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Large Vocabulary Speech Recognition with Multispan
Statistical Language Models

Jerome R. Bellegarda, Senior Member, IEEE

Abstract—Multispan language modeling refers to the integra-
tion of the various constraints, both local and global, present in the
language. It was recently proposed to capture global constraints
through the use of latent semantic analysis, while taking local
constraints into account via the usualn-gram approach. This
has led to several families of data-driven, multispan language
models for large vocabulary speech recognition. Because of the
inherent complementarity in the two types of constraints, the
multispan performance, as measured by perplexity, has been
shown to compare favorably with the correspondingn-gram
performance. The objective of this work is to characterize the
behavior of such multispan modeling in actual recognition. Major
implementation issues are addressed, including search integration
and context scope selection. Experiments are conducted on a
subset of the Wall Street Journal (WSJ) speaker-independent,
20 000-word vocabulary, continuous speech task. Results show
that, compared to standard n-gram, the multispan framework
can lead to a reduction in average word error rate of over 20%.
The paper concludes with a discussion of intrinsic multi-span
tradeoffs, such as the influence of training data selection on the
resulting performance.

Index Terms—Latent semantic analysis, multispan integration,
n-grams, speech recognition, statistical language modeling.

I. INTRODUCTION

OVER the past decade,n-gram language modeling has
steadily emerged as the formalism of choice for large

vocabulary continuous speech recognition in a wide range of
domains. Concerns regarding parameter reliability, however,
restrict current implementations to low values ofn (cf., e.g.,
[1]), which in turn imposes an artificially local horizon to the
language model. As a result,n-grams are inherently unable to
capture large-span relationships in the language.

Consider, for instance, predicting the word “fell” from the
word “stocks” in the two equivalent phrases:

stocks fell sharply as a result of the announcement (1)

and

stocks, as a result of the announcement, sharply fell. (2)

In (1), the prediction can be done with the help of a bigram
language model (n = 2). With the kind of resources currently
available, this is rather straightforward [2]. In (2), however, the
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valuen = 9would be necessary, a rather unrealistic proposition
at the present time.

At the other end of the spectrum, it is possible to take an
overall view of the entire sentence, as opposed to just then

preceding words. This requires a paradigm shift toward parsing
and rule-based grammars, such as are routinely and successfully
employed in small and medium vocabulary recognition applica-
tions. This approach solves the locality problem, since it takes
sentence-level constraints into account. Unfortunately, it is still
too restrictive for large vocabulary recognition: parsing-based
methods do not (yet) scale well to general discourse, which is
precisely the reason why then-gram framework was so widely
adopted in the first place.

This has sparked interest in statistical large-span modeling,
which is concerned with alternative ways to extract suitable long
distance information (other than resorting to a formal parsing
mechanism). Broadly speaking, the goal of statistical large-span
modeling is to relate to one another those words that are found
to be semantically linked from the evidence presented in the
training text database, without regard to the particular syntax
used to express that semantic link.

One early attempt along these lines was based on the con-
cept of word triggers [3]. In the above example, suppose that the
training data reveals a significant correlation between“stocks”
and“fell” so that the pair (stocks, fell) forms a trigger pair. Then
the presence of“stocks” in the document could automatically
trigger “fell,” causing its probability estimate to change. Be-
cause this behavior would occur indifferently in (1) and in (2),
the two phrases would lead to the same result. Thus, the trigger
approach solves the problem, at least for those trigger pairs that
have been selected by the algorithm [4].

Unfortunately, trigger pair selection entails a number of
practical constraints. First, only word pairs that co-occur
in a sufficient number of documents are considered. This
means that even though“stocks” may often co-occur with
“decreased,”and“decreased”may often cooccur with“fell,”
the pair (“stocks, fell”) will not be included unless it has itself
been frequently seen in the training data. In addition, a mutual
information criterion is typically used to further confine the
list of candidate pairs to a manageable size. This may result
in too much “filtering” of the data, which limits the potential
of low frequency word triggers [4]. Still, self-triggers have
been shown to be particularly powerful and robust [3], which
underscores the desirability of exploiting correlations between
the current word and features of the document history. What
seems to be needed is a somewhat more flexible framework to
exploit the long distance information present in this history.
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This observation led the author to explore the use of latent
semantic analysis for such purpose [5]. Latent semantic anal-
ysis (LSA) was originally formulated in the context of infor-
mation retrieval, where it proved to be a very effective indexing
mechanism [6]–[10]. In latent semantic indexing, co-occurrence
analysis takes place across much larger spans than with a tradi-
tional n-gram approach, and on a much larger scale than with
the trigger approach. The span of choice is adocument,which
can be defined as a semantically homogeneous set of sentences
embodying a given storyline. As for scale, every combination
of words from the vocabulary is viewed as a potential trigger
combination. Thus, to a large extent, the LSA paradigm can
be viewed as an extension of the word trigger concept, where
trigger pair selection is addressed as part of the analysis, rather
than as a postprocessing step. This extension (in both span and
scale) leads to the systematic integration of long-term depen-
dencies into the analysis.

