.

If the input is in the isolated-prosodic-segment (i.e., a con-
catenation of a few words) mode or continuous-speech and
complete-sentence mode, the situation becomes compli-
cated, as is well known, by the tone sandhi and co-articulation
effects and so on. A good example is shown in Fig. 6, in
which the pitch frequency contour of a prosodic segment is
plotted. Compared with the pitch contours of isolated sylla-
bles in Fig. 2, apparently, the tone behavior is quite depend-
ent on the right and left contexts as well as on the prosody and
intonation of the whole utterance. If we try to consider all the
context dependency and assume that each possible tone con-
catenation combination needs a context-dependent model,
then a total of 175 models will be needed, i.e., 5" (for syllables
in the middle of a sentence) + 5° (for syllables at the end of a
sentence) + 45 (at the beginning of a sentence, because the
neutral tone never appears at the beginning of a sentence) + 5
(isolated models). However, practically, this number can be
significantly reduced if the special characteristics of tone be-
havior can be carefully considered. For example, both Tones
I and 2 end high with similar levels, and both Tones 3 and 4
end low with similar levels. This makes the influence of
Tones | and 2 on the following tones very similar, which has
in fact been observed empirically, and so on. With the aid of
such human knowledge obtained from empirical observa-
tions, a hybrid approach integrating human knowledge into a
statistical algorithm to automatically merge and tie the
HMMs [50, 51] can be used, so some of the feature distribu-
tions can be shared. In a typical example out of many similar
goodresults, a total of 23 context-dependent tone models was
found to give very good recognition performance [37, 49].
This set of 23 tonal models is listed in Table 3 as an example
result. It can be seen that, in this case, four models will be
needed for Tone 1, each of which represents a typical pattern
of tone concatenation with right and left neighbors, etc. The
actual recognition rate again depends on the training/testing
speech database and the detailed approaches used. In a typi-
cal example, using training speech of roughly 6.4 minutes,
the recognition accuracy of the tones in continuous-speech

Table 3. The 23 context-dependent tone models.

Tones Tone 1 Tone 2 Tone 3 Tone 4 Neutral Tone
Number of
Models -+ 6 6 4 3
Typical Tone Con- 1 2 3 4 5
catenation Combina- 1-(2) 2-2) 3-(1) 4-(1) (1)-5
tions 3)-1 (1)-2 (1)-3 3)-4 (3)-5
(3)-1-(2) (1)-2-(2) (1)-3-(1) (3)-4-(1)
(3)-2 (3)-3
(3)-2-(2) (3)-3-(1)
For example, in the first column there are 4 different context-dependent tone models for Tone 1, where 1 represents the standard pat-
tern for Tone 1, 1-(2) represents the Tone 1 model at the sentence beginning followed by Tone 2, (3)-1 the Tone 1 model at the sen-
tence end preceded by Tone 3, and (3)-1-(2) the Tone 1 model in the middle of a sentence preceded by Tone 3 and followed by Tone
2; in the second column there are 6 different context-dependent tone models for Tone 2, etc.
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6. A typical example of a pitch-frequency contour for a continuous utterance in a prosodic segment.

and complete-sentence mode can reach 89.8% or higher in
speaker-dependent tests [49].

Recognition of Base Syllables in
Isolated-Syllable Mode

Because isolated syllables may be a feasible input mode for
dictation and since this is, in fact, a very special feature of
Mandarin Chinese, recognition of the 408 base syllables in
the isolated-syllable mode is discussed here first. This prob-
lem has been investigated by many research groups, but here
we simply choose two typical examples. In the first example,
very carefully trained, delicate, continuous HMMs
(CHMMs) are used for all 408 base syllables. As mentioned
previously, the primary difficulty here is caused by the exis-
tence of the 38 confusing sets as represented by the 38 rows in
Table 1. In each of these confusing sets of base syllables hav-
ing the same FINAL but different INITIALSs, the INITIAL
parts are usually very short compared to the FINAL parts in
the base syllables. Therefore, any important differences
among the INITIAL parts of different base syllables can very
often be easily swamped by the irrelevant differences among
the FINAL parts when the computation of the HMMs goes
through the FINAL parts.

An example approach to this problem is then to train the
INITIAL models and FINAL models separately, and then to
cascade them together into the 408 base-syllable models. One
may further make the INITIAL HMMs right-context depend-
ent based on the beginning phoneme of the following FI-
NALs, considering the fact that the acoustic properties of an
INITIAL are highly dependent on the beginning phoneme of
the following FINAL, but make the FINAL HMMs context
independent. The resulting 408 base syllables are shown in
Fig. 7, in which 113 right-context-dependent INITIAL mod-
els extended from the 22 INITIALs are cascaded with 38
context-independent FINAL models to form the 408 base-
syllable models [40, 52-54]. In this way, the INITIAL and FI-
NAL models can be separately trained and optimized and the
very short INITIAL parts can be assigned a larger number of
states. Also, the base-syllable models for the base syllables in
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a given confusing set can have exactly identical parameters in
the last few states. As a result, the effect of the FINALS in the
recognition phase can be minimized while the difference in
the INITIALs can be emphasized to better distinguish these
base syllables. The actual performance of this approach de-
pends on detailed modeling methods and the training/testing
speech database. As a typical example, using training speech
of roughly 10 minutes in speaker dependent tests, a high
top-1 accuracy on the order of 93.8% or higher and a top-5 in-
clusion rate (the probability that the correct base syllable is
within the top 5 candidates selected in the recognition pro-
cess) on the order of at least 98.5% can be obtained in isolated
syllable mode with carefully tuned CHMMs [54].

Although the CHMM-based approaches mentioned above
have achieved very successful recognition rates, they suffer
from not only a highly intensive computation load in both the
training and recognition phases, but also a time-consuming
process of human-aided segmentation of the training data in
order to emphasize the discriminative INITIAL part of each
base syllable. To meet the low-cost, real-time implementa-
tion requirements for a practically useful Mandarin dictation
system, and in order to make on-line adaptation for different
users practically feasible, it is highly desirable to have some
other approaches that can reduce the computation load sig-
nificantly and make the training process easier, without sacri-
ficing recognition accuracy. A typical approach in this
direction specially developed for isolated Mandarin base-
syllable recognition, referred to as the segmental probability
model (SPM) [41, 55], will be presented here as a good exam-
ple of several similarly successful approaches. This model
can be viewed as a modified version of a CHMM with the
state transition probability matrix abandoned and the utter-
ances for the isolated base syllables simply equally seg-
mented by the states. Considering that isolated Mandarin
base syllables have relatively simple phonetic structures, and
that the primary problem in such a recognition task is to dis-
tinguish each base syllable from the others instead of decod-
ing it into a few phonemes with their boundaries, it is
therefore reasonable to assume that an optimal sequence de-
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Table 4. The average recognition rates for isolated syllables in speaker-dependent tests when

CHMMs and SPMs were used with different model configurations.

M 1 2 3

N CHMM SPM CHMM SPM CHMM SPM

3 70.63 70.03 80.15 80.41 82.27 83.53

4 72.27 72.27 81.55 83.27 84.31 84.91

3 75.65 75.28 §2.90 84.09 84.31 85.28

6 71.70 77.29 84.24 83.57 83.98 84.68
i: 7 80.07 78.62 84.68 84.20 84.37 84.91

coding and dynamic programming procedure, usually per-
formed in traditional CHMM approaches, is in fact not
necessary. A simple deterministic state sequence defined by
equal-length segments will be adequate for recognition of
isolated Mandarin base syllables. The computation load can
thus be reduced significantly, and the training process also
made much easier. The basic concept of the SPM and a com-
parison with a CHMM is illustrated in Fig. 8.

Considering the fact that SPM can be viewed as a simpli-
fied version of CHMM, a very intuitive guess for the per-
formance comparison is that the accuracy of SPM will be
more or less degraded as a natural price paid for reduced
complexity. However, extensive experiments, in which dif-
ferent model configurations for both CHMM and SPM were
tested under exactly the same conditions, show that this is
not true. Some typical results are presented here, which in-
dicate that there is really no meaningful difference between
the performance of the SPM and CHMM as far as recogni-
tion of isolated Mandarin base syllables is concerned.

These experiments were performed in the speaker-
dependent mode, with roughly I8 minutes of training
speech for each speaker. The state number, N, was changed
from 3 to 7, and the mixture number, M, was changed from 1
to 3. The average top-1 recognition rates for all the speakers
are listed in Table 4. Note that the numbers for the CHMM
in Table 4 are much lower than the number of 93.8% men-
tioned in the first paragraph of this section because a much
smaller number of mixtures 1<M<3 was used here to reduce
the computation requirements, and no special approaches or
fine tuning on the models such as those previously dis-
cussed were used. From the table, it can be seen that the
achievable recognition rates for both the CHMM and SPM
are in fact very close to each other if the same model con-
figurations are used. For example, in the simplest case (N=3,
M=1) the CHMM can achieve 70.63% and the SPM can
achieve 70.03%, with the latter being only very slightly
worse; and in the most complex case (N=7, M=3), the
CHMM can achieve 84.37% and the SPM can achieve
84.91%, with the latter being slightly better.

These results verify the concept that a deterministic but
properly specified state sequence can perform as well as the
optimal state sequence found by the Viterbi search algorithm.

78

IEEE SIGNAL PROCESSING MAGAZINE

This can be explained by the relatively simple phonetic
structure of the target vocabulary of isolated Mandarin base
syllables. Each Mandarin base syllable is composed of at
most three to four phonemes, and the phonetic structure is
simply an INITIAL/FINAL format as mentioned previously.
This conclusion is, of course, limited to the tested vocabulary
of isolated Mandarin base syllables only and is not necessar-
ily extendible to other vocabulary with more complicated
phonetic structures.

Although the rates achievable here, say 80.41% for
N=3 and M=2, are not satisfactory, apparently many spe-
cially designed approaches can be applied to fine-tune the
SPM models and improve the accuracy, just as for the
case of the CHMM. Because the most discriminating
parts of these base syllables are in the INITIAL parts, the
analysis frame window can be shifted much more slowly
in the beginning parts of each utterance than in the re-
maining parts, and the likelihood values obtained from
the beginning parts of each utterance can be further
weighted to emphasize the INITIALSs [55]. Other helpful
techniques such as the discriminative training approach

Y
Initial Final
«Models Models
v
Base-Syllable Models

7. The specially trained CHMM:s for the 408 base syllables by
cascading 113 INITIAL models and 38 FINAL models.
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significantly, but in that case, top-1 accuracy
will be low, though the top-10 inclusion rate is
almost 100%. Fast-SPM is. therefore, a two-
stage architecture in which M=1 models are
used to select the top-10 candidates out of
408 in the first stage for further consideration
in the second stage; in the second stage the
delicate models are used to choose the output
syllable from the top 10 selected in the first
stage. With all these approaches properly de-
signed and applied, extensive experiments
indicate that with the same training data (i.e.,
roughly 18 minutes of training speech for
each speaker) and testing conditions (i.e.,
isolated syllables and speaker-dependent

An Utterance
for Syllable m

The SPM
for Syllable m

(b)

CHMM

Probabilistic State Sequence
By State Transition Probabilities
and Viterbi Search

mode) as before, the recognition accuracy
can be raised to as high as 95.4%, but at a
speed roughly 45 times faster than CHMMs
[55]. Still another nice feature of the SPM is
that it is also fast in training and flexible in
adapting to various conditions due to its very
simple structure. This makes on-line learning
and fast speaker adaptation possible.

