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1. ABSTRACT

Gaussian Mixture Models (GMMs) have been successfully ap-
plied to the tasks of speaker ID and verification when a large
amount of enrolment data is available to characterize client speak-
ers ([1],[10],[11]). However, there are many applications where
it is unreasonable to expect clients to spend this much time train-
ing the system. Thus, we have been exploring the performance
of various methods when only a sparse amount of enrolment data
is available. Under such conditions, the performance of GMMs
deteriorates drastically. A possible solution is the “eigenvoice”
approach, in which client and test speaker models are confined
to a low-dimensional linear subspace obtained previously from a
different set of training data. One advantage of the approach is
that it does away with the need for impostor models for speaker
verification.

After giving a detailed description of the eigenvoice approach,
the paper compares the performance of conventional GMMs on
speaker ID and verification with that of GMMs obtained by means
of the eigenvoice approach. Experimental results are presented to
show that conventional GMMs perform better if there are abun-
dant enrolment data, while eigenvoice GMMs perform better if
enrolment data are sparse. The paper also gives experimental re-
sults for the case where the eigenspace is trained on one database
(TIMIT), but client enrolment and testing involve another (YOHO).
For this case, we show that performance improves if an environ-
ment adaptation technique is applied to the eigenspace. Finally,
we discuss priorities for future work.

2. THE EIGENVOICE APPROACH

2.1. Introduction

The exact amount of enrolment data required by state-of-the-
art speaker ID and verification systems varies according to the
nature of the task. For instance, to distinguish between about
100 client speakers for a high-security application, 60 seconds
or more of enrolment speech might be required for each client.
However, for some tasks (especially low-security ones) clients
might prefer to enrol with as little as 5 sec. of speech. Unfortu-
nately, as experimental results given in this paper show, conven-
tional GMMs do not perform well if enrolment data are sparse.

To solve this problem, we have drawn on earlier work on
“eigenvoice” speaker adaptation, in which we employed prior
knowledge about speaker space to constrain the adapted model
for the new speaker ([4-6],[9]). In traditional speaker ID and ver-
ification, the system’s knowledge about speech comes entirely
from the client speakers. In the eigenvoice approach to the prob-

(optional) find clients’
    Gaussian means

client i GMM

train eigenspace

optional MLES
 re-estimation

estimate clients’
  coordinates

optional MLLR
  adaptation

SPEAKER ID/VERIFICATION

1.  use distance in eigenspace
     -> ‘‘eigendistance decoding’’

OR

2.  use P(test data|client GMMs)
     -> ‘‘eigenGMM decoding’’

training data 

client data

test   data

.

client i

. .
.

Figure 1: The eigenvoice approach

lem, we add an extra step that comes before enrolment of client
speakers. In this extra step, speech is elicited from a diverse set of
training speakers (typically disjoint from the client speakers) and
then analyzed to obtain a low-dimensional speaker space called
the “eigenspace”. Subsequently, when clients are enrolled, the
model for each client is represented as a point in the eigenspace.
Thus, the approach constrains the client and test speakers to be
located in a linear subspace derived from training data.

Forcing client models to be located in eigenspace is a power-
ful constraint that greatly reduces the number of degrees of free-
dom. A client GMM with 32 mixture Gaussians and 26 acoustic
features per Gaussian has, ignoring mixture weights, 832 degrees
of freedom. If we now impose on the model the additional con-
straint that it must be located in a 20-dimensional eigenspace ob-
tained from training data, the number of degrees of freedom has
shrunk by a factor of more than 40. Whether or not it’s a good
idea to impose this constraint depends on the amount of enrol-
ment data. For small amounts of enrolment data, the eigenspace
constraint makes it possible to estimate a reasonable model for



each client quickly (in the example, only 20 parameters would
have to be estimated). For large amounts of enrolment data, it’s
better not to impose the constraint, since it implies that unusual
aspects of a client’s voice (i.e., phenomena not seen in the train-
ing data) will not be represented. Thus, our technique is designed
for tasks where clients need to be enrolled quickly, with a mini-
mal amount of enrolment data collected per client. It is also well-
suited for tasks where memory must be minimized, since each
additional client model only requires a small number of stored
parameters.