To take advantage of the concept of document, we of course
have to assume that the available training data is tagged at the
document level, i.e., there is a way to identify article bound-
aries. This is the case, for example, with the ARPANorth Amer-
ican Business Newscorpus (NAB) [11]. Once this is done, the
LSA paradigm can be used for word and document clustering
(cf. [12] and [13]), as well as for language modeling [14]. In all
cases, it was found to be suitable to capture some of the global
constraints present in the language. In fact, hybridn-gram +
LSA language models, where LSA is embedded into the stan-
dardn-gram formulation, were shown to result in a substantial
reduction in perplexity [15].

The objective of this paper is to assess the behavior of such
multispan language models in actual speech recognition experi-
ments. Specifically, we examine the achievable reduction in av-
erage word error rate, and discuss a number of factors which
influence performance. The paper is organized as follows. In
the next section, we review the salient properties of LSA-based
statistical language modeling. Section III addresses the major
implementation issues involved in using the resulting multispan
models for large vocabulary recognition. In Section IV, we illus-
trate some of the benefits associated with multispan modeling
on a subset of theWall Street Journal(WSJ) task. Finally, Sec-
tion V discusses the inherent tradeoffs associated with the ap-
proach, as evidenced by the influence of the data selected to train
the LSA component of the multispan model.

II. N -GRAM + LSA LANGUAGE MODELING

Let V , jVj = M , be some underlying vocabulary andT a
training text corpus, comprisingN articles (documents) relevant
to some domain of interest (like business news, for example, in
the case of the NAB corpus [11]). Typically,M andN are on
the order of ten thousand and hundred thousand, respectively;
T might comprise a hundred million words or so.

The LSA approach defines a mapping between the discrete
setsV , T and a continuous vector spaceS , whereby each word
wi in V is represented by a vectorui in S , and each documentdj
in T is represented by a vectorvj in S . For the sake of brevity,
we refer the reader to [5] for further details on the mechanics

of LSA andn-gram + LSA language modeling, and just briefly
summarize here.

A. Feature Representation

The first step is the construction of a matrix (W ) of co-occur-
rences between words and documents. In marked contrast with
n-gram modeling, word order is ignored, which is of course in
line with the semantic nature of the approach [16]. Thus, the ma-
trix W is accumulated from the available training data by simply
keeping track of which word is found in what document. Said
another way, the context for each word becomes the document
in which it appears.

Among other possibilities, a suitable expression for the
(i; j)th element ofW is given by (cf. [12])

wi; j = (1� "i)
ci; j

nj
(3)

whereci; j is the number of timeswi occurs indj, nj is the total
number of words present indj , and"i is the normalized entropy
ofwi in the corpusT . The expression for"i is easily seen to be:

"i = �
1

logN

NX

j=1

ci; j

ti
log

ci; j

ti
(4)

whereti =
P

j ci; j is the total number of timeswi occurs in
T . Note that a value of"i close to 1 indicates a word distributed
across many documents throughout the corpus, while a value of
"i close to zero means that the word is present only in a few
specific documents. Hence,1� "i represents a global indexing
weight for the wordwi.

B. Singular Value Decomposition

The second step, after the word-document matrix of co-oc-
currences is constructed, is to compute the singular value de-
composition (SVD) ofW as

W � Ŵ = U S V T (5)

whereU is the (M � R) matrix of left singular vectorsui
(1 � i � M ), S is the (R � R) diagonal matrix of singular
values,V is the (N � R) matrix of right singular vectorsvj
(1 � j � N ), R � M (�N ) is the order of the decomposi-
tion, and superscriptT denotes matrix transposition. The role
of the SVD, intrinsically, is to establish a one-to-one mapping
between words/documents and left/right singular vectors. The
left singular vectors represent the words in the given vocabu-
lary, and the right singular vectors represent the documents in
the given corpus. Thus, the (continuous) vector spaceS sought
is the one spanned byU andV .