Recognition of Base Syllables in
Continuous Utterances

For input modes other than isolated syllables,
i.e., modes with isolated words, prosodic seg-
ments, or complete sentences, recognition of
base syllables will be essentially the same be-
cause in all these cases, the base syllables are
simply carried in a continuous utterance of a
base-syllable string. The only difference is
that the continuous utterance can be shorter or
longer. So, here, we will present recognition

SPM

Deterministic State Sequence
By Segmentation With Equal Length

of base-syllable strings in such continuous ut-
terances, regardless of whether the utterances
are poly-character words, prosodic segments,
or complete sentences. Similar approaches
have been studied by many research groups
with similar results obtained, but here we sim-
ply summarize some typical examples [28-31,
37, 44).

As discussed before, Mandarin syllables
are traditionally decomposed into INITIALs
and FINALS, with a total of 22 INITIALs and
38 FINALSs. Furthermore, these INITIAL/FI-
NAL:S can be further decomposed into smaller

8. The segmental probability model (SPM) for iselated Mandarin syllable recogni-

tion: (a) basic concept, (b) comparison with the CHMM.

based on the generalized probabilistic descent (GPD) method
[56-58] can be used as well.

On the other hand, the speed of SPM recognition can also
be improved significantly with an approach called Fast-
SPM. For M=l (i.e., 1 mixture for each segment), the
evaluation of the log likelihood function can be simplified
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PLUs. It has been found that a total of 33 PLUs
will be enough to transcribe the 408 Mandarin
base syllables. The phonological hierarchy of
a Mandarin syllable discussed here is illustrated in Table
5(a), where the relationships among tonal syllables, base syl-
lables and tones, INITIAL/FINALSs, and PLUs are shown.
The 33 PLUs for Mandarin Chinese with the IPA (Interna-
tional Phonetic Alphabet) representations are listed in Table
5(b). It can be found that an INITIAL is always a PLU while a
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FINAL generally may contain one, two, or three PLUs. That
is, a Mandarin base syllable is composed of from one to four
PLUSs, including the situation of a null INITIAL.

With the above information, special efforts have been
made in selecting the most appropriate sub-syllabic acoustic
units for base-syllable recognition in continuous speech, con-
sidering the condition of limited training data on the one hand
(currently a commonly accepted, large enough speech data-
base for Mandarin speech does not exist) and the special
mono-syllabic characteristics of Mandarin Chinese on the
other hand. First of all, the INITIAL/FINALs seem to be a
good choice considering the basic structure of Mandarin syl-
lables. In order to consider the condition of limited training
data, a general observation on continuous Mandarin speech is
that the co-articulation effects within a syllable are much
more significant than those across syllables due to the mono-
syllabic structure. Also, within a syllable the acoustic charac-
teristics of the INITIAL are certainly highly dependent on the
FINAL, but those of the FINAL are much less dependent on
the INITIAL. With this in mind, a good approach is to assume
that both the co-articulation effects across syllables and the
dependence of the FINAL on the preceding INITIAL withina
syllable are negligible, and to make the INITIALs right-
context dependent on the beginning phoneme of the follow-
ing FINAL and make the FINALSs context independent. This
gives something like a set of 113 INITIALs and 38 FINALS,
very similar to what was done in the CHMM approaches for
isolated syllables as mentioned previously. In this way, the

co-articulation effects are much more easier to model under
the condition of limited training data. Preliminary experi-
mental results have shown that these are reasonable assump-
tions although it is always better to consider all possible
context dependency if enough training data are available.

If more co-articulation effects are to be considered, some
tests have shown that the next effects to be considered are proba-
bly the inter-syllabic effects. In preliminary experiments, it was
found that the 38 FINALS could be categorized into 12 groups
based on their ending phonemes while the 22 INITIALs could
be categorized into seven to 11 groups based on articulation
phenomena. In this way, the co-articulation effects across sylla-
bles could be modeled with human knowledge of these groups
plus some statistical acoustic modeling techniques such that the
reduced number of cases of context dependency could relieve
the requirements for a large amount of training data. On the
other hand, similar approaches can be developed if the 33 PLUs
are used instead. If all the possible context dependency on both
sides for these 33 PLUs is considered, 511 fully context-
dependent PLUs can be obtained. However, considering the
condition of limited training data, an example approach is to
make all the PLUs right-context dependent but left-context in-
dependent. In that case, 149 units turn out to be quite attractive if
the inter-syllabic effects are temporarily ignored. When the co-
articulation effects across syllables are to be included, the cate-
gorization of the ending phonemes of the FINALs and the
grouping of the INITIALSs discussed above for INITIAL/FI-
NAL approaches can also be used.

Table 5. (a) The phonological hierarchy of Mandarin syllables, where the number inside every bracket indicates the
total number of that kind of unit in Mandarin Chinese. (b) The 33 PLUs for Mandarin Chinese represented in the

International Phonetic Alphabet (IPA).

Tonal syllable (1345)
Base Syllable (408)
FINAL (38) Tone (5)
INITIAL (22)
Medial (3) Nucleus (9) Ending (2)
(b)
IPA
Stop (6) [p] [t] [k] [p'] [T [K']
Affricate (6) [ts] [ts] [te] [ts"] [t5] [t67]
Nasal (3) (m] [n] [n]
Liquid (1) 1
Fricative (6) [f] [s] [s] [¢] [x] [2]
Vowel (10) (a] [o] [y] [e] [i] [u] [y] 1] [U [27]
Null Phone* (1)
| *The Null phone is used for representation of the null INITIAL
80 IEEE SIGNAL PROCESSING MAGAZINE JULY 1997



When the basic sub-syllabic units have been
chosen, the rest of the work is not that much dif-
ferent from that done for alphabetic languages.

Collect Sentences
From The Corpus

For example, the standard segmental k-means

algorithm [59, 60], including some minor

modifications, can be used in the training pro- .
cesses, with some approaches applied to merge
or tie the mixtures/states/models for better T

Automatic
Algorithm

Automatic
Algorithm

Automatic
Algorithm

acoustic modeling considering human knowl-
edge as discussed above. On the other hand, in
the recognition processes many algorithms are
available to search through all the possible
paths and find out the best base-syllable se-
quences; the frame synchronous network
search and the tree-trellis search are two typi-

Phonetic
Criterion 1

Phonetic
Criterion 2

r R

Sentence Set 1 Sentence Set 2

Phonetic
Criterion 3

Sentence Set 3

cal examples [61-64]. In general, all these ap-
proaches are equally as applicable to Mandarin
Chinese as they are to other alphabetic lan-
guages, as long as the appropriate sub-syllabic
acoustic units are chosen and the acoustic models are well
trained. The recognition results very much depend on the
degree of context dependency defined on the sub-syllabic
units and the extent to which the model parameters are well
trained using the available data. For example, if the INI-
TIAL/FINALS are to be used, the set of 113 right-context-
dependent INITIALs and 38 context-independent FINALs
mentioned above give very good results with limited train-
ing data. More context dependency can always be included
in modeling, but the achieved recognition accuracy then
generally reflects the tradeoff between two factors: im-
proved accuracy due to finer modeling and degraded per-
formance due to inaccurate estimates of the model
parameters when the training data are not sufficient. This is
because more units are used and more model parameters are
needed. When sufficient training data are available, the
former dominates and the accuracy can be improved; other-
wise the performance may be degraded.

A similar situation exists if the PLUs are used. In gen-
eral, the 149 right-context-dependent but left-context-
independent PLUs mentioned above give very good re-
sults with limited training data. More context depend-
ency can be included in modeling and the number of units
can range from 149 to 511 as also mentioned above, with
recognition performance again reflecting the tradeoff be-
tween the above two factors. If the context dependency
can be properly defined with respect to the available
training data, there is really no meaningful difference in
the recognition performance between the choice of INI-
TIAL/FINALSs or PLUs. Not only can the achievable ac-
curacy be almost the same, but the model size, total state
number, and search speed can all be almost identical. The
recognition accuracy actually achieved again depends on
the detailed techniques chosen and the database used for
training and testing. As a typical example, using training
speech of roughly 16.4 minutes in speaker-dependent
tests for base-syllable recognition in continuous-speech
and complete-sentence mode, an accuracy of 88.3% or
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9. The three-stage incremental sets of phonetically balanced training sentences
automatically selected from a large corpus.

higher can be achieved using 113 INITIALS and 38 FINALs
as the basic unit [37].

Incremental Speaker Adaptation by
Phonetically Balanced Sentences

In order for Mandarin dictation systems to be widely used, ef-
ficient speaker adaptation functions [65-67] are certainly
necessary because most users will not be ready to spend a
very long time producing enough training data for a speaker-
dependent system (i.e., the system is trained by the voice pro-
duced by the user himself only). In fact, this is also one of the
most difficult barriers in developing marketable dictation
systems. Because the dictation system has to accept a very
large vocabulary and almost unlimited texts instead of a spe-
cial application or a finite set of vocabulary, speaker inde-
pendence (i.e., the user doesn’t produce any voice to train the
system and the system is trained by the voice produced by a
group of other people) is achievable only with relatively low
accuracy, while the amount of training data required for a
speaker-dependent system will generally be very large.
When a system requires too long a time for users to produce
adequate training data, users may simply decide to give up on
using the system. Therefore, speaker adaptation is necessary
in which the speaker-independent system trained by a large
group of people with relatively low accuracy for a new useris
adapted to a new user with much higher accuracy using only a
limited amount of training data produced by the new user. A
good idea for this approach is to develop incremental adapta-
tion processes such that accuracy can be improved step by
step. In this way, the user can find that the system is learning
his voice gradually, or he can start to use the system earlier at
the price of tolerating a relatively higher rate of error. With
this purpose in mind, the training data for a new user needed
in the adaptation processes can be organized into a few
stages, each bearing some special phonetic features, so that
accuracy can be significantly improved after each stage of
training data is produced [68].
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With the above concept, multi-stage adaptation texts for
the training speech need to be developed first. For example,
in the first stage, all the sub-syllabic units used in the base-
syllable recognition should be produced at least once, so
that all the units can be properly adapted. Furthermore, the
statistical distribution of these units should also be repro-
duced to some extent in the adaptation data so that the
more-frequently used units will have more adaptation utter-
ances and, thus, be better adapted with higher recognition
accuracy. This leads to the concept of using a set of phoneti-
cally balanced training sentences with a specific phonetic
criterion selected from a large corpus by a computer algo-
rithm. Such a sentence set should not only have a minimum
number of sentences and characters, but also cover all the
desired phonetic units with a given distribution. The next
few stages can then be developed with a similar concept but
with different phonetic criteria. For example, the second
stage may cover all the 408 base syllables with a desired sta-
tistical distribution. The third stage may cover the top 600
most frequently used tonal syllables out of 1345 with a de-
sired distribution, etc.

