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ABSTRACT

In this work we test the performance of RASTA-style modulation
filters derived under reverberant conditions. The modulation filters
are constructed through linear discriminant analysis of log critical
band energies in a manner described by van Vuuren and Herman-
sKy. In previous work we had observed the properties of the resul-
tant filters under a number of acoustic conditions that were artifi-
cialy applied to the training speech. Here, we present automatic
speech recognition results that compare the performance of these
filters under some training and testing reverberant conditions. We
also test the effectiveness and robustness of a multi-stream com-
bination using probability streams trained under different rever-
berant environment. The experiments reveal some performance
improvement in severe reverberation.

1. INTRODUCTION

Robustnessto reverberant acoustic conditionsisachallenging prob-
lem in automatic speech recognition (ASR). The effects of rever-
beration and temporal smearing have been studied by researchers,
for example in [14, 6], and efforts to mitigate their effects have
been pursued, for example in [1, 13]. One potential impediment
may liein using asingle preprocessing agorithm to handlethe var-
ious acoustic conditions. Asfinding asingle preprocessing method
that is robust to all acoustic conditions is a daunting task, we in-
stead sought to augment the preprocessing by deriving filters op-
timized in reverberant conditions. Such optimized filters may re-
duce some of the variability caused by reverberation and lead to
increased robustness. Modifications to existing preprocessing and
development of new techniques have progressed with some suc-
cess, for example RASTA-PLP [9, 11] and Modulation-Filtered
Spectrogram [8, 12]. Here we explore using RASTA-style filters
derived through linear discriminant analysis (LDA) for robustness
to reverberation.

Previous work described the properties of modulation filters
derived using LDA when the speech was artificially subjected to
different acoustic conditions[15, 17]. We had noted atendency for
these filters to prefer different frequency ranges, such as frequen-
cies up to 13Hz commensurate with phonetic rates when derived
in a clean environment and lower frequencies around 5 Hz (syl-
labic rates) when derived in reverberant conditions. In this paper
we continue the experiments of obtaining filters from both clean
and reverberant speech. We follow this with recognition experi-
ments using phonetic targets. Our recognition experiments show
that the derived filters improve performance under highly rever-
berant testing conditions and therefore may be useful as a supple-
ment to other preprocessing methods. We subsequently ran tests

for combining two probability streams, one trained in clean and
the other in a reverberant condition.

2. EXPERIMENTAL SETUP

2.1. Modulation filter derivation

The modulation filters were calculated in a manner identical to
that described in [2, 17]. To summarize, speech was analyzed into
power spectral energies that were spaced along a bark-scale and
followed by alogarithm as donein RASTA-PLP [9]. The trajecto-
rieswere sampled in windows of approximately 1 second duration,
and each window was assigned to the linguistic class present at its
center. In this work, the linguistic classes were phones. From
the windowed trajectories, the within-class covariance Sy and the
between-class covariance Sg were computed [7]. The eigenvec-
tors of S;I}SB having the largest eigenvalues were taken as the
discriminant filters.

2.2. Training and testing

This approach involves two training corpora, which were quite
distinct from one another, to promote generality. The design of
the RASTA-style filters was based on one labeled corpus. Then
the full speech recognition system was trained and tested on the
second corpus, using filters from the first stage in the feature ex-
traction. The training utterances for the filters were from the En-
glish portion of the Oregon Graduate Institute (OGI) Multi-Lin-
gual Database [4]. It consisted of 210 continuous and naturally
spoken utterances regarding various topics. These were recorded
over the telephone. The utterances were approximately 1 minute
in duration and were hand-labeled with phonetic units. A subset
of the OGI Numbers corpus [5] was used for recognition experi-
ments. This corpus consisted of naturally spoken connected num-
bers recorded over the telephone and has a small vocabulary size
of 32 words. The training set consisted of approximately 3 hours
of speech whilethe devel opment testing set contained about 1 hour
of speech.

