
2.4 

2.4 Vector Quantization (VQ) 

Scalar Quantization 
Jk 

 -A=m0 A = mL vk

S = U Jk , V ={ v1 , v2 , …, vL } 
L 

 

k = 1 

Q : S → V 

Q(x[n]) = vk  if  x[n] ∈ Jk 

L = 2R 

Each vk represented by a R-bit pattern 

- Quantization characteristics (codebook) 

{ J1 , J2 , …, JL }  and  { v1 , v2 , …, vL } 

designed considering at least 

1. error sensitivity 

2. probability distribution of x[n] 
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2.4 

2-dim Vector Quantization (VQ) 

Example: 
 xn = ( x[n] , x[n+1] ) 

  S = {xn = (x[n] , x[n+1] ) ; |x[n]| < A , |x[n+1]|<A} 

˙VQ 

- S divided into L  2-dim regions J1 , J2 , …, Jk ,…JL 
 

    S = U Jk 

each with a representative vector vk ∈ Jk 

V= { v1 , v2 , …, vL } 

- Q : S → V 
Q(xn)= vk  if  xn ∈ Jk 
L = 2R  
each vk represented by a R-bit pattern 

- Considerations 
1. error sensitivity may depend on x[n], x[n+1] 

jointly 
2. distribution of x[n] , x[n+1] may be 

correlated statistically 
3. more flexible choice of Jk 

- Quantization Characteristics (codebook) 
{ J1 , J2 , …, JL } and { v1 , v2 , …, vL } 

L 
 

k = 1 
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2.4 

N-dim Vector Quantization 

x = (x1 , x2 , …, xN ) 
S = {x = (x1 , x2 , …, xN) , | xk | < A , k = 1,2,…N} 

S = U Jk, V = {v1 , v2 , …, vL } 

Q : S → V 

Q(x) = vk  if  x ∈ Jk 

L = 2R , each vk represented by an R-bit pattern 

Codebook Trained by a Large Training Set 
˙Define distance measure between two vectors x, y 

d( x, y ) : S×S → R+ (non-negative real numbers) 

- desired properties 

  d( x, y ) ≥ 0 

  d( x, x ) = 0 
  d( x, y ) = d( y, x ) 

  d( x, y ) + d( y, z ) ≥ d( x, z ) 

examples :  

  d( x, y ) = ∑ (xi − yi)2 

  d( x, y ) = ∑ | xi − yi | 

L 
 
k=1 

k

k
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2.4 

Codebook Trained by a Large Training Set 

• Iterative training 
 

 

 

 
 

 

(1) Jk = { x | d(x , vk ) < d(x , vj) , j ≠ k } 
  → D = ∑ d(x , Q(x) ) = min 

    nearest neighbor condition 

(2) For ch k 

  vk=

  → D

  cen

(3) Con
  D =

(1) 
Fixed { v1 , v2 , …, vL }

find best set of 
{ J1 , J2 , …, JL } 

(2) 
Fixed { J1 , J2 , …, JL }

find best set of 
{ v1 , v2 , …, vL } 

all x 

 

 
k

  afte

  | D(

 Lloyd-M

 

 ea
1
− ∑ x 

k = ∑ d(x , vk) = min 

troid condition 

vergence condition 
∑ Dk 

M x∈Jk 

x∈Jk

L 

 = 1 

r each iteration D is reduced, but D ≥ 0 
m+1) − D(m) | < ∈, m : iteration 

ax Algorithm
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2.4 

Applications of VQ 

- Any set of parameters with somehow related 
properties can be grouped into a vector for VQ 

- Number of bits to be transmitted can be 
reduced 

 

Ref: 10.1, 10.2, Gersho and Gray, “Vector 
Quantization and Signal Compression”, 
Kluwer, 1992 
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