A computer algorithm was therefore developed to select
incremental sets of phonetically balanced sentences with dif-
ferent chosen phonetic criteria from a large Chinese text cor-
pus. As an example, a total of three phonetically balanced
sentence sets were chosen to form a three-stage adaptation
procedure as listed in Table 6 and shown in Fig. 9. The corpus
used here from which the sentence sets were selected con-
sisted of a total of 124,845 sentences (1,374,182 characters)
collected from daily newspapers.

In the first stage, a phonetically balanced sentence set was
obtained that covered all the necessary INITIAL/FINAL
sub-syllable units with a desired distribution. This set con-
sisted of 24 sentences or 183 characters (or syllables). The to-
tal length of the speech signal produced for these 24 sen-
tences in continuous speech mode was roughly 50 sec only.
In the second stage, 76 additional sentences or 622 addi-
tional characters (or syllables) were added together with the
sentences in the first stage to form a phonetically balanced
sentence set covering all the 408 base syllables with a de-
sired distribution. The total length of speech signal pro-
duced for these 100 (24+76) sentences was roughly 3.1 min.

Recognition
Rate
(%)

100

90 Character

51.4 Number of
50 L 1 1 Characters (Syllables)
0 183 805 1606
L 1 1 Length of Speech
0 08 31 6.8 (Minutes)

10. The improvements in accuracy in the three-stage incremental
speaker-adaptation procedure.

The third sentence set can be similarly selected as shown in
the last row of Table 6. In this way, the speech data produced
for these phonetically balanced sentence sets could be used as
very good adaptation data for a new speaker. Furthermore,
since these sentence sets also reproduced (to a very good ap-
proximation) some desired statistical distribution of the se-
lected phonetic units, the more frequently used units could be
better trained and recognized more accurately. With these
sets of phonetically balanced sentences produced by the new
speakers, the system could adapt to a new speaker stage by
stage.

Figure 10 is an example experimental result for the above
three-stage incremental adaptation procedure averaged for a
number of outside speakers (i.e., speakers who didn’t pro-
duce any voice to train the initial speaker independent sys-
tem) based on the continuous-speech input mode using the
context-dependent INITAL/FINAL units mentioned previ-
ously. Only the lower curve in Fig. 10 for tonal-syllable accu-
racy is discussed here, while the upper curve for character
accuracy will be discussed later on. The average tonal-
syllable accuracy for the initial speaker-independent models
trained by the data produced by many other speakers was
only 51.4%, as can be seen in Fig. 10. This number is signifi-

Table 6. The example phonetically balanced training sentence sets for incremental speaker adaptation.
Traini LG Accumulated Speech Length Phonetic Criteria Used to
el L S in Continuous Speech Mode Select the Set
(Characters or Syllables) pe
Covering all INITIAL/FINAL
1 24 (183) 50 sec. units with a desired
distribution

; Covering all 408 base syllables

2 A ) Ak with a desired distribution

Covering top 600 most

3 200 (1606) 6.8 min. frequently used tonal syllables

with a desired distribution

82 IEEE SIGNAL PROCESSING MAGAZINE

JULY 1997



cantly lower than those that appeared in the previous sections
for speaker-dependent cases, such as 89.8% for tones and
88.3% for base syllables, because here the speakers had not
produced any voice of their own to train the system. How-
ever, after the speakers produced their own voice for the first
stage of 183 characters or 24 sentences (with roughly 0.8
minutes of speech) and used the data in the adaptation, the av-
erage accuracy was immediately improved significantly to
66.9%. When an additional 622 characters or 76 sentences
were uttered in the second stage, these 24+76=100 sentences
(183+622=805 characters, with 3.1 minutes of speech) gave
an accuracy of 76.5%. When another 100 sentences (801
characters) were further included in the third stage, the accu-
racy could be improved to 80.1%. Apparently, with this in-
cremental adaptation procedure the recognition rates can be
improved very fast stage by stage.

These three stages of phonetically balanced sentences
consist of 1606 characters or 200 sentences with only about

6.8 minutes of speech. In the speaker-dependent examples
for continuos speech mentioned previously, 16.4 minutes of
training speech gives 88.3% of base-syllable accuracy and
6.4 minutes of training speech gives 89.8% of tone accuracy.
So the speaker adaptation results in Fig. 10 are apparently
much better than the speaker-dependent case, since only
6.8 minutes of speech gives 80.1% of tonal-syllable accu-
racy. If this 6.8 minutes of training speech with 1606 char-
acters was used in a speaker-dependent test (not started
with speaker-independent models as described here), the
tonal-syllable accuracy is only 72.4%. This is why speaker
adaptation is attractive.

In practice, a new speaker can decide at which stage to
end the training process and then begin to use the system di-
rectly. After he begins to use the system, further adaptation
can be performed on-line during real applications as well, as
long as corrections can be made and the user can tolerate the
errors. A nice feature of the learning curve in Fig. 10 is that

h
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/E (Store)

't (Electricity)
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11. A typical partial listing for a tree structure of the lexicon.
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(this) (book) 0}
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(I read this book a long time ago)

BE e WART

(long time) (ago) g (read)

(topic)

12. The topicalization of a sentence as a typical example of long-distance movement.

the slopes in the first two stages are really high; i.e., the im-
provements in accuracy are very fast in the first two stages af-
ter the user spends very limited time producing the necessary
adaptation data.

Word Lattice Construction and Linguistic
Decoding with Chinese Language Models

Regardless of an input mode of isolated syllables, isolated
words, prosodic segments, or complete sentences, the acous-
tic recognition processes always produce a lattice of tonal-
syllable candidates as presented in the previous several sec-
tions. Because of the high degree of confusion among the base
syllables in the confusing sets, the accuracy in the tonal-
syllable recognition in any case cannot be very high. As a re-
sult, each tonal syllable in the input unknown utterance has to
include a number of candidates in the tonal-syllable lattice.
This tonal syllable lattice should be used to construct a word
lattice as discussed previously and shown in Figs. 3 and 5. If
the input mode is in isolated words, the very complicated word
lattice may be broken down into a sequence of smaller word
lattices, but the situation is still complicated due to the high de-
gree of ambiguity existing in the mono- and bi-character
words. As mentioned previously, mono-character words ap-
pear very frequently in daily language, and bi-character words
occupy more than 70% of the most frequently used top 50,000
words in Mandarin Chinese. From Table 2 which was dis-
cussed previously, there are serious homonym word problems
for these two categories of words. In any case, powerful lin-
guistic decoding techniques based on some language models
will be necessary to find as the dictation output the best path or
the most probable sequence of words within a complicated
word lattice or a sequence of word lattices, as shown in the
right part of Fig. 5(a). This will be the subject of this and the
next few sections. However, we will first say something about
how such word lattices can be constructed.

The construction of word lattices is based on a matching
process between all possible paths in the tonal-syllable lattice
obtained from the acoustic recognition processes and the
large number of words stored in a lexicon. This allows all
possible word hypotheses to be included in the word lattice.
In order to make such a matching process efficient, especially
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for the very large number of words for a dictation task, the
words in the lexicon are usually stored in a tree structure. A
good example of a partial list of a tree structure is shown in
Fig. 1 1. In this figure, every base syllable is a node (in some
other works, every tonal syllable is a node, but the concept is
the same). Starting from the beginning point, the first-level
nodes such as the base syllable [dian] represent many mono-
character words produced with this base syllable, such as
those standing for “point,” “store,” or “electricity.” Traveling
along one of the paths from this node (o one of the next level
nodes, such as the base syllable [shiin], here all bi-character
words corresponding to the two base syllables [dian] [shiin]
are stored, such as those standing for “telecommunications”
and “refreshments.” Continuously traveling to the next level
nodes will lead to tri-character words consisting of the first
two base syllables [dian] [shiin], such as that standing for
“telecommunications office,” produced as [dian] [shiin]
[jiiu], etc. In this way, searching through the tree will be effi-
cient for finding out all the possible words that may exist in a
sequence of syllable candidates. Such a lexicon tree can also
be re-organized into a backward tree structure, i.e., starting
with the last syllable in a word, then the second last, the third
last, etc. This is because in some recognition techniques a
forward-backward searching algorithm is used in which
word matching in the lexicon may be performed in the back-
ward path. In those cases, the backward lexicon tree will be
very helpful.

With the word lattice obtained above, the basic principle
in obtaining the output sentence from this word lattice is to
perform linguistic decoding over the lattice to find the best
path based on linguistic constraints usually represented as
Chinese language models. The concept of language models is
well known in the speech-recognition area for alphabetic lan-
guages as well, but how this concept can be properly utilized
and applied to the Chinese language is a good question be-
cause the structure of the Chinese language is quite different.
Here, we start with the basic approach to develop Chinese
language models and follow with special measures to im-
prove the language models by considering the characteristics
of the Chinese language.
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In order to find the most probable output Chinese sen-
tence, .?, from a word lattice, L, a natural approach is to
search through the entire lattice from the beginning to the end
and find a single path with the maximum likelihood. The out-
put Chinese sentence can then be obtained by concatenating
all the words on this path. Let Z be the set of all possible paths
in L, X be an arbitrary element of Z, and X be the maximum-
likelihood path to be found. The desired path, X, can then be
defined as

X = P(X 2
X ar%ﬁrir{:ax ( |.S') ¢))]

which specifies the maximum-likelihood condition, where §
is the input speech signal that is probably a sequence of iso-
lated syllables, words, prosodic segments, or a complete sen-
tence, depending on the input mode. Using Bayes’ theorem,
the above equation can be rewritten as

s | .
X arg‘_?;ax{P(SlX)*P(X)} (3)

because P(S) is identical for all paths, X, and is therefore de-
leted. In this equation, there are two probabilities: P(S1X)
can be computed from the acoustic scores obtained for the
tonal-syllable candidates during the acoustic recognition
processes discussed previously, while the probability P(X)
is to be estimated by some language models [69-74].