An important property of this space is that two words whose
representations are “close” (in some suitable metric) tend to ap-
pear in the same kind of documents, whether or not they actu-
ally occur within identical word contexts in those documents.
Conversely, two documents whose representations are “close”
tend to convey the same semantic meaning, whether or not they
contain the same word constructs. Thus, we can expect that the
respective representations of words and documents that are se-
mantically linked would also be “close” in the LSA spaceS .
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C. LSA Language Modeling

The third step is to leverage this property for language mod-
eling purposes. Letwq denote the word about to be predicted,
andHq�1 the admissible LSA history (context) for this partic-
ular word, i.e., the current document up to wordwq�1, denoted
by ~dq�1. Then the associated LSA language model probability
is given by

Pr(wqjHq�1; S) = Pr(wqj ~dq�1) (6)

where the conditioning onS reflects the fact that the probability
depends on the particular vector space arising from the SVD
representation.

The context~dq�1 can be thought of as an additional column
of the matrixW , and therefore has a representation in the space
S given by

~vq�1 = ~dTq�1US
�1 (7)

after some straightforward algebraic manipulation of (5). This
vector representation for~dq�1 is adequate under some consis-
tency conditions on the general patterns present in the domain
considered; see [5] for a complete discussion.

Intuitively, Pr(wqj ~dq�1) reflects the “relevance” of word
wq to the admissible history, as observed through~dq�1. As
such, it will be highest for words whose meaning aligns
most closely with the semantic fabric of~dq�1 (i.e., relevant
“content” words), and lowest for words which do not convey
any particular information about this fabric (e.g., “function”
words like “the”). This behavior is exactly the opposite of
that observed with the conventionaln-gram formalism, which
assigns higher probabilities to (frequent) function words than
to (rarer) content words. Hence, the attractive synergy potential
between the two paradigms.

D. Integration withN -grams

Finally, the fourth step is to exploit this potential by inte-
grating the two together. This integration can occur in a number
of ways, such as simple interpolation, or within the maximum
entropy framework [4]. Alternatively, if we denote byHq�1 the
overall available history (comprising ann-gram component as
well as the LSA component mentioned above), then a suitable
expression for the integrated probability is given by [5]

Pr(wq jHq�1)

=
Pr(wqjwq�1wq�2 � � �wq�n+1) Pr( ~dq�1jwq)X

wi2V

Pr(wijwq�1wq�2 � � �wq�n+1) Pr( ~dq�1jwi)
: (8)

Note that, ifPr( ~dq�1jwq) is viewed as a prior probability on the
current document history, then (8) simply translates the classical
Bayesian estimation of then-gram (local) probability using a
prior distribution obtained from (global) LSA. The end result,
in effect, is a modifiedn-gram language model incorporating
large-span semantic information.

In practice, expressions like (8) are often slightly modified so
that a relative weight can be placed on each contribution (here,
then-gram and LSA probabilities). Usually, this is done via em-
pirically determined weighting coefficients. In the present case,

such weighting is motivated by the fact that the “prior” prob-
ability Pr( ~dq�1jwq) could change substantially as the current
document unfolds. Thus, rather than using arbitrary weights, an
alternative solution is to dynamically tailor the document history
~dq�1 so that then-gram and LSA contributions remain empiri-
cally balanced. We refer to this procedure as context scope se-
lection, whose details are discussed in Section III-C.

E. Clustering

Before addressing implementation details, however, let us
briefly review how to exploit the above framework to generate
additional families of multispan language models. Because the
LSA spaceS is a continuous vector space, it is easy to perform
clustering of words and/or documents inS . The nice thing
about such clustering is that, fundamentally, it takes the global
context into account, as opposed to conventionaln-gram-based
clustering methods which only consider collocational effects.
This in turn results in a number of smoothing benefits (cf. [5],
[15]).

To illustrate, assume that a set of word clustersCk, 1 � k �
K, has been produced inS , for example through a combination
of K-means and bottom-up clustering [20]. Then

Pr(wqj ~dq�1) =
KX

k=1

Pr(wqjCk) Pr(Ckj ~dq�1) (9)

represents an appropriate expansion of (6), which carries over
to (8) in a straighforward manner. Exploiting document clusters
instead of word clusters leads to a similar expansion. Finally, an
expression analogous to (9) can also be derived to take advan-
tage of both word and document clusters. Associated with these
different families are various tradeoffs discussed in detail in [5].

