3.6 Vector Space Theory of Digital
Communications

Problem Definition
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 Source of Information
asymbol m=m; e {my, m,,...my} sent at a
timein[O,T]
Probjm=m] = P, g P=1
- Example M =2 -
m=1m,=0
M=4
m; =00, m,=01, mz=10, m,= 11
e Transmitter
asigna pulse s(t) = s(t) e{si(t), s2(1),...su(t)} sent
if m=m;, s(t) definedin [0, T]
e Channel
Ideal channel, x(t) = s(t) + n(t) in [0, T]
n(t) : white, Gaussian, zero-mean
S\(o) :%, al o

Rn(1) = 2228(7)



Problem Definition

* Receiver
amapping relation

Rx: x(t) > m € {my, my,...my}

e Symbol Error Probability
P.s = Prob[m=m] :ilProb[rAn;tmi Im] P,

e Goal

Design the mapping relation in Receiver
such that

Pes=min



Vector Space Representation of the Problem

 Assume a set of basis functions
40 j=12...N
/i) ()t = 5 :{ é =]

. A #]
- orthonormal basis

 AssumetheM signals{s(t),i =1, 2, ...M} can
be expanded from these N basis functions
N

s(1) = 2 s ¢
si= /T s@a O
= /112 swou®lobat
S(t) «— S=(S1 S2:---Sn)
[s®]-[s®] =/ s®s®dt =5 -5 =X si sj
[ [s®*dt=|s|F=E
 Dimension N of the sub-space

N<M
- Gram-Schmidt Orthogonalization Procedure

d1(t) = su(t) / B4
8o1=/ () dpa(D)clt
¢2'(t) = Sx(t) — @1a(t)
Ey' =/ 5[0z ()] clt
da(t) = 02/ (1) / (BN, ...
- M signals expand an N-dim subspace, N <M



Vector Space Representation of the Problem

* Projection of n(t) in the N-dim subspace
n(t) - n=(Ng, Ny,...NYN)
= /7t @)t
() = 1, 40 + ()
noise outside of the subspace or

orthogonal to the subspace

- Thm:
n'(t) isIrrelevant for optimal decision

optimal decision can be made solely in the
subspace without considering n'(t)

- Vector Space Representation

n
* X
m=m; S=S§ m
X=s+n

RX: X —>m e {my, m,,...my}
X(t) reduced to a N-dim vector, N < M



Vector Space Representation of the Problem

- Satisticsof n
ny =/ o NG (t)ct
n; : Gaussian, zero-mean random variable
E[nin] =E[/ | n()¢i(D)dt/  n(z)d;(x)d]
= [/ L 6 (DEIN(tn(x)] dtdre

Rn(t-1) = 22 3(t-)
_Nog _(No =
2Vl {2
0, 1#]

- al n; are independent, identically distributed

(iid), Gaussian, zero-mean with variance ¢° = %

-n%/2c2

fr, (n)— (2n )sz

_ -|A|?/262
e
n( ) (27[(5 )N/Z

spherically symmetry, isotropic
Se Fig. 5.4, 5.7, p. 313, p. 323 of Haykin



Optimal Decision

 Maximum A Posteriori Probability (MAP)
Principle
assume X is received

possibly m; was sent with Prob] m;
m2 was sent with Prob[ m;

X x|

mk was sent with Prob] rhk

.><.'

= MmaX

mM was sent with Prob[ m,v. |X]
If Prob[my |x] > Prob[m; |X], j =k
then let X — m = m
 Evaluation of Prob[m;|X]

Prob[m; [x] = roelxIm A
Prob[ x ]
Rx: X — m=my if D(X) = max among al D;(X)
Di(x) = Prob[ x |m;]P, = Prob[ x|s ]P,
= Prob[n=X-§]P
=fa(X - g)Pi

- [ (27'50 )N/Z
Di(X) =—|X~-5§ [+ 25°In[P]
- assign m to the signal vector NEAREST to X,
with distance adjusted by P,

- most probable noise corresponds to minimum
distance

= Dj(X), decision function

_lvy_c |2 2
e|x s|/2cs].|:)i



Optimal Decision

» Decision Region
the N-dim subspace can be divided into M
regionsin advance, R, = {X|x—>m},1 =1, 2,...M

- boundary between R; and R; defined by
Di(X) = Dj(x)
Receiver Structure
Di(x) =— X -5 "+ 25°In[P]
—|Y| ~|sF +2Y S + 26°Nn[P]

Di(X) =X+ § + o°In[P] ——Is i

=X+5+C
* Recelver Sructurel

X-§=/ Xt = y(6)

y(t) = / _:x(r)hi (t—t)dt , hi(t) = s(t:—t)
- matched filter output, correlator

ﬂ’ hi(t) y(t)/é
X(H > >
e—{f %

s(t)
- atotal of M arms needed in general
* Receiver Structure 2
X = (X1, X2, - XN) , X+ § = Zx, Sj

X =/ x®¢;(Odt,j=1,2,...N
- atotal of N arms needed, useful when N<M
SeFig. 5.9, p. 327 of Haykin




Error Probability | ndependent of Choice of

Basis

- Decison Regions{R;,1 =1, 2, ...M}
Independent of basis

- Error probabilities depends on the
constellation structure and distances among
the signal vectors only

- nisspherically symmetric
exanples: N=2, M=2
N=2,M=4
e Minimum Energy Signal Set
Given{s,i=1, 2, ...M} , find asuch that

Ref: 5.1,5.2,5.3, 54, 5.5, 5.6, 5.7 of Haykin