Here a relatively simple Markov Chinese language model
is first defined in the following as an initial example. The prob-
ability P(X) fora given path, X = {X|, X, X; ..., X}, where X, is
the rth word on the path, can first be decomposed into

P(X)=P(X,)-[ TTHAXJE Xk,

:| (4)
2srs R

If we assume that every word, X,, of X satisfies the Markovian
property [75], then the above equation can be simplified as

:|_(5r

i.e., the word X, depends on d previous words only, where d is
the order of the Markov modeling. The validity of the above
assumption can be verified empirically; i.e., the test results
will show that such an assumption is, in fact, reasonable.
When dis setto 1, thisis the first-order Markov model and the
involved probabilities, P(X,IX,_ ), usually called “word bi-
gram” parameters as mentioned previously, represent the
probabilities that the word X, will appear right after the word
X,_;. These parameters can generally be estimated or trained
from a large text corpus. Usually a language model refers to
the set of all these probabilities, and the phrase “word bi-
gram” is also used to refer to the language model consisting
of word bi-gram probabilities, etc.

A stronger language model may be that for d=2, or the so-
called word tri-gram with probabilities P(X,IX,_,, X, ,), or
even some other higher-order models (the so-called word
N-grams with d=N-1, etc.). While the capabilities of these
language models are yet to be verified by experiments, their
performance really also depends on whether a large enough
training text corpus is available to obtain good estimates of
such large numbers of parameters. For example, if a lexicon

P(X)=P(Xl){Hp(x,lx,_{,,x,_,ﬁ.....

25rsR

(a)

e “ & (Yesterday) —
WH & (Tomorrow)
{ ﬂ L (Sunday)

i L (Morning) ]
i A (Early Morning)
& I (Eary Class)

4 X (Everyday)
| @ X (Rainy Day) N

Common Ending Character:

(b)

VER,

(Yesterday)

=

L ¥ 4

(Morning)

L

£ (Day)

(There were many people in front of the train station yesterday morning)

E S 3 '

(Train Station)

e

i & (Breakfast)
=R F W (Earie

Common Starting Character:

¥ (Eary)

1%

(Front)

i

ALAE
(Many People)

LI_I

13. (a) Chinese Word classes with common ending/starting characters. (b) The probability evaluation for a sentence using language

models based on such word classes.
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Stage 1:  Classification With
Part-of-Speech Features

Stage 2: Further Classification
Based on Statistics of
Word-Co-Occurrence

Stage 3:  Final Merging Based

on Statistical Similarity
Between Classes

14. The three-stage word classification algorithm to obtain Chinese word classes considering both grammatical and statistical knowledge.

of 50,000 words is to be used, the word bi-gram requires
(5x10°)* probabilities, and the word tri-gram requires
(5x10°)" probabilities. Not only will training such a large
number of parameters be very challenging even if a huge text
corpus 1s available (for example, it is important whether the
corpus is well balanced on the desired domains and subjects),
but storage and retrieval of these parameters will also be diffi-
cult. In order to implement a dictation system with reasonable
memory size and cost, compactness of the language model
parameters will also be a key issue.

Various Types of Chinese Language Models

An almost unlimited number of variants of Chinese language
models exist, with the word bi-gram (d=1) and word tri-gram
(d=2) mentioned above as the two basic forms. All these vari-
ants will be discussed in this section. First, models of other
higher orders also provide very useful linguistic knowledge,
and the combination of parameters of models with different or-
ders with proper weighting factors very often gives very good
results. For example, the following formula is often used:

P(X,|X,,X,,)= (6)
gy P'(X, X, X, )+
g, P(X,|X, ) +q, P(X,);

in other words, the word tri-gram may be difficult to train be-
cause a very huge text corpus will be needed, but under-
trained word tri-gram parameters, P(X1X,_,, X, ,), appropri-
ately interpolated with word bi-gram or even word uni-gram
(i.e., d=0) parameters may become much more powerful than
word bi- or uni-grams alone. Secondly, the word is not the
only basis for Chinese language modeling. Another possible
candidate for Chinese language modeling is certainly the
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character [76]. As mentioned before, there are no natural
boundaries between words in Chinese sentences: therefore, a
sentence can be viewed as a sequence of words or as a se-
quence of characters. Also, almost every character is a mor-
pheme with its own meaning and linguistic features;
apparently, a character appearing after another set of charac-
ters also represents important linguistic constraints. This
leads to the concept of Chinese language modeling based on
characters rather than words.

In this case, Eq. (5) remains completely unchanged. The
only difference is that now X, is the rth character instead of
the rth word in the given path X in the word lattice. In fact,
some linguistic information such as word frequency is auto-
matically included in such character-based language models.
For example, the character bi-gram P(X,|X,_,) for the charac-
ter pair (X,_,, X,) is closely related to the frequency of the ap-
pearance of a bi-character word, “X,_ X,” if “X,_X,” is a
bi-character word. On the other hand, if both characters X,_,
and X, are mono-character words, then the character bi-
gramP(X 1X, ) is actually the word bi-gram for these two
words. Similar reasoning can be extended to higher-order
models such as character tri-grams and so on. In fact, the
character-based models provide some information existing
in the word-based models and some additional information,
so proper interpolation between the two is also helpful when a
good interpolation algorithm is used.

A nice feature of the character-based models is that the to-
tal number of commonly used characters is much smaller
than that of commonly used words, say 10,000 as compared
to 100,000, so the number of bi-gram, tri-gram. or similar pa-
rameters will be much smaller for character-based models.
Therefore, these parameters can be estimated with better ac-
curacy as compared to those for word-based models if the
training corpus is not unlimited in reality. The smaller
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number of parameters also makes it possible to obtain model
parameters with higher order, such as the so-called N-grams,
and makes storage, retrieval, and implementation of such lan-
guage models easier.

On the other hand, as mentioned previously, the words in a
Chinese sentence are not well defined, and the segmentation
of a sentence into words is not unique; therefore, training
word-based language models requires at least a large enough
training corpus that is consistently segmented into words,
This is certainly not easy to obtain. Therefore, another good
feature of the character-based language models is that the
characters in a sentence are straightforward, so the problem
of consistently segmenting the training corpus into words can
be directly bypassed. However, experiments indicate that
character-based models apparently possess very good capa-
bilities in linguistic decoding, but that word-based models are
certainly better in every case, if both of them are used alone.

Forexample, a word bi-gram is more effective than a char-
acter bi-gram, and a word tri-gram is more effective than a
character tri-gram. On the other hand, successful interpola-
tion of the two is certainly better. Also, very interesting expe-
riences were obtained in comparison between the language
models for Chinese and English languages. For English the
word N-grams are useful, but the character N-grams are
probably not since the characters do not generally bear any
meaning. The experiences are such that, though this is diffi-
cult to describe in quantitative measures, the word bi-gram is
apparently more effective for linguistic decoding in Chinese
than in English, and so is the word tri-gram. The possible rea-
son is that in Chinese every word is composed of one to sev-
eral (say most frequently two) characters that also have their
own meaning. So, for example, the word bi-gram probability
for a Chinese word appearing after another is very close to the
probability for four characters (if each of these two words has

two characters) appearing in a sequence, which is similar to a
character 4-gram. Since almost each character has its own
meaning, this word bi-gram probability, if also considered as
something like a character 4-gram probability, certainly pro-
vides stronger linguistic constraints. Such interesting phe-
nomena probably do not exist in word N-grams for alphabetic
languages such as English.

Still another even more useful basis for Chinese language
modeling is the word class, i.e., grouping many different
words with similar linguistic properties together as a class, so
that a very large number of words can be categorized into a
much smaller number of word classes. The Chinese language
model can then be constructed based on these word classes
[77]. In such a situation, for example, the bi-gram probability
P(X,IX,_,) can be replaced by

P(X,|X,.)=P(C(x,)lc(Xx,.))P(X,

c(x,)), ™

where C(X,) and C(X,_,) are, respectively, the word classes
containing the words X, and X,_,. In this way, not only can the
number of word classes be much smaller, but this number can
even be adjusted by the designer based on various considera-
tions such as the desired accuracy. acceptable memory size,
and the estimation ability of the parameters. Also, because of
the much smaller number of word classes, training of higher-
order language models becomes possible. Another nice fea-
ture of such word-class-based language models is the auto-
matic smoothing effect for many words in the same word
class. For example, both words X! and X’ belong to the
same word class, C,, and the words X' and X both belong
to the same word class, C,_,. As long as X appears fre-
quently rightafter X! | in the training corpus, the bi-gram pa-
rameter P(C,IC, ) will be adequately trained. So even if the
word X doesn’t appear right after X ”, frequently in the

e = %4 ¥
Car
'{ (Take) g (Car)
% (Ride)  ....|. .. | —— A%
i% (Ride) k * (Train)
. B irpane)
i S
Iﬁ (Steer)
15. Typical example word classes obtained from the three-stage word-classification algorithm.
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(1) Classify Words According to Part-of-Speech
Features

Classify Words According to Semantic and
Statistical Information

16. The algorithm for clustering words into overlapping classes integrating semantic information.

training text corpus, the bi-gram parameter P(CIC,._,)) will in-
dicate an appropriate probability for X } appearing right after
X 7. This solves the difficult problem of requiring that all the
word pairs (X,, X,_,) be adequately trained and assigned an ap-
propriate probability value, which is usually difficult even if
a huge text corpus is used for training. Finally, just as before,
different orders of word-class-based language models can be
combined together with proper weighting factors, and they
can also be interpolated with word-based or character-based
models because each of them bears somehow different lin-
guistic information. The key problem here is how to group
the words into effective word classes, which will be dis-
cussed later on.

All the above types of Chinese language models can be
further extended. A special feature of the Chinese language is
that word order is quite free and the long-distance relation or
long-distance movement appears very frequently. A good ex-
ample is shown in Fig. 12, in which the sentence that means “I
read this book a long time ago” is used as an example. In this
sentence, the object element standing for “this book™ does not
follow the verb element standing for “read,” but instead is
moved to the beginning of the sentence as the topic of the sen-
tence (the so-called topicalization effect). This implies that
the “association™ between two elements (characters, words,
word class, or others) may not be well reflected by the Mar-
kov language models such as bi-gram or higher-order pa-
rameters, because they only describe the local behavior of a
language among adjacent elements with a specific order. In-
stead, in the Chinese language many “association” relations
can be separated by very long distance, and the order among
the elements may be very free [78]. This leads to the concept
of extended language models. For example, in the case of the
bi-gram parameter P(X,1X,_)), a different probability, P(X,,
X,), may be used instead, which is defined as the probability
that two elements (characters, words, word classes, etc. ), X,
and X, will appear jointly in the text corpus within a window
of some given length with arbitrary order. Experiments indi-
cate that such language models are very useful if properly de-
signed and adequately trained.