III. I MPLEMENTATION ISSUES

This section addresses the computational complexity of the
n-gram + LSA approach, as well as three implementation issues
of particular interest: 1) how to efficiently integrate the hybrid
n-gram + LSA language model into the search; 2) how to dy-
namically perform adequate context scope selection; and 3) how
to initialize a suitable representation of this context.

A. Computational Effort

Of particular concern here is the—on-line—cost of com-
puting the hybrid probability (8), assuming the LSA spaceS
is already in place. (For a discussion of the—off-line—cost of
derivingS , see [5].) Disregarding any clustering for simplicity,
this online cost has three components: 1) the construction of
the pseudo-document representation inS , as done via (7); 2)
the computation of the LSA probabilityPr(wq j ~dq�1) in (6);
and 3) the integration proper, in (8). For the proposed paradigm
to be useful, all of this ultimately must be done in real-time.

Clearly, the cost of constructing the pseudo-document rep-
resentation inS depends on the number of nonzero entries in
~dq�1. Let us denote by�q�1 the fraction of the total vocabu-
lary sizeM associated with~dq�1 at instantq. This fraction is
guaranteed to increase monotonically withq. In fact,�q�1 could
potentially span the entire [0, 1] range, depending on the under-
lying vocabulary as well as the characteristics of the document
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currently being created. On the other hand, the typical density
ofW , defined as the ratio of the number of nonzero entries over
MN , is about 0.25% (cf. [17]). So, on the average,�q�1 would
be expected to hover around that value.

Assuming that the (M � R) matrix US�1 is precomputed,
the cost of (7) in floating-point operations (flops) is seen to be
(2�q�1M�1)R flops per pseudo-document. Similarly, the cost
of computingPr(wqj ~dq�1) can be shown to be(2R�1)R flops
per word [5]. As for (8), the normalizing factor is needed when
computing perplexity numbers, but can be ignored when de-
riving pseudo-likelihood scores. This yields a cost of just one
additional multiplication for the integration of LSA into the
n-gram formalism. The total cost to computePr(wqjHq�1), per
word and pseudo-document, is thus obtained as

Ntot = 2(�q�1M +R � 1)R+ 1 = O(MR): (10)

For sufficient values ofq, this is guaranteed to be dominated by
the pseudo-document calculation.

B. Search Integration

There are two ways to take advantage of multispan modeling
for large vocabulary speech recognition. One is to rescore pre-
viously produced N-best lists using the integrated models. (This
was the scenario implicitly assumed in [15] and [5].) The other
is to use the multispan models directly in the search itself. The
latter is preferable, since it allows incremental pruning based on
the best knowledge source available.

Compared to N-best rescoring, however, integrating multi-
span modeling into the search entails a much higher compu-
tational cost, because of the large number of partial hypothesis
paths to score. The problem is not so much in the computation
of the LSA probabilities (6), which can be classically allevi-
ated through appropriate thresholding and caching. More trou-
blesome is the calculation of each pseudo-document vector rep-
resentation in (7), which, as just shown, requiresO(MR) flops.

As it turns out, this cost can be reduced by exploiting the
sequential nature of pseudo-documents. Clearly, as each active
theory is expanded, the associated document context remains
largely unchanged, with only the most recent candidate word
added. Assume further that the training corpusT is large
enough, so that the normalized entropy"i (1 � i � M ) does
not change appreciably with the addition of each pseudo-docu-
ment. Then it is possible to express the new pseudo-document
vector directly in terms of the old pseudo-document vector,
instead of each time recomputing the entire mapping from
scratch.

