1.3 Sampling Theorem —Replacing
Continuous-time Signals by
Sequences of Data

Question: Under What Kind of Conditions Can
Signal Waveforms Uniquely
Recovered from Its Samples?

X(t) — X[r] = X(NT) o> x(t)

i T

continuous-time  discrete-time signa
signal processed by computers

T : sampling period
21

Ws =" sampling frequency

- In general there can be infinite numbers of
continuous-time signal's having the same samples

SeeFig. 7.1, p. 515 of Oppenheim



Consider ations from Sinagle Frequency

Components

e X(t) = A cos (mot)

y(t) = b cos [(mgtms) t] , s : Sampling frequency
z(t) = x(t) + y(v)

X(NTs) =A cos (mg NTy)

y(nTg) = b cos[(mg + ms) NTg =b cos (wg NTy)
_2n
Os= T

z(nTy) = (A + b) cos (g NTy)

Any two frequency components w,, ®, become
indistinguishable if |o;— o] = m e wg, M: integer,

when sampled at frequency ws
Aliasing effect

For discrete-time signal x[n] at sampling frequency
os , only the frequency range [ 0, ms] (or an
equivalent) makes sense. Other frequency ranges
are simply repetitive



Consider ations for a Continuous Spectrum

e X(0) = j: x(t) 7t dt
assume X(w) has a bandwidth W,
[ X(w0) [=0, |o|>W
X(t) sampled at ws, X[n] =Xx(nTs)

- 1f o< 2W

aliasing effect occurs
frequency components mixed, can’'t be recovered

No aliasing effect

Spectra do not overlap

Original signal can be recovered by taking only
those frequencies below W, or low pass filtering



Sampling Theorem

-if ws>2W
the original signal can be uniquely recovered by
low pass filtering

the original signal can’t be recovered

See Fig. 7.3, 7.4, pp. 518-519 of Oppenheim
e Mathematical formulation

p() = X 5(t-nT9

X(t) = X(OP() = X X(NT)3(t-nT2)

See Fig. 7.2, p. 516 of Oppenheim

- It can be shown the Fourier transform of X,(t) is
Xp(®) :n:ZwX((D — NWs)
See Fig. 7.3, p.518 of Oppenheim

e An Examplefor Aliasing Effect
See Fig. 7.15, 7.16, pp. 529-531 of Oppenheim

Practical Considerations

- Over-sampling
- Pre-filtering
Ref. 7.0, 7.1.1, 7.3 of Oppenheim




1.4 Pulse-coded M odulation (PCM) —
Digital Representation of
Continuous-time Signals

X(t) = X[n] =x(nTs) — 1010110110

binary representation of a
real number

( number of bit3) - . (truncation)

per sample error
I tradeoff I
transmission/storage perceptua
condition acceptability

condition



Quantization (Scalar Quantization)

V1 Vo Vk+1 Vi
me=-A M m,...... My Mg+ m_., M=
H_J
J+1

e Assume| x[n] | <A
dividetherange[ —A , A ] into L quantization levels

{h,b,..... N PN T
J [ mMe_q, mi]
L =2¢
each quantization level J is represented by a value vy
S:LLJJk,V:{vl,vz, ...... Vi | v }

e Quantization isa mapping relation
Q:S->V
QI X[n]]=vk If X[n] € Kk
each vy IS represented by an R-bit pattern

after transmission/storage the sample x[n] has
only L values, { vi,Vo,.....V_ }

- Question: how to design the quantizer characteristic
(codebook) represented by { 4, &, ...... J. }and
{ vi,V2, ..V, } soasto achieve agood tradeoff
between the transmission/storage condition and
the perceptual acceptability condition?



Quantization Error

Xq[n] =x[n] + €[n]

e Assume simplest case —uniform guantization

My — M1 = Ax = step size for k-th level
=A , sameforall k

2A
A=
See Fig. 3.11, p. 195 of Haykin
A
le[n] [ <5

assume g n] isuniformly distributed (thisis
reasonable if L islarge enough or A issmall
enough)

fo(@= %, lenl|<2
O, else

e Mean squareerror
Al2 1
o = E[ (e[n])?] = ,, €f(e) de=15 A?
for aquantization level
- for all possible values x[n]

_ < 1 o2y 1 2
-éf’k(lz A)= 1o A
P« = Prob| x[n]e k]

2A _ 2A
A= L 2R
1



Quantization Error

e Signal-to-noise Ratio

ox” = E[ (x[n]) ]

SNRg = >

e

2

3Gx 92R (ot 52R L2)

- 6 dB reduction of o~ every extrabit per sample

- Quantization error can be arbitrarily suppressed
by using more bits per sample

PCM Processes

X(t)

—> 1 Pre-filtering

Sampler ...1101011...
— > Quantizer | Encoding [>— Xk
X[n] Vi

Ref : 3.6 of Hankin

for digital transmission,
storage or processing
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