2.2. Applying the Approach
Our approach is summarized in Figure 1. First, we obtain a set of
models for training speakers (in the experiments described here,
these models were conventional GMMs). Training data are col-
lected only once, in an offline step; ideally, they will be provided
by a large and diverse set of speakers, with large amounts of
speech collected from each speaker. Next, we apply a technique
such as PCA (Principal Component Analysis) or LDA (Linear
Discriminant Analysis) to the means of the training speaker GMMs
to obtain a low-dimensional eigenspace made up of “eigenvoice”
basis vectors. Optionally, we may apply a re-estimation tech-
nique called MLES (Maximum Likelihood EigenSpace) to ob-
tain a better eigenspace. PCA, LDA, and MLES are described in
the next subsection.

Our goal in the client enrolment step is to minimize the an-
noyance to the clients by minimizing the amount of speech col-
lected per client. Since the acoustic environment for the speaker
ID/verification task may differ from the environment in which
training speakers were recorded, data from the clients (or from
other speakers recorded under the task conditions) may option-
ally be used to adapt the eigenspace to the task environment
adaptation via a method such as MLLR [7].

To estimate each client’s coordinates in the eigenspace from
a few seconds of data, a technique called MLED (Maximum
Likelihood EigenDecomposition) is used [4-6]. Each point in
the eigenspace represents a possible speaker model (a GMM in
these experiments) - thus, once can also build a GMM for a
client, given his or her position in the eigenspace. Since each
eigenspace point only carries information about Gaussian means,
the variances must be obtained from somewhere else (typically,
from a speaker-independent model).

Finally, there is the speaker ID/verification step, in which the
system must assign data from a test speaker to one of the clients,
or decide that he/she is an impostor. There are two ways of doing
this:

1. Project the test speaker into the eigenspace using MLED,
then find the distance between the test speaker point and
the client point(s) in the eigenspace - we call this “eigendis-
tance decoding”;

2. Use speaker models (e.g., GMMs) generated from client
points in eigenspace to calculate the likelihood of the test
data - we call this “eigenGMM decoding”.

For speaker ID, the test speaker is assigned to the closest client in
eigenspace (eigendistance decoding) or the client whose model
derived from eigenspace yields the highest likelihood on test data
(eigenGMM decoding). For speaker verification, eigendistance
thresholds or eigenGMM likelihood thresholds are applied to de-
cide if the test speaker is a client or an impostor. In the case
of eigendistance speaker verification, there is no need for an im-
postor model to normalize for utterance likelihood dependencies.

The reason for this is that the eigenspace itself implicitly normal-
izes for utterance likelihood: two utterances with very different
likelihoods (as calculated by a GMM or HMM) may map to the
same point in the eigenspace.

2.3. Eigenspace Training Techniques
As described in our papers on speaker adaptation, PCA discov-
ers the directions that account for the largest variability among
training speakers [4-6]. In the experiments reported here, each
training speaker’s Gaussian means were concatenated to form a
“supervector” of dimension D. PCA was applied to the set of
T supervectors obtained from the T training speakers, yielding
T � 1 eigenvoice vectors ordered by the magnitude of their con-
tribution to the between-speaker scatter matrix. This matrix is:

SB =

TX

s=1

Ns(�s � �)(�s � �)
T (1)

where Ns is the number of training utterances of speaker s, �s
the mean of allNs samples, and � is the overall mean. Typically,
we discard the higher-order eigenvoices (which mainly contain
noise) to obtain an eigenspace of dimension less than T � 1.

In pure PCA, the means of the Gaussians in each training
speaker’s GMM are treated as vectors and we aim to find the
maximally varying directions. However, the GMMs are actually
probabilistic models. To better model the speaker space, we can
apply Maximum Likelihood EigenSpace (MLES) estimation [9]
which reestimates the initial PCA eigenspace so as to maximize
the likelihood of the training data, given the speaker’s identity:
i.e., P (OSj�S) is maximized (where OS and �S represent an
observation and the GMM of a given speaker respectively).

Linear Discriminant Analysis is particularly relevant to speaker
ID and verification, since it tries to increase discrimination be-
tween classes (in our case, a class consists of all speech from a
given speaker). For other recent work applying LDA to this task
(though in a completely different way) see [11]. LDA was much
less relevant to our earlier work on speaker adaptation for speech
recognition systems, since no-one cares whether an adapted rec-
ognizer distinguishes between speakers if it performs well for the
current speaker.