Finally, a further approach can be used to improve the Chi-
nese language models, i.e., integrating grammatical rules into
statistical language models [78, 79]. This can be done by first
analyzing the syntactic behavior, semantic relations, or spe-
cial grammatical patterns for some frequently used words or
function words, and then developing special rules for them.
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These rules can then be properly integrated with the statisti-
cal language models such as bi- or tri-grams. Because the
grammatical rules very often provide extra information or-
thogonal to the statistics obtained from the text corpus, experi-
mental results indicate that such a hybrid approach is very
attractive since significant improvements in accuracy can usu-
ally be obtained at almost no extra cost in computation or
memory size.

Typical Chinese Word-Classification
Techniques

Although there exist so many different types of Chinese lan-
guage models as mentioned above, it has been found in al-
most all the experiments that word-class-based language
models are always very useful. They have actually been prac-
tically used in various prototype systems very successfully.
The key issue, however, is how to group the words into ap-
propriatc word classcs on which the language models can be
constructed. Word-classification techniques have been dis-
cussed extensively for western languages [77] in the natural
language analysis area, but here we will discuss some experi-
ences in the classification of Chinese words in terms of dicta-
tion applications for Mandarin speech with very large
vocabulary. A few typical examples of such word classifica-
tion techniques will be presented below.

In the first example, the words are simply classified ac-
cording to their starting and ending characters [80]. This is
the most straightforward and easy approach. Because, as
mentioned previously, almost every Chinese character is a
morpheme with its own meaning, words having the same
starting or ending characters very often share some common
linguistic properties and can thus form a word class. A good
example is shown in Fig. 13(a), where the words standing for
“yesterday,” “tomorrow,” “Sunday,” “everyday,” and “rainy
day” all end with the same character standing for “day” and
have to do with something regarding a “day.” so they can be
grouped together to form a word class with acommon ending
character. On the other hand, the words standing for “morn-
ing,” “early morning,” “morning class,” “breakfast” and
“earlier” all start with the same character standing for “early”
and have to do with “something early.” So, they too can be
grouped together to form a word class with a common start-
ing character. In this way, as long as the word standing for
“morning” immediately follows the word standing for “yes-
terday” (indicating “yesterday morning™) and appears fre-
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quently enough in the training text corpus, Mammals Mankind [+Human]
other combinations such as the word standing Animals Nonhuman
for “breakfast” immediately following the [+Edible] |—— Bird [+Flight]
word standing for “everyday” (indicating [+Mobile] Marine
“every breakfast”) will be automatically Animate | [+Sentient] [~
trained even if they do not appear frequently Worms & Insects
enough in the training text corpus. . Repliles

The way in which the probability of a sen- Prysical Amphibi

: ; s | Amphibians

tence, !.D(X), is evaluated is shown in Fig. Plants Woody
13(b), in which the sentence “There were —]:
many people in front of the train station yester- B Edible] jieibacoous
day morning” is composed of five words. If the L—— Microbes
word-class-based bi-gram is used, the bi-gram Inanimate
for every two concatenated words will be SELY TR DO
evaluated—for example, the word standing Nonphysical
for “yesterday” followed by the word standing S

for “morning” and the word standing for
“morning” followed by the word standing for
“train station,” etc. Note that here, the second word standing
for “morning” is considered to be a word in a word class with
acommon starting character in the former case. but as a word
in a word class with a common ending character in the latter
case. In this way, every word generally belongs to two word
classes: one with a common starting character and the other
with a common ending character. So generally, the total
number of word classes will be the total number of characters
times two because every character can be a common starting
character and a common ending character of a word class.

The nice feature of this technique is that the categorization
is very simple, so any new word added to the lexicon can be
automatically categorized into its corresponding class with-
out any problem. The weak point of this approach, however,
is also clear. Of course, not all words having the same starting
or ending characters always have identical linguistic proper-
ties. Very often some words will be inappropriately assigned
to some classes irrelevant to their linguistic features. Experi-
ments indicate that the performance of language models
based on these word classes is quite satisfactory though, be-
cause such inappropriately assigned words only constitute a
very small portion for the statistical models based on a large
number of words and a huge text corpus. However, better
word classification techniques are highly desired, and the fol-
lowing is one example.

This example approach is based completely on statistics
from a large corpus. Because vector quantization has been a
very efficient technique for clustering a large number of vec-
tors into classes, efforts have been made to try to represent the
statistical behavior of words in a large text corpus using fea-
ture vectors so that vector quantization techniques can be
used [81]. Assume a total of N; words is considered; one or
several N;-dimensional feature vectors can then be con-
structed for each word. Each component represents the ap-
pearance frequency of a certain word out of the N, words,
appearing jointly with the given word within a window of a
certain length, preceding or following or on both sides of the
given words. Vector quantization techniques can then be ap-
plied to cluster these vectors into the desired number of
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17. A simplified partial list of the conceptual structure of Chinese words.

classes, as long as a good distance measure between two vec-
tors can be properly defined.

Although this concept sounds reasonable, for a very large
number of Chinese words (for example, on the order of
100,000) the very large number of super-long vectors is not
easy to quantize. Quite a few special techniques have therefore
been developed and applied to simplify the above problem in
order to make word classification quantization practically fea-
sible. In a preliminary study, a lexicon of roughly 100,000
words were used, and about 1,000 word classes were eventu-
ally obtained. By observing the 1,000 word classes carefully, it
was found that most words that were clustered into the same
word class had relatively similar linguistic behavior and that
the language models constructed with these word classes actu-
ally performed significantly better than those with the word
classes discussed previously based on the beginning and end-
ing characters of the words [81].

It was also very interesting to observe some linguistic be-
havior of Chinese words from the results; for example, ad-
verbs were classified better if the classification was based on
the following words to their right only; while quantity words
were classified better if based on the preceding words to their
left only. This is certainly because words modified by ad-
verbs usually follow the adverbs, but quantity words are usu-
ally followed by numbers, etc. However, the primary weak
point of this approach is that the classification is completely
based on statistics; thus, all frequently used words are classi-
fied very well due to a sufficient amount of training data, but
less frequently used words and especially rarely used words
may very often be clustered into some very inappropriate
word classes. This is why some improved word classification
techniques will be discussed below.

Improved Techniques for Chinese

Word Classification

In order to solve the problems discussed above, an improved
three-stage hierarchical word classification algorithm has
been developed and will be presented here. This algorithm in-
tegrates the advantages of both the grammatical and statisti-
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cal approaches and is able to solve the problem where some
rarely used words do not have sufficient statistical informa-
tion for classification [37, 44]. The classification process was
divided into three stages, each with a different strategy as
shown in Fig. 14.

In the first stage, all the words in a lexicon (approximately
100,000 words) were first grouped according to their linguis-
tic features of the parts of speech. The set of parts-of-speech
features carefully assigned by a group of linguists in long-
term work done at the Academia Sinica at Taipei is a good ex-
ample reference for this stage of work [82]. For example, if a
word has three different parts-of-speech, e.g., Active-
Verb-B, Proper-Noun-A, and Proper-Noun-C, it will be
grouped with the words having exactly the same parts-of-
speech. In this way, in an example study about 200 parts of
speech in the Chinese language could be used and about 950
initial classes could be obtained. Of course, in this way, every
word was assigned to a single class, but a class may have sev-
eral different parts of speech.

In the second stage, the words in the same class, which
were believed to have similar syntactic behavior, were fur-
ther grouped into smaller classes based on their statistical be-
havior [83]. That is, words having similar
word-co-occurrence feature vectors were further grouped
into even smaller classes based on the criterion that the simi-
larity measure between them exceeded a given threshold. Itis
believed that some implicit semantic information is inte-
grated in the second stage. In the third stage, however, in or-
der to avoid classification that is too restrictive, some classes
obtained in the second stage with different parts-of-speech
features can be further merged together according to the sta-
tistical similarity between them, even if they have been sepa-
rated in the first stage.

In general, with the above procedure, words clustered into
the same class have very similar syntactic and semantic be-
havior because both their parts-of-speech features and co-
occurrence relations with adjacent words in the corpus are
very similar. Also, the number of finally obtained classes is
adjustable for different application tasks, considering factors
such as accuracy and memory size. In the experiments, it was
found that roughly 950 to 2,000 classes were very good
choices for the Chinese lexicon of about 100,000 words used.
Furthermore, for those rarely used words with insufficient
statistical information, the classifications were still satisfac-
tory because the parts-of-speech features had been carefully
used. This is why the language models based on this word-
classification algorithm were found in a series of experiments
to be significantly more powerful in linguistic decoding with
a smaller number of model parameters and much more robust
with respect to a smaller training text corpus.

A good example is shown in Fig. 15 in which the words
standing for “car,” “bus,” “train,” and “airplane” automati-
cally belong to a word class, i.e., transportation vehicles.
Those words standing for “take™ and “ride” are categorized
into an initial class of verbs describing some kind of “state”™
with regard to these transportation vehicles, while other
words standing for “drive” and “steer” are categorized into
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another initial class of verbs describing some “operations”™
regarding the vehicles. In other words, after the first stage of
classification, the two initial classes of verbs are separated
due to their different semantic features. However, these two
initial classes will eventually be merged in the third stage of
classification to become a single word class because they
both are usually followed by the same class of nouns, i.e.,
transportation vehicles. In this way, as long as combinations
such as those standing for “take the bus™ or “steer the air-
plane” appear in the training text corpus, all the other combi-
nations such as those standing for “ride the train™ or “drive
the car” will be automatically covered, even if they do not ap-
pear in a relatively small training text corpus.

Although word classes obtained as described above are
very successful, further improvements are still possible. The
direction is to try to include even more semantic information
in the word classification. In natural language processing, se-
mantic information is so crucial that it has been intensively
utilized for years. However, not too many studies in speech
recognition that sufficiently integrate semantic information
have been reported. For the Chinese language, word order is
very free in sentences, the syntactic constraints are relatively
loose, and the meaning of a sentence is usually primarily de-
termined by the semantic features of the component words. It
is thus believed that better integration of semantic informa-
tion should be able to further improve the accuracy in speech
recognition. The only question is how to do this properly. In
the three-stage word classification technique discussed
above, every word is assigned to a single word class, and only
the syntactic knowledge and statistical information are pri-
marily considered when clustering the words.

