1.0 Fundamentals

A Signal
A signal isa function of one or more variables,

which conveysinformation on the nature of some

physical phenomena.

Examples
f(t) : avoicesignal, amusic signal
f(x,y) . an image signal, a picture

f(x,y,t) > avideo signal

X, . aseguence of data ( n: integer )

b, ;abitstream (b:1or0)
Continuous/Discrete-time Signalsx(t),

x[n]Exponential/Sinusoidal Signals
Basic Building Blocks from which one can

construct many different signals
X(t) =e
frequency: wQ

jwot w0

wo : rad/secx[n] = e, wo : rad
Sinusoidal signal
x() =A cos(wot+ f) = Re{ Ae'™ ™1 x[n] =A
cos (won+ f) = Re{ Ae!"*" A:



amplitude (envelope)
f :phase
Harmonically related signal sets
k) =™ k=01, 2, ...} {fk[n] =e’"",

frequency: kwQ

1.1 Fourier Analysis of Signals

Fourier Series Representation of
Continuous-time Periodic Sgnals

X(t) =x(t+T) , T :fundamental period

e Harmonically Related complex exponentials

{4, k=0,41,2, },00="7 (radised

e/kod with period |1|

all with period T

e Fourier Series

o0

k=-00



X(t) =% aelke*

ae’ " : k-th harmonic components

- X(t) red
d=a

X(t)= apt+2 i Ay cos (Koot +0y ) , ak=Akej9k
k=1



Fourier Series Representation of
Continuous-time Periodic Signals

e Deter mination of ay
[ x(®)e"dt = [ kZOO ael edglneddt

[l = T k=n

O, k#n

a, :% [+ x(t)e’"™'dt , Fourier series coefficients

2= [, x(t)dt , dc component

e \Vector Space Interpretation
- Vector space concept

V={v]|visavector }
Vi+Vy | avi

Inner product : inner product space
Vi Vo:V V>R

- vector space for periodic signals

{ x(t) : x(t) isperiodic with period T }
could be a vector space

X1(t) + Xo(t) ,  ax(t)
[Xa(®)]  [x2(D)] = |7 xa(t) Xa(t)ct



Fourier Series Representation of
Continuous-time Periodic Signals

e Vector Space Interpretation

- orthogonal basis

[ [ = 0, k=n
=T, k=n

{ kot k=0 +1,+2, ...}

Isaset of orthogonal (not normalized) basis expanding a
vector space of periodic signals with period T

- Fourier Series

X(t)= 3 ae’

k=—w0

av=1 [ x(t) e ot =L [x()] [e"]

- 3-dim Vector Space

A =ay +a) + ak

/él:A /i\:(alli\+aéi+agll\<) i
- multi-dim Vector Space

A= % ak<\/k

a=A V.= (lZa,-Q/j) Vi
Examples



See Figs. 3.6, 3.7, pp. 193, 195 of Oppenheim

Fourier Series Representation of
Discrete-time Periodic SSgnals

X[n] = X[n+N] , periodic with period N
e Harmonically related signal sets

[k k=041,42, )

all with period N, wo= - (rad)

L 2 : 2 :
kRN = @l NN 1 integer
only N distinct signals
e Fourier Series

x[n] =% ae*"=3 ae A

k=<N>

a =2 x[ne’" =% x[n]e K§ N

n=<N> n=<N>

e Fast Fourier Transform (FFT)
fast algorithms to compute the transform

e \Vector Space Interpretation
{ X[n] : X[n] is periodic with period N }

Inner product

(xaln]) (xeln]) = £ [ el



{ ey " k=<N>} isaset of orthogonal basis
N

Fourier Transform for
Continuous-timeAperiodic Sgnals

e Fourier Series: for periodic signal
X(t) =x (t+T), T : fundamental period
_x jKaogt __2n
X(t) =2 ae’™™ , 0o ="
as T increases, wg = 2n/T decreases

the envelope Ta is sampled at closer and closer
spacing

See Figs. 3.6, 3.7, pp. 193, 195,
Fig. 4.2, p.286 of Oppenheim

-aperiodic: T>w,mp—> 0, a—> X(w)

e Fourier Transform

_[® jot 4. SPectrum, frequency domain
X((D)_L»ox(t)e dt: Fourier Transform

_ 1 o joty ..Signal, time domain
X(1) 2n j o0 X(w)e™ do: Inverse Fourier Transform