A hybrid Artificial Neural Network (ANN) and Hidden Markov
Model (HMM) [3] speech recognition system was used to evalu-
ate the recognition performance of the different filters used in the
preprocessing. Three layer multi-layer perceptrons (MLP), having
800 hidden units and an input context of 9 frames of speech fea-
tures, were trained with the Numberstraining set and hand-labeled
phonetic transcriptions to estimate posterior probabilities. A small
portion of the training set served as a cross-validation set for the
stopping criterion of the MLP training. The decoder, which pro-
duced the best word transcription from the probability estimates,



1st Discriminant Filter

o e = = T

E— Clean N

200 - Light Reverb N

- - Severe Reverb -
Clean+Severe Revetb - a

Figure 1: Frequency responses for the two principal discriminant
filters derived in different acoustic conditions.

used a bigram grammar and dictionary of word models derived
from the Numbers phonetic transcriptions.

2.3. Acoustic conditions

For the experiments here, the training and testing speech utterances
wereused intheir origina state (clean condition) and al so modified
with two examples of reverberation. The first consisted of light
reverberation whose impul se response was recorded in a variable
echoic chamber. It had the quality of a small office with arever-
beration time (T&o) of 0.6 seconds and a direct-to-reverberant ratio
(DTRR) of -1.9 dB. The second reverberation example consisted
of severe reverberation whose impulse was recorded in a concrete
basement hallway and with a Ts of 1.7 seconds and of DTRR of
-16 dB. Each reverberation example was artificially added to the
speech via convolution with the reverberation impul se response.

3. MODULATION FILTERS

As observed in previous work, the modulation filters exhibit a
“Mexican hat” shape with a bandpass characteristic. Further, for
each acoustic condition, they are consistent across the frequency
bands. The first principa components from the different bands
are virtualy identical. The second and third components show
a consistent shape across many bands; however, there is a ten-
dency for the lowest few bands to be smoother and more |ow-pass.
For this work, we averaged the filters across all frequency bands,
then applied a Hamming window, to generate replacements for the
RASTA filter in the RASTA-PLP feature extraction. We did this
in turn for each of the three principal discriminant filters.

Figure 1 shows the frequency responses of the two princi-
pal discriminant modulation filters trained under four conditions:
clean, light reverberation, severe reverberation, and acomposite of
clean and severe reverberation. A lineis placed at the half power
level (-3 dB) to assist in observing filter ranges. The first two com-
ponents together explain between 85% and 95% of the variation.
We note the band-pass nature of the filters and that with increas-
ing reverberation, the discriminant filters tend to favor lower fre-
quency ranges. Training the filters with syllabic targets (not pre-

sented here) demonstrated trends previously noted in [15] in that
the responses were broader and favored lower frequency ranges
commensurate with syllabic rates.

The final filter in the figure was derived from both clean data
and severely reverberated data. The classes in the clean data had
larger variances than the classes under severe reverberation. Since
LDA has an implicit assumption of uniform class covariances, the
clean condition would dominate and the response would resemble
the filters trained solely in that condition. We therefore added a
relative weighting when combining the covariance matrices of the
two conditions. As we adjust the relative weighting, the derived
filters would continuously “morph” from the clean condition filter
to the severe condition filter. That is, the shape would approach
one of the two extremes and the high frequency cut-off would sim-
ilarly shift between the ranges bounded by each extreme. We can
see in figure 1 that the response for a particular weighting seems
to lie between the clean and severe reverberation responses, just as
with the light reverberation response.

4. RECOGNITION RESULTS

We replaced the RASTA filter in log-RASTA-PLP with each dis-
criminant filter to compute 8 cepstral feature coefficients. The fea-
tures from thefirst, second, and third principal discriminant filters
trained in identical conditions were concatenated into asingle fea-
ture vector for input into the MLP. For comparison, we also ran
experiments with standard log-RASTA-PLP with delta and dou-
ble delta coefficients, yielding the same number of features. As
described in [17], the second and third discriminant filters behave
likefirst and second derivatives of the principal filter.