Fisher’s Linear Discriminant (FLD) tries to “shape” the scat-
ter in a set of data samples to make classification easier [2]. Con-
sider an orthogonal transformationW mapping eachD-dimensional
supervector xk into eigenspace:

yk =W
T
xk (2)

(where yk is the transformed vector of dimension T ). The trans-
formation matrix W is selected so as to maximize the ratio be-
tween the between-class scatter SB and the within-class scatter

SW =

TX

s=1

X

xk2Xs

(xk � �s)(xk � �s)
T (3)

where �s is the mean of speaker s. The optimal transformation
matrix Wlda will then be chosen so as to maximize the ratio of
the determinant of ~SB = WldaSBW

T

lda of the projected sam-
ples to the determinant of ~SW =WldaSWW T

lda of the projected
samples:

Wlda = argmax
W

��W TSBW
��

jW TSWW j

= [e(1)e(2) : : : e(K)] (4)



where fe(i)ji = 1; : : : ; Kg are the generalized eigenvectors of
SB and SW corresponding to the K largest eigenvalues f�iji =
1; : : : ; Kg:

SBe(i) = �iSW e(i); i = 1; : : : ; K

, S
�1

W
SBe(i) = �ie(i): (5)

The rank of SW is at most N � T , where N is the total
number of utterances in the training database and T the number
of speakers. Thus, for each GMM used to build the eigenspace
Wlda, we require more than D sample utterances (D is the di-
mension of the supervectors). Given the nature of human speech,
this is unlikely to be a problem. For an interesting discussion of
LDA applied to face recognition (where obtaining a sufficient
number of face images is a problem), see [2].

3. EXPERIMENTS

Two databases were used in these experiments: the YOHO Speaker
Verification database of “combination lock” phrases and the TIMIT
database of acoustically varied continuous speech [8]. However,
only YOHO was used for client enrolment and testing (as op-
posed to eigenspace training). To obtain eigenspaces, speaker-
dependent GMMs were initialized on a simple “SILENCE speech
SILENCE” segmentation obtained by means of a silence model
and a speaker-independent model. The sampling rate was 8 kHz
(TIMIT data were downsampled to 8 kHz). There were 26 MFCC
acoustic features (13 static, 13 dynamic), to which cepstral filter-
ing was applied.

3.1. Results for abundant enrolment data
In an initial set of experiments on YOHO, we tried several speaker
ID approaches on 82 speakers with 360 seconds of enrolment
data per client. When 5 seconds of test speech not used for en-
rolment was presented for each of the 82 clients, the conventional
GMM approach with 32 Gaussians yielded 98:8% correct iden-
tification. For the eigenvoice approaches, the eigenspace was
obtained from 72 of the 82 client speakers (implying that the
maximum possible dimensionality of the eigenspace is 71).

Although this overlap between training speakers and enrol-
ment speakers favours the eigenvoice approaches, none of them
performed as well as the conventional GMM approach. The best
eigenvoice result, 98:0%, occurred in the case where LDA was
used for eigenspace training, the dimensionality of the eigenspace
was set to 70, and eigenGMM decoding was used. Among all
the eigenvoice approaches, training the eigenspace with LDA
(rather than PCA, PCA followed by MLES, or LDA followed by
MLES), setting the dimensionality high, and carrying out eigen-
GMM decoding (rather than eigendistance decoding), always con-
tributed to better performance. We concluded that for abundant
enrolment data, no eigenvoice approach can outperform the con-
ventional approach, since projecting the client data into a linear
subspace causes reliably estimated information about the client
to be lost. Thus, we did not perform a comparison of speaker
verification techniques for this condition.

3.2. Results for sparse enrolment data
Figure 2 shows speaker ID results for 5 sec. of test speaker data
and sparse enrolment data: 10 sec. enrolment for each of 10
clients. Here, the eigenvoice methods all used 64-Gaussian mod-
els and eigenGMM decoding. However, the baseline of 77:8%
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Figure 2: Speaker ID: 10 sec. enrolment data, 5 sec. test data

correct ID shown was obtained from the best conventionally ob-
tained GMM, which had 8 Gaussians, rather than from the 64-
Gaussian conventional GMM (whose performance was around
30%). Each horizontal line on the figure represents a fixed num-
ber of dimensions for the eigenspace: e.g., the line “20 eigen-
voices” shows results for 20 dimensions. For the experiments in
this figure, the 72 training speakers for the eigenspace were dis-
joint from the 10 clients. The best result was 95:0% correct for
70 dimensions and an LDA-trained eigenspace.

Clearly, eigenspace dimensionality has a powerful impact on
performance. The method of training the eigenspace is also im-
portant. Note that LDA always performs better than any other
method, beating PCA, PCA initialization with MLES re-estimation,
and LDA with MLES re-estimation. Not shown here are ex-
perimental results where ID is carried out via eigendistance de-
coding. We tried three eigendistance metrics - angle, Euclidean
distance, and a metric which weighted each eigenspace dimen-
sions by its eigenvalue - but found that there was little difference
between them, and that eigenGMM decoding typically outper-
formed eigendistance decoding by a small amount (about 5%
relative error).