In a further-improved approach to be presented here, how-
ever, not only does the clustering of words consider both syn-
tactic and semantic information, but each word is allowed to
be present in more than one class. Such a concept with over-
lapping word classes is crucial when considering both syn-
tactic and semantic information for Chinese language
modeling. Almost every Chinese word can have multiple lin-
guistic features, and its corresponding meaning is strongly
influenced by the context. For example, the Chinese word in
(e) of the character box is frequently used both as a verb
meaning “construct” and as a noun meaning “structure.” It
should thus be assigned into at least two different classes. The
basic algorithm for clustering words into such overlapping
classes is conceptually depicted in Fig. 16.

First, each word in the vocabulary is classified based
on all of its possible parts-of-speech features according to
human knowledge [82]. Here. each word now can be as-
signed to more than one category, as long as its linguistic
features so indicate. This step results in a set of overlap-
ping grammatical categories. In this way, words in the
same category should have very similar grammatical be-
havior. Secondly, the words in each of the categories are
further partitioned into smaller classes according to the
similarities between each two of them. This similarity,
S(w;, w)), between words w; and w; considers both seman-
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tic information from human knowledge and statistics from a
large text corpus simultancously:

S(w,w;)= axS_;(w,.,w}.)+(1—a)><S,.(w,,w;-), (8)

where S,(w;, w)) is the similarity evaluated from the context
vectors acquired from a large text corpus [83] while S,(w;, w;)
is determined by the conceptual structure [84], which is a hi-
erarchical knowledge representation for the semantics of
Chinese words. Figure 17 is a simplified partial list of the
conceptual structure for Chinese words. With this conceptual
structure, not only can the semantics of a word be extracted
from its location within the hierarchy, but the relative dis-
tance between two given words can be measured. In this ap-
proach, S,(w;, w,) may depend on the relative distance and the
least common ancestor for w;, and w; in the hierarchy, and all
necessary parameters can be automatically trained. It was
found in the experiments that Chinese language models de-
veloped based on word classes obtained in this way had even
better performance.

Further Issues in Chinese

Linguistic Processing

As mentioned previously, the open vocabulary and the al-
most unlimited number of words in the Chinese language are
two of the major problems in developing Mandarin speech-
recognition systems with very large vocabulary. One ap-
proach is, of course, to collect as many words as possible
from different dictionaries, text corpora, etc., to construct a
lexicon that is as complete as possible. In this case, due to the
large number of words in the lexicon, in order to have a lan-
guage model with a small enough number of parameters ca-
pable of selecting correct words for utterances, the
word-class-based language models constitute one of the ma-
jor solutions. Since there are almost an unlimited number of
ways of grouping word classes, various concepts of word-
classification techniques have been presented in the above.
Of course, there also exist other important approaches to this

problem, one of which is to try to store only all the “basic
words” in the lexicon, and to develop a set of word-
generating rules such that most of the word variants and com-
pound words can be automatically generated and, therefore,
need not be stored.

For example, a verb followed by a given character simply
represents the past tense; such as the verb standing for “eat”
becomes “ate,” the verb standing for “see” becomes “saw,”
etc. (see (f1) in box). Also, a very large number of compound
nouns can be formed by combining two nouns with specific
categories. For example, the nouns standing for “pig” and
“meat” form a new noun standing for “pork™ based on very
simple general rules (see (f2) in box). A lexicon of such “ba-
sic words” and a set of such word-generating rules usually
have to be obtained via careful investigation by linguists and
will be very helpful in significantly reducing the necessary
number of words while maintaining the same power of the
language models. Of course, in this case, the word-
classification techniques and resulting language models also
have to be modified.

The next important issue is the learning of the new words.
It is simply impossible to include all the words in a lexicon;
thus, an important problem is how new words can be easily
included in a lexicon and integrated into the language model.
This process is usually performed when errors occur and the
user makes corrections. The way in which the new words are
integrated into the language model depends on the design of
the language model. If the language model is primarily based
on characters or words, integration will be much easier. How-
ever, if the language model is based on word classes, how
each new word can be assigned to an appropriate word class
becomes critical and, in turn, depends on the principles on
which the word classification is based. For example, if word
classification is based on beginning or ending characters as
shown in Fig. 13, the assignment of a new word to the correct
word class is straightforward; however, this is much more
difficult if the word classification is based on statistics, syn-
tax or semantics.

Another challenging problem is
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ing related problem, i.e., ad-
aptation of the language
model to different users as
well as different application domains and subject areas. This
would allow very high accuracy to always be maintained for
each user, even when the domains and subjects of documents
being entered are switched from one to the other [85]. This
problem is difficult, and substantial efforts are currently be-
ing made even for alphabetic languages. Equal efforts should
certainly be focused on the Chinese language.

Typical Prototype Systems

With the basic problems and core technology for voice dicta-
tion of Mandarin Chinese summarized as above, several typi-
cal prototype systems will now be presented to demonstrate
the feasibility of the concepts and the stages of developments.
Although several prototype systems have been developed by
different research groups, the Golden Mandarin Series of
prototype systems developed at National Taiwan University
and Academia Sinica at Taipei are very good typical cxam-
ples and are the ones the author is the most familiar with. In
classical Chinese literature, it is said that the most beautiful
sound in the world is that produced by knocking a piece of
gold with a piece of jade. Such a sound is given a name using
four-character Chinese words standing for “sound of gold
and jade” (see (g) in box). The research group at National Tai-
wan University and Academia Sinica has been working on
the problem of voice dictation of Mandarin Chinese for more
than 12 years. For the researchers in this group, the most
beautiful sound in the world is certainly Mandarin speech.
This is why they have called their prototype systems the
Golden Mandarin Series.

Golden Mandarin (I), completed in March 1991, is known
to be the first successfully developed real-time Mandarin dic-
tation system in the world [40]. It was implemented on an
IBM PC/AT, connected to three sets of specially designed
hardware boards on which 10 TMS 320C25 chips operated in
parallel. It is speaker dependent without any adaptation func-
tions. The input mode is in isolated syllables. The acoustic
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19. The system block diagram of Golden Mandarin (11Ib).

recognition is primarily based on a set of specially trained,
delicate CHMMs for the 408 base syllables, as shown in Fig.
7. The language model is only a very straightforward
character-based bi-gram without any learning functions.

Golden Mandarin (I1) was completed in September 1993
[41, 42]. It was implemented on a digital signal processor
(DSP) card with a single-chip Motorola DSP 96002D and
can be installed on any personal computer. The input mode
is still in isolated syllables. The acoustic recognition is pri-
marily based on the SPMs shown in Fig. 8, while the lan-
guage model is based on word classes. The major
achievements of Golden Mandarin (II) as compared to
Golden Mandarin (I) were two-fold: the reduced hardware
requirements from 10 DSP chips to one DSP chip due to the
computation efficiency of the SPM, and the various adapta-
tion/learning functions. Golden Mandarin (I) was speaker
dependent and the user had to spend a very lengthy period of
time training the system before using it. Moreover, for
Golden Mandarin (I), any noise in the user’s environment or
any change in the subject domain of the documents being
entered could result in completely unpredictable output.
New words could not be learned either. Such a dictation sys-
tem was, in fact, practically useless.

It was then realized that it would be extremely difficult, if
not really impossible, to try to develop a dictation system that
was speaker independent, that worked with all different user
requirements and noise conditions, and could accept all kinds
of documents with completely different subject domains,
wording, and writing styles. This led to the concept of “per-
sonalized” dictation systems with adaptation/learning func-
tions. In other words, it is technically impossible, at least at
the present, to implement a dictation system that works under
all conditions for all users, but it is practically feasible to de-
velop a dictation system that is flexible in various aspects
with adaptation/learning functions, so that it can learn the us-
er’s conditions, adapt to the user’s requirements, and eventu-
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20. An improved architecture for dictation of continuous Mandarin speech prop-

erly integrating acoustic and linguistic knowledge.

ally become “personalized” for each user. This concept was
partially realized in Golden Mandarin (II) [42].

Golden Mandarin (IT) was speaker adaptive. A learning
curve for speaker adaptation very similar to that shown in
Fig. 10 based on incremental sets of phonetically balanced
sentences very similar to those shown in Fig. 9 was imple-
mented on Golden Mandarin (II). The only difference is that
here the speaker adaptation was developed on an SPM in
isolated-syllable mode, while the curve in Fig. 10 is for an
HMM in continuous-speech input mode. The system could
also adapt to environmental noise to some extent, as long as
the noise was stable and of reasonable density. At the linguis-
tic level, on the other hand, new word learning could be per-
formed, and the language model could slightly adapt to the
wording and writing style of the user although the learning
function was not adequate in many cases. All these adapta-
tion/learning functions, from the acoustic level to the linguis-
tic level, could be performed on-line in real time, so
performance could be improved continuously.

The earliest versions of Golden Mandarin (III) were com-
pleted in March 1995. They covered a vocabulary of roughly
100,000 words and had two different versions. Version(IlIa)
was implemented on the same DSP card as was used for
Golden Mandarin (II) with a single-chip Motorola DSP
96002D and could be installed on any personal computer,
such as a 486, but the input mode was now in isolated pro-
sodic segments, i.e., continuous within short sequences of a
few words [44]. Version (I1Ib), on the other hand, was imple-
mented on a Sun SPARC 20 workstation, and the input mode
was in continuous speech and complete sentences [37]. Ver-
sion (IITa) was primarily based on the recognition of words
except that a few words could be concatenated to construct
prosodic segments to solve the difficult problem of undefined
word boundaries mentioned previously. Recognition of base
syllables was primarily based on the context-dependent ver-
sion of the PLUs listed in Table 5(b) so that the co-articulated
nature of continuous speech could be properly modeled.
Tone recognition was performed only for mono- and bi-
character words because tones for words with three or more
characters are actually redundant, as mentioned before. The
language model was primarily based on word classes with
some syntactic and semantic knowledge.

The complete system block diagram for Golden Mandarin
(IlTa) is shown in Fig. 18, which is composed of five modules.
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into prosodic segments. A lattice of words or
prosodic segments is then constructed to be
used by the linguistic decoder based on the
Chinese language model. The learning module
is, in general, very similar to that of Golden Mandarin (II), in-
cluding incremental speaker adaptation with four stages,
learning of environmental noise, new word learning, and ad-
aptation of the language model as well. The major difference
is that, here, because Golden Mandarin (Illa) is primarily
word-based using PLU models, the incremental speaker ad-
aptation is based on sets of training words instead of sen-
tences, which are phonetically balanced with respect to the
chosen PLUs.

Golden Mandarin (IITb) was implemented on a Sun Sparc
20 workstation with the input mode in continuous speech and
complete sentences. The time needed to recognize a sentence
is, on average, 1.27 times the length of the speech. The recog-
nition of the base syllables is primarily based on the context-
dependent version of the INITIAL/FINAL:S listed in Table 1,
while tone recognition is performed with the context depend-
ent tone models listed in Table 3, both with CHMM model-
ing. The language model is primarily based on word classes
with some syntactic and semantic knowledge. The complete
system block diagram is shown in Fig. 19, which is generally
very similar to Fig. 18, except that the prosodic segment rec-
ognizer in Fig. 18 is replaced by a continuous speech acoustic
recognizer. Most of the adaptation/learning functions of ver-
sion (I1la) are also present here in version (11Ib).