Fourier Transform pair

X(t) “—> X(o)



X(@) = F{x®)} , x(=F{X(o)}

Fourier Transform for
Continuous-timeAperiodic Sgnals

e \/ector Space I nter pretation

{x(t): x(t) is acontinuous-time aperiodic signal}
Inner product

[xa(t) I [ x2(0] =], xa(t) xa(B)clt

[el®'] [e°]=0 if o #o

{ ! al o} isaset of orthogona (not
normalized) basis

X(w)=[7 x(®) e dt=[x(t)] [e]

Discrete-time Fourier Transform of
Discrete-timeAperiodic Sgnals

e Fourier Seriesfor Discrete-time Periodic
Signals



X[n] = X[n+N] , periodic with period N

x[n] =X ae " =3 g §n

k <N> k=<N>

a =2 x[njel = % x[n]e KN

n=<N> n=<N>

e ASN—> o, wg—>0, ax—->X(0)

X[n] —j X(o) €®"do signa, time-domain,
Inverse Discrete-time
Fourier Transform

X(w) = Z X[n] e 9N spectrum, frequency domain
Discrete-time Fourier Transform

- Similar format to all Fourier analysis
representation previously discussed

Note: X(w) is continuous and periodic with period 2r
Integration over 2w only
e Vector Space Inter pretation
X(w) = (x[n]) (e'")
Ref: Oppenheim 3.3, 3.6,4.1.1,5.1.1



1.2 Systems and | nput/Output
Relationships

A System

e An entity that manipulates one or more signals
to accomplish some function, including yielding
some new signals.

Input output
signal System | signa

 Examples

- an electric circuit

atelephone handset

a PC software receiving pictures from Internet

aTV set

a computer with some software handling some data



Continuous/Discrete-time Systems

X(t) Yo x[n] yinl
e Linearity

- linear: superposition property
Xk[N] — yk[N]

; ax[n] — 2 ayk[n]

- scaling or homogeneity property
x[n] — y[n]
ax[n] - ay[n]

- additive property
xi[n] — yi[n]

X1[Nn] + Xz[N] — ya[n] + y2[N]

e Timelnvariance

- system characteristics fixed over time

x[n] = y[n]

x[n—k] — y[n—K]



Unit Impulse

e Discrete-time
0, nz0 1

PR R

— Unit Impulse Representation of A Discrete-time
Signal

X[n] = > X[K]8[n-k]

|

aunit impulse located at n = k
on index n

SeeFig. 2.1, P. 76 of Oppenheim



Unit Impulse

e Continuous-time

8(t):{ 0,t#0 T
oo or undefined, t=0 0 t

— First Derivative of Unit Step Function
u(t) = { 1, t>0
0, t<O
3(t) =
See Fig. 1.33, Fig. 1.34, P. 33 of Oppenheim
— Unit Area Definition
| smdi=1
— Operational Definition, Unit Impulse
Representation of A Continuous-time Signal
X(t) = j " x(1)8(t—1)dr

T

aunit impulse located at t =t
onindex t

— Unit Step Function Has A Flat Spectrum
[ smeitdt=14dl o

e



Convolution Sum for Discrete-time Systems

e Defining the Output for an Unit Impulse I nput
asthe Unit Impulse Response

X[n]=06[n] y[n]=h[n]:unit impul se response
ilif
0 n 0 n

e By Linearity (Superposition Property) and
Time lnvariance

- The output for an arbitrary input signal isthe
superposition of a series of “shifted, scaled unit
Impul se response”

2 ax[n] — X ayi(n]

I

[kl S[n-kl  x[k] h[nk]
X[n] = ; X[K]o[n—K]

y[n] =§w><[k]h[n—k] =x[n] h[n]
:zwh[k]x[n—k] =h[n] X[n]

Convolution Sum
SeFig. 2.3, P. 80 of Oppenheim




Convolution Sum for Discrete-time Systems

e A Different Way to Visualize the Convolution
Sum

- looked at on the index k

yIn = 3 x[Klh[n-k]

4 A A
Input signal
Contribution to |
the output signal reflected-over version of
at timen h[k] located at k = n

— on the dummy index k ,n[k] isreflected over
and shifted to k=n ,weighted by x[k] and
summed to produce an output sample y[n] at
timen

