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3.6 Vector Space Theory of Digital 
Communications 

Problem Definition 

 
 
 
 

• Source of Information 
a symbol m = mi ∈ {m1, m2,…mM} sent at a 
time in [0,T] 

Prob[m = mi] = Pi , ∑ Pi = 1 
- Example: M = 2 

m1 = 1, m2 = 0 
M = 4 
m1 = 00, m2 = 01, m3 = 10, m4 = 11 

• Transmitter 
a signal pulse s(t) = si(t)∈{s1(t), s2(t),…sM(t)} sent 

if m = mi , si(t) defined in [0,T] 
• Channel 

ideal channel, x(t) = s(t) + n(t) in [0,T] 
n(t) : white, Gaussian, zero-mean 
Sn(ω) =  , all ω 

Rn(τ) =  δ(τ) 
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Problem Definition 

• Receiver 
a mapping relation 

Rx : x(t) → m ∈ {m1, m2,…mM} 

• Symbol Error Probability 

Pe,s = Prob[m≠m] = ∑ Prob[m≠mi | mi] Pi 

• Goal 
Design the mapping relation in Receiver 
such that 

Pe,s = min 
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Vector Space Representation of the Problem 
• Assume a set of basis functions 

{φj(t) , j = 1, 2, …, N} 
φi(t) φj(t)dt = δij = 

- orthonormal basis 
• Assume the M signals {si (t), i = 1, 2, …M} can 

be expanded from these N basis functions 
si(t) = ∑ sij φj(t) 

sij =     si(t)φj(t)dt 

=   [ ∑ si k φk(t)]φj(t)dt 

si(t)    si = (si1, si2,…siN) 
[si(t)] • [sj(t)] =   si(t)sj(t)dt = si • sj = ∑ s i k s j k 

[si(t)]2dt = || si ||2 = Ei 
• Dimension N of the sub-space 

N ≤ M 
- Gram-Schmidt Orthogonalization Procedure 

φ1(t) = s1(t) / E1
1/2 

a21 =  s2(t) φ1(t)dt 
φ2′(t) = s2(t) − a21φ1(t) 
E2′ =  [φ2′(t)]2dt 

φ2(t) = φ2′(t) / (E2′)1/2 , …… 

- M signals expand an N-dim subspace, N ≤ M 
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Vector Space Representation of the Problem 

• Projection of n(t) in the N-dim subspace 
n(t) → n = (n1, n2,…nN) 

nj =   n(t)φj(t)dt 

n(t) = ∑ nj φj(t) + n′(t) 

noise outside of the subspace or 
orthogonal to the subspace 

˙Thm : 
n′(t) is Irrelevant for optimal decision 

optimal decision can be made solely in the 
subspace without considering n′(t) 

˙Vector Space Representation 

 

 

x = s + n 

Rx : x → m ∈ {m1, m2,…mM} 

x(t) reduced to a N-dim vector, N ≤ M 
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Vector Space Representation of the Problem 

˙Statistics of n 

nj =  n(t)φj(t)dt 
nj : Gaussian, zero-mean random variable 
E[ninj] = E[   n(t) φi(t) dt   n(τ)φj(τ)dτ] 

    = ∫   φi(t)φj(τ)E[n(t)n(τ)]dtdτ 

         Rn(t−τ) =  δ(t−τ) 
    =  δij = 

- all nj are independent, identically distributed 
(iid), Gaussian, zero-mean with variance σ2 =  

fnj (n) =   e-n2/2σ2
 

f n (n) =   e-|n|2/2σ2
  

spherically symmetry, isotropic 

See Fig. 5.4, 5.7, p. 313, p. 323 of Haykin 
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Optimal Decision  
• Maximum A Posteriori Probability (MAP) 

Principle 
assume x is received 
possibly m1 was sent with Prob[ m1 | x ] 

m2 was sent with Prob[ m2 | x ] 

mk was sent with Prob[ mk | x ] = max 

mM was sent with Prob[ mM | x ] 
if Prob[mk | x ] > Prob[mj | x ] , j ≠ k 
then let x → m = mk 

• Evaluation of Prob[mi | x ] 

Prob[mi | x ] =  = Di(x), decision function 

Rx: x → m = mk  if Dk(x) = max among all Di(x) 
Di(x) = Prob[ x |mi ]Pi = Prob[ x | si ]Pi 

= Prob[ n = x − si ]Pi 
= f n(x − si)Pi 

= [ e−| x−si |2 / 2σ2 
]

 
• Pi 

Di (x) = − | x − si |2 + 2σ2ln[Pi] 
- assign m to the signal vector NEAREST to x, 

with distance adjusted by Pi 
- most probable noise corresponds to minimum 

distance 
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Optimal Decision 
• Decision Region 

the N-dim subspace can be divided into M 
regions in advance, Ri = {x| x→mi}, i = 1, 2,…M 

- boundary between Ri and Rj defined by 
Di( x ) = Dj( x ) 

Receiver Structure 
Di( x ) = − | x − si |2 + 2σ2ln[Pi] 

= − | x |2 − | si |2 + 2x • si + 2σ2ln[Pi] 
Di( x ) = x • si + σ2ln[Pi] −  | si |2 

= x • si + Ci 
• Receiver Structure 1 

x • si =   x(t)si(t)dt = y(t1) 
y(t) =   x(τ)hi(t−τ)dτ , hi(t) = si(t1−t) 

- matched filter output, correlator 
x(t)       

    x(t) 
 

- a total of M arms needed in general 
• Receiver Structure 2 

x = (x1, x2, …xN) , x • si = ∑ xj sij 

xj =   x(t)φ j(t)dt , j = 1, 2,…N 
- a total of N arms needed, useful when N<M 
See Fig. 5.9 ,  p. 327 of Haykin 
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Error Probability Independent of Choice of 
Basis 

- Decision Regions {Ri , i = 1, 2, …M} 
independent of basis 

- Error probabilities depends on the 
constellation structure and distances among 
the signal vectors only 

- n is spherically symmetric 

examples :  N = 2 , M = 2 
     N = 2 , M = 4 

• Minimum Energy Signal Set 
Given {si , i = 1, 2, …M} , find a such that 

∑ || si − a ||2 Pi = min 

-   a = ∑ si Pi 

Ref : 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7 of Haykin 
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