Although the Golden Mandarin (I1la) and (1I1b) versions
look reasonable and performance is satisfactory, further im-
proved versions have been developed [38, 39], one of which
will be presented here. In all the above systems, acoustic
matching is performed first for the construction of the tonal-
syllable lattices and linguistic decoding with Chinese lan-
guage models is performed next to obtain output sentences.
This is the way in which the overall architecture of the system
can be simplified. However, in this way the acoustic and lin-
guistic processors are essentially separated; thus, the search
will very likely only give a local optimum for both proces-
sors. A new and different system architecture has therefore
been developed whose two-stage simplified block diagram is
shown in Figure 20. In the first stage of this architecture, to
utilize the monosyllable-based structure of the Chinese lan-
guage and to deal with the extremely large search space in
continuous speech recognition with very large vocabulary. a
fast matching module based on relatively coarse context-
independent acoustic models is used to select enough tonal-

IEEE SIGNAL PROCESSING MAGAZINE 93



syllable candidates quickly. A word lattice is then con-
structed in the subsequent module from these selected tonal-
syllable candidates based on the lexicon. In the second stage,
only those words within the word lattice are considered, and
the detailed matching module uses a time-synchronous dy-
namic programming algorithm. In this algorithm the knowl-
edge and information from the acoustic models and the
Chinese language model are naturally combined in a care-
fully designed process, such that the acoustic and linguistic
processors are actually integrated into a single processor. Ex-
periments indicate that this prototype system preserves all the
features and functions of Golden Mandarin (I1Ib) but with
higher accuracy and speed.

The most recent prototype system, the Golden Mandarin
(IIT) Windows 95 version, was completed in September
1996. It preserves all the features of Golden Mandarin (I11b)
and the advantages of the following, but it has been down-
sized from the Sparc 20 to an ordinary Pentium PC using its
standard sound card and was implemented on MS Windows
95 (Chinese Version). The system is multi-modal in the sense
that the user can easily switch between the voice input
scheme and any other Chinese character input scheme pro-
vided by MS Windows 95, such as those based on phonetic
symbols or radicals, either during the dictation or for correc-
tion purposes.

When the phonetic-symbol input scheme is used, the out-
put sentence will be automatically generated by the linguistic
decoding processes. In addition, new approaches to extract
robust speech recognition feature parameters have been ap-
plied, and the acoustic models for tones and base syllables are
actually adapted by including the noise characteristics in
real-time [86-88]. As a result, this system becomes much
more robust with respect to acoustic and environmental vari-
abilities, including different characteristics and conditions
for the microphone, and different types and levels of noise
and interference.

Fast incremental speaker adaptation processes have been
implemented with a specially developed user (raining inter-
face as well. The adaptation results shown in Fig. 10 are in
fact for this prototype system. The lower curve in Fig. 10
shows that with 6.8 minutes of speech produced by the new
user the accuracy of tonal syllables can achieve 80.1% on av-
erage. Although the tonal-syllable accuracy on the lower
curve in Fig. 10 doesn’t look very high, it is for the top-1 can-
didates only. With more candidates for the tonal syllables in-
cluded in the syllable/word lattice construction and linguistic
decoding processes, the percentage of the correct tonal sylla-
bles that are included and considered in the linguistic decod-
ing processes can be much higher. Powerful enough language
models can then select the correct characters or words, even if
the top-1 tonal syllable is not correct. This is why the upper
curve in Fig. 10 for character accuracy is always significantly
higher than the tonal-syllable accuracy. This is where the
Chinese language models play the role. In Fig. 10 the charac-
ter accuracy is averaged over a variety of different texts ad-
dressing different subject domains, and the accuracy of
86.4% with 6.8 minutes of training speech for the new user is
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21. The Golden Mandarin (11I) Windows 95 version prototype

system.

believed to be good enough for a new user to start testing/us-
ing the system. Further improvements are definitely achiev-
able with more training data. Also, since the user usually dic-
tates his texts focusing on a much narrower subject domain,
higher accuracy can very often be achieved if the language
model can be adapted to that subject domain. Such a function
for the user to enter his own “personal” text file to obtain his
own “personal” language model is also included. The memory
requirement of the system is roughly 8.5 MB, and the time
needed for the complete process of recognizing an utterance on
the Pentium 133 is roughly 1.55 times the length of the speech
utterance. In other words, after the user produces the speech ut-
terance, the recognized sentence should appear on the screen
after a short waiting period of roughly 0.55 times the length of
the utterance.

A photo of the complete prototype system is shown in Fig.
21, while the training and dictation phases of the user inter-
face of the system is shown in Fig.22(a) and (b). On the train-
ing user interface in Fig. 22(a), the training sentence together
with the corresponding phonetic symbols are shown on the
top, the segmented input speech waveform in the middle, the
on-line recognized output on the bottom, and an averaged
learning curve together with current accuracy status on the
right. The user can easily realize the progressive improve-
ments made when producing the training sentences one by
one during the training process and so on. On the dictation
user interface in Fig. 22(b), for incorrectly recognized char-
acters the user can open a window to see all the tonal-syllable
candidates or character candidates and select the desired ones
easily using the mouse. The user can also correct the errors
directly by voice by producing the words or phrases incor-
rectly recognized and editing the sentences.

Related Spoken Language Applications

Up to this point, we have primarily focused on dictation ap-
plications, i.e., the input of Chinese characters into comput-
ers using voice, because this area is extremely attractive
although difficult. However, if dictation technology is avail-
able, it can easily be extended to other related spoken lan-
guage applications, especially when a very large vocabulary
can be taken care of. Here, two examples will be presented to
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22 (a) The training user interface and (b) the dictation user inter-
face of the Golden Mandarin (111) Windows 95 version prototype
system.

show the potential in this direction. These examples simply
indicate there will be plenty of space for future applications to
be developed in such areas in addition to the dictation appli-
cations discussed previously.

The first example is for voice retrieval for Chmese data-
bases. From experiences with other languages, use of
speech-recognition technology in information retrieval (IR)
for databases provides users with a convenient computer in-
terface environment [89-92]. For the Chinese language, be-
cause the language is not alphabetic and input of Chinese
characters into computers is difficult, voice retrieval of Chi-
nese databases is apparently another important application
area of Mandarin speech recognition in addition to dictation
applications. In fact, by properly utilizing the special
monosyllable-based structure of the Chinese language, the
many areas of technology discussed in this article can in fact
be easily applied to voice retrieval of Chinese databases with
very large vocabulary. Here, a typical example for such appli-
cation systems will be presented [93-95], a nice feature of
which is that the content of the target database can be used to
train a special database-specific linguistic decoder for spoken
queries for the database. Such a database-specific linguistic
decoder can thus automatically transform the original Man-
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darin dictation system discussed above into a Chinese data-
base voice retrieval system, with the output being the desired
documents in the database instead of the corresponding char-
acters for the input speech in a dictation system.

The block diagram of this first example system is shown in
Fig. 23. First, the document-analysis subsystem segments the
documents in the database into words and deletes irrelevant
words for retrieval (such as function words). It also uses the
rest of the texts in the database to construct two sets of statisti-
cal parameters, i.e. the syllable-based document characteris-
tics and the document feature vectors, to be used by the other
two subsystems (the speech recognition subsystem and the
IR subsystem, respectively). These two sets of statistical pa-
rameters obtained from the documents in the database in fact
constitute the core of the database-specific linguistic decoder
mentioned above. When a natural-language speech query is
entered, the speech recognition subsystem transcribes it into
arelevant syllable string with syllables irrelevant for retrieval
deleted. This subsystem includes two modules: the syllable-
recognition module and the syllable-string-search module.
The syllable-recognition module produces several tonal-
syllable candidates for each syllable in the input query to con-
struct a tonal-syllable lattice. The syllable-string-search
module then performs the Viterbi search algorithm over the
obtained tonal-syllable lattice using the syllable-based docu-
ment characteristics of the database provided by the docu-
ment analysis subsystem as the first-stage linguistic decoder.

On the other hand, the IR subsystem is composed of two
modules, the vector-matching module and the document re-
trieval module. The vector-matching module compares the
input query, ¢, with each piece of document, d, by comparing
their feature vectors, u, and u,, respectively, as the second-
stage linguistic decoder. Here a set of very useful syllable-
based feature parameters precisely describing the syllable-
level statistical characteristics of the input query and the
pieces of documents are carefully selected and used to con-
struct u, and u, for g and d. In this way, the similarity measure
between g and d, S(gq,d), can be easily defined by the angle be-
tween the two feature vectors as evaluated by inner products:

9)

def ;
S(g.d) =cos™ b i

|uqﬂud| '

The smallest angle gives the desired documents. The
document-retrieval module finally retrieves those documents
selected by the vector-matching module.

The above database retrieval system has been successfully
implemented as a working experimental system. The data-
base tested includes 2,500 Chinese news items, with the aver-
age length of the news items on the order of 500 characters. A
total of 200 natural-language queries were tested in the form
of continuous speech produced by 10 speakers. The acoustic
recognition module of the Golden Mandarin (III) Windows
95 version presented previously is used here to produce the
tonal-syllable lattice. The precision rate for top-10 retrieved
news items, i.e., the percentage of the news items addressing
the desired subjects of the queries among the retrieved top-10
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news items, is 86.4%, as compared to the precision rate of
89.6% for top-10 items retrieved by queries in the form of
typed character strings.

The second spoken-language application example pre-
sented below involves the retrieval of Chinese resources over
the Internet using unconstrained Mandarin speech queries.
With the rapid growth of the electronic resources published
and distributed over the Internet, the increasing demand for
efficient, high-performance networked information retrieval
with convenient and user-friendly interfaces is obvious [96].
Many efficient Internet search tools have been developed to
allow users to formulate a request subject with unconstrained
quasi-natural language queries, and it is always highly de-
sired that such systems are capable of accepting queries with
unconstrained speech. In particular, IR systems with speech-
recognition capabilities are especially needed in the Chinese
community because of the difficulties of entering Chinese
characters into computers. The example system presented
here for Internet information retrieval utilizes a syllable-
based client-server architecture with a set of reliable charac-
ter/syllable-level statistical feature parameters for efficient
information retrieval using speech queries. These parameters
make it possible to move the linguistic decoding processes to
the server side. This can simplify the client-end requirements
and make the language models easily adapted to the dynamic
network resources.