See Figs 2.5, 2.6, 2.7, pp. 83-85 of Oppenheim

e A linear time-invariant discrete-time system is
completely characterized by itsunit impulse
response



Convolution Integral for Continuous-time
Systems

e Defining the output for an unit impulse input
asthe unit impulse response

X(t) = 3(t) y(t) = h(t)

" S — > Unit Impulse Response
L t bo t

e By Linearity (Superposition Property)

- The output for an arbitrary input signal isthe
superposition of a series of “shifted, scaled unit
Impul se response”

; a X(t) = ; a Yk(t)

. A
x(0) = x(r)3(t-1)dt

y(®) =[ : x(t)h(t-7)dz

y(®) =] _Z X(t)h(t—t)dt = x(t) h(t)
=] _Z h(t)x(t—t)dt=h(t) x(t)
Convolution Integral




Convolution Integral for Continuous-time
Systems

o A Different Way to visualize the convolution
Integral

- Looked at on the index t

y(t) = [ X?) h(t-0)de

Input signal

output signal at timet

reflected-over version of h(t) located at t=t

- On the dummy index t, h(t) isreflected over
and shifted to t = t, weighted by x(t) and
Integrated to produce the output value at timet,
y(t)

e A linear time-invariant continuous-time system
Iscompletely characterized by its unit impulse
response



Response of A Linear Time-invariant System
to An Exponential Signal

x(0), X[n] :ﬁgﬁ% y(t), y[n]

e Continuous-time
x(t) = e/

y(t) =] hx(t-t)de =] h(z) el dr

= (e[ h(x)e " dr

_/

H(wo) h(t) «——> H(0)

- 1f an input signal has a single frequency
component, the output will be exactly the same,
except scaled

- H(w) : frequency response, or transfer function

e Discrete-time
x[n] = e

y[n] = (") 3 hik] e o

J

H©) pij«F+H(o)



System Char acterization

e Superposition Property for Frequency Domain
- periodic (Fourier Series)
X(t) :ki akejkoaot —)y(t) :kiwakH(kmo)ejkoaot

X[ ] :k;Ngke“‘“’O” -yl =X a H(kwo e’ "

- aperiodic (Fourier Transform)
1 * o)
X(®) =] X(0) € do

Sy(t) =o]  Ho)X(@)e™ do
= F [ H(w)X(») ]
y(t) =x(t) h(t) <i>Y(GD) = X(w)H(w)

yIn =x[n]  h[nJ«—— Y (0) = X(@)H(®)

- Convolution Property of Fourier Transform

- H(w) frequency response,
or transfer function



System Char acterization

x[nl , x(t) ylnl -, y(t)

—» —>

e Unit impulse as signal components

- each component split to many other components,
thus convolution required for computing the output

o[n], 3(Y) h{n] , h(t)

ST

e Singlefrequency assignal components

glon glot H(w)e!", H(w)e!

[ . L.

- each frequency component never split to other
frequency components, convolution reduced to
multiplication




Vector Space I nterpretation

e Discrete-time
- { X[n], x[n] isadiscrete-timesignal } =V

-{d[n—k], k=0, +£1,£2,...} isaset of
orthonormal basis

-@[n-kK) Gl#H]) = 1
0, k=#j

X[n] ﬂix[k]fi[n—k] = (X[k])  (8[n—k])

n e Hm ;

e Continuous-time
- { x(t) , x(t) isacontinuous-time signal } =V

- { 8(t—) , -0 <1 <0} isaset of orthogonal
(not normalized) basis

[S(t—’tl)]' [8(1:—’[?2)] =0, T1# 1T
X(t) = j :; x(1)8(t-t)dt = [x(7)] [6(t—7)]

Lat£“ bt




Vector Space I nterpretation

Frequency Domain
- Continuous-time

{ el -0 < @<} isaset of orthogona (not
normalized) basis

] [€°=0, w12 0s
X@) =] xQ e d=[xO] [e]

(@0o)
-
[

- Discrete-time

{el®" 0<®<2r} isaset of orthogonal (not
normalized) basis

[ [ =0, oo,

X(@) =3 x[n] e¥" = (x[n])" (e*")

e e
™o @

®

Mo

Ref: Oppenheim 2.1,2.2,3.2,44