To see that, consider~dq , and assume, without loss of gener-
ality, that wordwi is observed at timeq. Then, from (3), we will
have, fork = i:

wi; q = (1� "i)
ci; q�1 + 1

nq
=
nq � 1

nq
wi; q�1 +

1� "i

nq
(11)

while, for 1 � k � M , k 6= i

wk;q =
nq � 1

nq
wk;q�1: (12)

Hence, we can express~dq as

~dq =
nq � 1

nq
~dq�1 + [0 � � �0

1� "i

nq
0 � � �0]T (13)

which in turn implies, from (7)

~vq =
nq � 1

nq
~vq�1 +

1� "i

nq
uiS

�1: (14)

It is easily verified that (14) requires only5R + 1 = O(R)
floating point operations. Thus, we can update the pseudo-doc-
ument vector directly in the LSA space at a fraction of the cost
previously required to map the sparse representation to the space
S . With this strategy, the total cost of the hybridn-gram + LSA
language model, in terms of computingPr(wq jHq�1), becomes

Ntot = 2(R+ 1)2 = O(R2): (15)

For typical values ofR, this amounts to less than 0.05 Mflops.
While this is definitely more expensive than the usual table
look-up required in conventionaln-gram language modeling,
the total cost (15) arguably represents a relatively modest over-
head. This allows multispan language modeling to be taken ad-
vantage of in early stages of the search.

C. Context Scope Selection

Another major implementation issue has to do with the dy-
namic selection of the context scope. During training, this scope
is fixed to be the current document. During recognition, how-
ever, the concept of “current document” is ill-defined, because
1) its length grows with each new word, and 2) it is not nec-
essarily clear at which point completion occurs. As a result, a
decision has to be made regarding what to consider “current,”
versus what to consider part of an earlier (presumably less rele-
vant) document.

The simplest solution is to postulate that all utterances spoken
since the beginning of the session are part of the current docu-
ment. This is adequate only if the user starts a new session each
time she/he wants to work on a new document. (Again, this was
the scenario implicitly assumed in [15] and [5].) If, however, the
user needs to dictate in a heterogeneous manner, this solution
might fail, because the (single, cumulative) pseudo-document
built under this assumption might not be sufficiently representa-
tive of each individual topic. Note, from (14), that this approach
corresponds to the following closed form expression for~vq :

~vq =
1

nq

qX

p=1

(1� "ip)uipS
�1 (16)

whereip is the index of the word observed at timep, and the
initial pseudo-document vector is taken to be identically zero.
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An alternative solution is to limit the size of the history con-
sidered, so as to avoid relying on old, possibly obsolete frag-
ments to construct the current context. The size limit could be
expressed in anything from words to paragraphs. If, for example,
only the lastP words are assumed to belong to the current docu-
ment, this approach corresponds to computing the latest pseudo-
document vector using a truncated version of (16), namely

~vq =
1

P

qX

p=q�P+1

(1� "ip)uipS
�1: (17)

The problem here is the difficulty of determining the constantP

a priori, since it is highly dependent on the kind of documents
spoken by the user. Also note that this requires a slight modi-
fication to (14), so that the oldest factor in the summation (i.e.,
associated with timeq � P + 1) is properly subtracted when
incrementingq.

It is also possible to adopt an intermediate solution, which
does not require a hard decision to be made on the size of the
caching window. This solution uses exponential forgetting to
progressively discount older utterances. Assuming0 < � � 1,
this approach corresponds to the closed form solution given by

~vq =
1

nq

qX

p=1

�(nq�np)(1� "ip)uipS
�1 (18)

where the parameter� is chosen according to the expected het-
erogeneity of the session. As before, this requires a slight modi-
fication to (14), so that the first term in the right hand side is now
multiplied by�. In addition, it is straightforward, if desired, to
concurrently place a hard limit on the size of the history, in the
same vein as (17).

D. Initialization

What remains to be specified is how to initialize the pseudo-
document vector~v0. One possibility is to take~v0 to be identi-
cally zero, as in the previous discussion. At the other extreme,
we could initialize it to be the centroid vector of all training
documents. Or, alternatively,~v0 could be set to the centroid of a
specific region of the LSA space, if some information is avail-
able regarding the expected subdomain of the session.

Clearly, this decision does not make a great deal of difference
when forgetting is used, due to data discounting (in the case of
exponential forgetting), or elimination (in the case of a rectan-
gular window). It is only relevant when a homogeneous session
is expected, in which case it makes most sense to initialize the
pseudo-document as close as possible to the main topic of the
session.

IV. RECOGNITION RESULTS

With the basic implementation framework in place, one can
now proceed with actual recognition experiments. Following
[5], we have trained the LSA component on the WSJ0 part of

the NAB corpus. This was convenient for comparison purposes
since conventionaln-gram language models are readily avail-
able, trained on exactly the same data [11].