The basic client-server architecture of the example system
is shown in Fig. 24. The server part includes a resource-
discovery subsystem, an IR subsystem, and a linguistic-
decoding subsystem, while the client end includes a user in-
terface and an acoustic-processing subsystem. The
resource-discovery subsystem at the server side automati-
cally extracts pieces of relevant information (i.e., records)
and uses them to construct the network resource databases.
Signatures (i.e., statistical indices) for each of the records in

the network resource databases are also generated to be
stored in the signature file. These specially designed signa-
tures for all the records include character-based and
syllable-level statistical feature parameters of the records, es-
pecially considering the monosyllabic structure of the Chi-
nese language. These signatures provide full-text indexing of
the network resource databases. The network resource-
adapted language model is also constructed based on the dis-
covered resources using a specially designed data structure.
When a speech query is received at the client end, the
acoustic-recognition subsystem first produces a tonal-
syllable lattice to be transmitted to the server. The linguistic
decoding subsystem at the server then generates a relevant
character/syllable string based on this tonal-syllable lattice
and the network resource-adapted language model. The IR
subsystem finally receives this decoded relevant charac-
ter/syllable string and retrieves the desired records from the
network resource databases by evaluating the statistical simi-
larity between the received relevant character/syllable string
and the record signatures in the signature file. Also, as shown
in Fig. 24, the acoustic recognition and linguistic decoding
processes for very-large-vocabulary Mandarin speech recog-
nition are now separated, one at the client end and the other at
the server side. Without the overhead space necessary for lin-
guistic decoding at the client end, it is easier for the acoustic-
recognition subsystem to be combined with navigation tools
such as Netscape to allow many users to enter their speech
queries simultaneously. On the other hand, the linguistic de-
coding processes at the server side can have sufficient space
to store a large number of statistical parameters for a power-
ful language model, and it is easier for this language model to
be adapted according to the dynamic network resources.
The application system presented above has been success-
fully implemented as a working experimental system that
provides unconstrained speech retrieval for real-time Chi-
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23. A Chinese document database-retrieval system using unconstrained Mandarin speech.
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24. The client-server architecture [for speech retrieval of Internet Chinese information.

nese news services obtained from Internet news groups. The
acoustic recognition module of the Golden Mandarin (IIT)
Windows 95 version is used in the acoustic-recognition sub-
system. The client end, including the user interface and the
acoustic-recognition subsystem, is implemented on Pentium
PCs under MS Windows 95, and the server is implemented
on a Sparc 20 workstation. The network resource database
contains more than 100,000 real-time news items. In the pre-
liminary experiments, 200 speech queries produced by 10
speakers were tested. The character accuracy for these que-
ries was roughly 90%, apparently due to the very powerful
network resource-adapted language model at the server. The
precision rate for top-10 retrieved news items was about
82.5% on average, which is almost the same as the top-10
precision rate for typed text queries.

Initial Industrial Efforts and Products

The first internationally visible product for voice dictation of
Mandarin Chinese (and probably the only one up to the time
of writing this article) commercially available on the market
is, to the knowledge of the author, the Apple Chinese Dicta-
tion Kit produced by Apple Computer Inc., which was avail-
able in November 1995. A few other products may have
appeared, but they are practically almost invisible interna-
tionally for various reasons. The Apple Chinese Dictation Kit
works on a Chinese-language-equipped Power Macintosh
computer with at least 4 MB of free memory. It is in principle
an isolated-word-based system. In other words, it recognizes

isolated words with very large vocabulary (12,000 multi-
character words plus 3,500 single characters), and the input
mode is primarily in isolated words. Since the user has to seg-
ment the input sentences into words and the words segmented
by the user are not necessarily the ones in the lexicon stored in
the system, it suffers from the problems with the isolated-
word input mode as discussed previously.

Special measures have been developed to remedy this
problem slightly. Since some frequently used words (most of
them are mono-character), such as those standing for “in,”
“to,” and quite a few function words are very naturally pro-
duced in concatenation with the preceding or following
words to form simple phrases (for example, the words stand-
ing for “in” and “evening” becomes a phrase standing for “in
the evening”; those for “to” and “Taipei” become “to
Taipei”; “beauty™ followed by a function word becomes
“beautiful,” etc. (see (h) in box), special efforts have been
made to take care of such simple phrases (similar to “short
prosodic segments™). As a result, the system can accept such
simple phrases produced as a single continuous utterance.
This is a good engineering solution, but it only solves a very
small part of the problem. The system is speaker dependent,
i.e., the user needs to spend more than two hours to read as
many as 33 pages of texts to train the system before being
able to use it. The base syllables are recognized using some
kind of INITIAL/FINAL units with some degree of context
dependency, while the tones are recognized using HMMs.
Some language-model capabilities have been equipped. such
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as word bi-gram and similar parameters. Being the first inter-
nationally visible product of this kind, the product was quite
impressive and received the Best Product Award at COM-
DEX Asia in November 1995.

IBM also announced the completion of a prototype system
for voice dictation of Mandarin speech with very large vo-
cabulary in October 1996 in Beijing, China, although the
work had been done at the T.J. Watson Research Center in
New York. Many of the basic technologies for the very suc-
cessful IBM HMM-based continuous-speech-recognition
systems for various western alphabetic languages have cer-
tainly been used in this prototype system, while special ef-
forts have been made to take care of the special structure and
characteristic features of the Chinese language. For example,
in this system the FINALs were made tone-dependent, and
different models were used for the same FINAL with differ-
ent tones for recognition of the tones. This is apparently a fea-
sible approach and has been studied and considered by many
groups, as long as sufficient training data are available, be-
cause in this approach more models need to be trained. Other
parts of the acoustic processing were similar. A total of some
160 phonemes and 3,000 context-dependent models were
used. The basic algorithm for linguistic decoding was primar-
ily the same as that used by the many versions of IBM
speech-recognition systems for western alphabetic lan-
guages such as a stack decoder and so on, except for the Chi-
nese language model. The Chinese language model used was
aword tri-gram trained from a huge Chinese text corpus, seg-
mented with a carefully selected vocabulary of the 29,000
most [requently used words based on some simplifying rules
to handle the problem of Chinese words being not well de-
fined. This is also a good engineering solution, though it orily
solves a very small part of the problems as well. The system
was trained by the speech data produced by many speakers,
and it claimed to be speaker independent, and continuous
speech could be accepted very well, Test data for six speakers
were reported, with character accuracy ranging from 69.6%
to 88.0% for texts taken from daily newspapers. Higher accu-
racies were obtained for native speakers of standard Beijing
Mandarin.

Also, Motorola announced in November 1996 the suc-
cessful development of technologies for recognition of con-
tinuous Mandarin speech of 10,000 words on an
industry-standard PC. But no further information was avail-
able to this author at the time of writing this article.

Concluding Remarks

Research in speech recognition with very large vocabulary
requires integration of expertise in many different disci-
plines, from signal processing to computer science and lin-
guistics. The fundamental framework is certainly based on
signal processing technology, but various areas of computer
science and linguistics apparently play very crucial roles in
solving this highly difficult problem. Without the many key
techniques offered by computer science and the various lev-
els of search constraints provided by linguistic knowledge,
any solution is simply impossible. A title of “Intelligent Sig-
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nal Processing” has been used by some people to indicate the
special areas where signal processing technology has been
aided by substantial knowledge from other areas; and such an
integration may actually change the intrinsics of signal proc-
essing technology. Speech recognition with very large vo-
cabulary is really one such area. In this case, the characteristic
nature of the target language definitely plays an essential
role. For a traditional oriental language like Mandarin Chi-
nese, whose feature structures are completely different from
western languages on which most of the mainstream research
work has been focused, unique approaches and special meas-
ures significantly different from those for western languages
are definitely helpful and of scientific and reference value.
The purpose of this article has been to present such ap-
proaches and measures from the viewpoints of the character-
istic nature of Mandarin Chinese.

Today the whole world is moving toward fully comput-
erized societies at a very high speed. pushed by the ever-
developing information technology, but the Chinese com-
munity, one of the most important communities in the
world, has tremendous difficulties in using computers be-
cause of the special characteristics of its language. Voice
dictation with very large vocabulary is believed to be a per-
fect solution to this problem, but it is very difficult and
highly challenging with many problems unsolved. Another
purpose of this article has been to try to stimulate the interest
of more people in this area. Hopefully, some day in the fu-
ture, all Chinese people, north and south, old and young, in-
cluding our moms, dads, and kids, will be able to use
computers easily and freely with voice input in their daily
lives. Of course, there is still a very long way to go before
this dream can come true. There was an old Chinese saying,
“The integration of great efforts made by many people can
build a castle™ (see (i) in box). With advanced technology
and great efforts made by many people. there is hope that
such a great and beautiful day can come early.
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Electronic Search, Inc. has recently part-
nered with a major WIRELESS
TELECOMMUNICATIONS company.
Together we are looking for SOFTWARE
& HARDWARE ENGINEERS to assist
in the development of location processing
equipment and systems. We are also look-
ing for MARKETING professionals. This
exciting new product is about to launch
and revolutionize the wireless world by
enhancing wireless 911 service, mobile
fleet management, location sensitive
billing, and security/fraud detection.

Hardware Engineers should have a back-
ground in RF technology. have 2 BS or MS

in EE, and have some background in DSP,
real-time systems, CDMA, TDMA, GSM,
AMPS, algorithms, and programmable
devices.

Software Engineers should have a back-

ground in C, C++, UNIX, real-time
embedded systems, SQL, RDBMS, and
possess a BS/MS in EE or CS. Any experi-
ence with RF technology, DSF, AMPS,
CDMA, TDMA, GSM, wireless billing or
provisioning, fraud, E911, or algorithm
development would be a real plus.

should have BSCS, BSEE or equivalent
plus 2-4 years professional experience.
Knowledge of Visual C, Visual Basic and
database management tools in 2 Windows
95/NT environment. Will design and
develop GUI interfaces for two-way wire-
less products.

Firmware Engineers should have a
BSEE or equivalent, 3-5 years program-
ming experience for embedded systems.
Background in hardware design, design and
development of realtime applications in
C/C++ and Assembly for Intel family of
processors. Experience with two-way
wireless communication would be a plus.

Marketing professionals should have a
technical background with an MBA or
equivalent experience. These positions will
involve setting the strategic direction of the
product line, managing the internal devel-
opment process, managing the external
message of the company, or working with
standards and protocol committees.

If you wish to be considered for this
opportunity or one of the hundreds of
other carcer opportunities offered by ESI
clients, E-mail, mail, or fax your resume to:

Electronic Search, Inc.
Dept: CRG

3601 Algonquin Road Suite 820
Rolling Meadows, Illinois 60008
847-506-0700 FAX:847-506-9999

Visit our Webpage
www.electronicsearch.com
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