Table 1 showsword error rate (WER) resultsfrom word recog-
nition for conditions in which the MLP probability estimator was
trained in the clean, light reverberation, and severe reverberation
conditions respectively. In the case of the LDA derived filters, we
used thefilter that corresponded to the same condition with which
the MLP probability estimator was trained. Previous tests with
the LDA filter trained under dual conditions showed results sim-
ilar to those using the filter trained in light reverberation and are
not shown. Where the difference in WER between the RASTA
baseline and the LDA-derived filter was statistically significant
(p=0.05), the item is displayed with a superscript plus or minus,
for when the derived filters performed respectively better or worse
than RASTA.. 4673 words comprising 1206 utterances were in the
development test set in this Numbers task.

5. PROBABILITY STREAM COMBINATION RESULTS

Since recognition rates are at their best when trained and tested
under like conditions, we predicted that having two streams (each
trained under a different acoustic condition) could improve perfor-
mance over awider range of conditions. We note that in the single
stream cases, the original RASTA filter performs best in the clean
condition while the LDA derived RASTA filters, particularly the
filter with a 5 Hz range, performs better in the severely reverber-
ated case. An extrainformation source which detects the acoustic
test condition could conceivably serve as a switch to select which
probability stream to use. Since often, such a switch is unavailable
we experimented with aframe level combination of the probability
streams.

The experiments here suppose that we have two probability
estimators, one trained on clean speech and the other on severely



Test Condition WER (%)
Train Conditions cl Light Severe
ean Reverb | Reverb
RASTA || 6.6 18.9 55.9
Clean LDA- 74 254~ 43.07
FIR
RASTA || 32.0 13.3 43.6
Light LDA- 40.6 12.2 34.67
Reverb | FIR
RASTA || 79.8 70.3 37.7
Severe | LDA- 77.8% 69.2 33.57
Reverb | FIR

Table 1: WER scores using RASTA-PLP and LDA derived
RASTA filters.

Test Condition WER (%)

Merge Filter cl Light Severe
Type Type ean Reverb | Reverb

RASTA || 10.1 25.0 47.2
Avg LDA- 9.5 30.6 54.5

FIR

RASTA || 17.5 24.2 48.7
Log LDA- 15.5 27.3 48.0
Avg FIR

RASTA || 14.8 26.2 48.2
MLP LDA- 7.7 18.4 33.5

FIR

RASTA || 5.1 12.5 30.3
Oracle | LDA- 5.3 15.8 26.9

FIR

Table 2: WER scores for dual probability streams.

reverberant speech. We then test the ability to productively com-
bine these streams when tested with these two conditions as well
as the third condition of light reverberation. An optimum combi-
nation strategy in this caseis still amatter of research; here we try
a few basic methods for combining probabilities. Table 2 shows
a number of results when combining the probability streams with
different methods. The first and second methods use an average of
the probabilities and of the log probabilities respectively. We see
that the performance liesin between the performance for a match-
ing training and testing condition and a mismatched one when us-
ing a single stream. We also tested methods using straight multi-
plication and an entropy weighting criterion with similar results.
Some researchers have found that MLP mergers provide the
best merging results [10, 16]. The next test in table 2 show results
when using an MLP as the probability merger. We see that results
here approach the best results from using either stream alone; that
is, the results were as if one or the other streams was used. An
unplesasant effect is that the MLP merger must be trained and we
found with many further tests the trained combination did not gen-
eralizewell. In these cases where the ML P merger did not do well,

| Filter | Clean | Light Reverb. | Severe Reverb. |
RASTA 83.6% 72.1% 88.2%
LDA-FIR 82% 68.0% 87.1%

Table 3: Overlapping frame classification errors for testing condi-
tions and streams used in table 2

the simpler combination strategies such as multiplication work bet-
ter. We should note that we had to train the merger MLP with the
same training set used to train the probability estimation. Lack
of sufficient speech material in the Numbers corpus prevented us
from using an independent set which would have been more ideal.