Experimental results for speaker verification (using a speaker-
independent impostor model for eigenGMM decoding) are shown
in table 1 for a 40-dimensional eigenspace on 64-GMMs ob-
tained from 72 speakers (disjoint from the 10 client speakers).
For speaker verification, eigendistance decoding outperforms eigen-
GMM decoding, and both outperform conventional GMM de-
coding. The best conventional GMM result for 5 sec. of enrol-
ment data is for a 4-Gaussian model, and the best conventional
GMM result for 10 sec. is for an 8-Gaussian model.

3.3. Eigenspace adaptation
In practical applications, the eigenvoice will have to handle mis-
match between the training environment, on one hand, and the
enrolment and testing environments on the other. Thus, we trained
an eigenspace for 64-GMMs on the 630 TIMIT speakers, each
supplying 10 sentences, and carried out enrolment and testing on
YOHO.

Table 2 compares the results from a YOHO-trained 64-GMM
eigenspace for 10 sec. of enrolment and 5 sec. of test data
(these results were shown in Figure 2) with those obtained for
the same 10 YOHO speakers on the TIMIT eigenspace, and on



5 seconds enrolment

Best GMM baseline (4G) 21.5%
Decoding PCA LDA

Euclidian Distance 9.6% 7.0%
GMM Decoding 11.0% 9.9%

10 seconds enrolment

Best GMM baseline (8G) 14.4%
Decoding PCA LDA

Euclidian Distance 7.1% 6.4%
GMM Decoding 10.0% 9.0%

Table 1: Speaker verification (Equal Error Rate): 64-GMM, 40
eigenvoices, YOHO training, enrolment, and testing

Eigenvoice dimension 20 40 70
YOHO eigenspace

PCA without MLES 84.3% 89.0% 93.0%
PCA with MLES 86.8% 89.3% 92.8%

LDA 87.8% 94.3% 95.0%
TIMIT eigenspace

PCA without MLES 76.5% 86.0% 91.5%
PCA with MLES 79.0% 85.5% 92.0%

LDA 77.3% 83.5% 82.8%
MLLR-adapted TIMIT eigenspace

PCA without MLES 78.5% 88.5% 92.3%
PCA with MLES 79.3% 88.8% 92.5%

LDA 79.3% 86.8% 84.0%

Table 2: Speaker ID: 64-GMM, YOHO vs. TIMIT vs. MLLR-
adapted TIMIT for eigenspace training

an eigenspace obtained by applying global MLLR environment
adaptation to the TIMIT eigenspace (and also to the TIMIT si-
lence model). The adaptation was performed on the enrolment
data from the 10 clients; we observed no significant difference
when much larger amounts of adaptation data were used.

The results show that although the eigenspace trained on
YOHO via LDA performs best on YOHO enrolment and test
data, the eigenspace trained on TIMIT via LDA performs worse
than TIMIT eigenspaces obtained by the other two methods -
whether or not MLLR is applied subsequently. Compared to
YOHO, TIMIT is unsuitable for LDA in two ways: it contains
only 10 sentences per speaker (YOHO has 96), and it contains
far more allophonic variability, making it easier to confound this
type of variability with speaker-dependent variability (YOHO
has only “combination lock” phrases). Thus, our choice of TIMIT
for training the initial eigenspace may have been a mistake.

4. CONCLUSIONS

The eigenvoice approach forces models for the client and test
speakers to be confined to a low-dimensional subspace obtained
from training data. For sparse amounts of enrolment data (5�10

sec.) this approach consistently outperforms conventional GMM
training. For larger amounts of enrolment data, the loss of de-
grees of freedom caused by restriction to eigenspace leads to in-
ferior performance. For speaker verification, an advantage of the
approach is that, in its “eigendistance decoding” variant, it dis-
penses with the need for impostor models.

Of the eigenspace training methods tested, LDA appears to
be the most promising. However, all the eigenvoice methods may
run into difficulty when trained on acoustically diverse databases
with small amounts of data per speaker. For instance, speaker-
dependent variability in TIMIT is less important than phoneme
identity, channel effects, and phonetic context [3]; this makes it
likely that eigenspaces trained on TIMIT and similar databases
will confound speaker-dependent information with these other
types of information. Clearly, the top priority for future work is
the development of more robust eigenspace training techniques.
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