The last experiment set of table 2 show results using an or-
acle to choose between the streams on a frame by frame basis;
the oracle picks the stream with the best correct phone probability.
They suggest a practical upper limit to the improvement obtain-
able using a combination of the two streams. The oracle signifi-
cantly improves the WER compared to the WER of either stream
taken singly. Moreover the oracle merging in the mismatched test
of light reverberation approaches the performance of the matched
training and testing case in table 1.

6. DISCUSSION

The difference between the original RASTA filter and the LDA
derived ones appears greatest in the severely reverberated cases.
The LDA filter exhibits a narrower bandwidth with a high cutoff
down to 5 Hz for the severe case. Our tests corroborate views that
this modulation rate is better suited to reverberation. A potential
problem with deriving LDA-filters in a particular acoustic envi-
ronment is that it may be useful only in that environment, or ones
very similar. Thisis a genera problem even with probability es-
timation, where the probability estimator istrained on a restricted
set of examples that is in general not representative of the test-
ing set. Adaptation and noise reduction have helped to alleviate
some of this problem but the challenge remains. For the case of
reverberation, merely training the ASR system on reverberant ex-
amples will improve performance on reverberated speech tremen-
dously. Adjusting the feature extraction with these LDA-derived
filters further improves the performance significantly. Since rever-
beration is a difficult case, insights gleaned from observations of
the derived filter responses prove useful. Unfortunately, with such
an ASR system trained to reverberation, performance then suffers
when tested with non-matching acoustic conditions.

This motivated us to test a combination strategy where we
trained two streams on two different conditions and tested on these
same conditions as well as a third condition. A simple stream se-
lector based on the condition of the test data could in principlegive
us some robustness by choosing the stream that performs best. Or-
acle tests suggested that a proper combination of streams could
even improve upon the performance of either stream alone as well
as increase robustness in mismatched conditions. Tests with our
simple merging schemes, unfortunately, were not able to improve
upon the obvious selection strategy of passing the stream that bet-
ter matches the tested acoustic condition. The probable cause for
this is that when one stream is performing optimally, the second
is at its worst and is therefore of little help. An examination of
the confusion matrices reveal that the streams frequently make the



same types of classification errors (comparing the correct phone
class with the highest probability estimate) and therefore do not
complement one another well. Table 3 lists the ratio of the con-
curring classification errors of the two streams to the minimum
total misclassification between the streams. The large number of
overlapping errorsis not surprising in retrospect, considering both
sets of features contain the exact same processing with only a dif-
ference in the preferred frequency range of the modulation filters.
A more dramatic difference in processing may be needed for the
streams to complement one another in such away asto produce or-
thogonal errors. This may partly account for the success reported
in [18] using RASTA-PLP and Modulation-Filtered SpectroGram
features. Since some replacement RASTA filters demonstrate util-
ity in reverberation its use in combination with another different
feature process in a multi-stream setting may produce more favor-
ableresults. Further, sincethefilter derived in severe reverberation
operates at syllabic rates, they may be useful in amulti-stream set-
ting using syllabic targets in addition to phonetic targets.

7. CONCLUSION

A common problem with current ASR systems that the perfor-
mance can degrade severely when it is presented with speech that
isin adifferent acoustic environment than that trained. In thework
here we derived and tested RASTA-style modulation filters us-
ing LDA on reverberant speech. The main augmentation was that
the preferred pass-band frequency range lowered to more syllabic
rates in the presence of reverberation. These filters demonstrated
improvement in ASR recognition over the original RASTA filter in
the case of severe reverberation, where the optimal LDA filter was
most different. However, performance of this filter on the clean
speech became abysmal. We ran experiments using a multi-stream
setting where we combined the probability estimates from clean-
and severe reverberation-trained filters and probability estimators
using a number of combination schemes. A trained MLP merger
was able to approach the performance of the best of the constituent
streams taken singly. Simpler merging schemes that did not re-
quiretraining fared worse. Poor performance of the single streams
on mismatched training conditions made simple combinationsless
robust. Moreover, as the streams were based upon the same pro-
cessing strategy, they made many overlapping errors and therefore
did not complement one another well. Future work will to apply
the LDA filtersin alternate multi-stream combinations.
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