A. Experimental Conditions

The training text corpusT was composed of aboutN =
87 000 documents spanning the years 1987 to 1989, comprising
approximately 42 million words. The vocabularyV was con-
structed by taking the 20 000 most frequent words of the NAB
corpus, augmented by some words from an earlier release of the
WSJ corpus, for a total ofM = 23000 words.

We performed the singular value decomposition of the
matrix of co-occurrences between words and documents using
the single vector Lanczos method [18]. Over the course of this
decomposition, we experimented with different numbers of
singular values retained, and found thatR = 125 seemed to
achieve an adequate balance between reconstruction error (as
measured by Frobenius norm differences) and noise suppres-
sion (as measured by trace ratios). This led to a vector spaceS

of dimension 125, which we used to construct the direct LSA
model (6).

Drawing on the results of [15], we then applied the combi-
nation ofK-means and bottom-up clustering described in [5] to
deriveK = 100word clusters inS . This enabled us to construct
the word-clustered LSA model (9). Finally, using (8), we com-
bined each of these models with the standard bigram, as well as
the word-clustered model with the standard trigram.

The resulting multispan language models, dubbed (direct
or word-clustered) bi-LSA and tri-LSA models, respectively,
were then used in lieu of the standard WSJ0 bigram and trigram
models in a series of speaker-independent, continuous speech
recognition experiments, detailed below. These experiments
were conducted on a subset of the WSJ 20 000 word-vocabulary
task. The acoustic training corpus consisted of 7200 sentences
of data uttered by 84 different native speakers of English (WSJ0
SI-84). The test corpus consisted of 496 sentences uttered by
12 additional native speakers of English.

All experiments relied on the same set of continuous pa-
rameter hidden Markov models with tied mixture diagonal
Gaussian output distributions (see, e.g., [19]). Since the focus
was on measuring language modeling improvements, we
selected a fairly basic set up for acoustic modeling. We used
decision trees (cf., e.g., [20]) to cluster the observed triphones
into 2000 allophones. Each allophone was then assigned a
mixture of distributions from a total of about 20 000 distribu-
tions tied at the state cluster level. Training was carried out
on a speaker-independent basis using maximum likelihood
estimation. No speaker adaptation was performed.

The recognition system used a two-pass decoding strategy
[21], with a Viterbi beam search in the forward pass and an
A� stack search in the backward pass. In the forward pass,
scores for optimal partial paths from the beginning node to
each within-beam language model node were stored at each
frame. These scores were then used as the heuristics in evalu-
ating incomplete paths in the backward pass. On the test data
considered, this system produced a baseline error rate of 16.7%
across the 12 speakers, using the standard bigram language
model (the corresponding perplexity was 215).
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TABLE I
PERPLEXITY AND WORD ERROR RATE

REDUCTION USING Bi-LSA LANGUAGE MODELING

B. Error Rate versus Perplexity

It is important to note that the task chosen represents a severe
test of the LSA component of the multispan language model.
By design, the test corpus is constructed with no more than
three or four consecutive sentences extracted from a single ar-
ticle. Overall, it comprises 140 distinct document fragments,
which means that each speaker speaks, on the average, about
12 different “mini-documents.” As a result, the context effec-
tively changes every 60 words or so, which makes it somewhat
challenging to build a very accurate pseudo-document repre-
sentation. This is a situation where it is critical for the mul-
tispan model to appropriately forget the context as it unfolds,
to avoid relying on an obsolete representation. Throughout, we
used the exponential forgetting approach described in the last
section, with a value� = 0:975. (For the sake of illustration,
this means that the word which occurred 60 words ago is dis-
counted through a weight of about 0.2.)

Table I summarizes the performance achieved using the (di-
rect) bi-LSA language model, as compared with that achieved
using the baseline bigram. The comparison is made in terms of
both reduction in test data perplexity (first column) and reduc-
tion in actual word error rate (second column). It can be seen
that all speakers substantially benefit from multispan modeling,
displaying a reduction in perplexity ranging from about 15% to
more than 35%, and a reduction in word error rate ranging from
about 8% to 21.5%. Overall, we observed a perplexity reduction
of about 25%, and an average word error rate reduction on the
order of 15%.

As usual, the reduction in average error rate is less than the
corresponding reduction in perplexity, due to the influence
of the acoustic component in actual recognition, and the
resulting “ripple effect” of each recognition error. In the case
of n-LSA language modeling, this effect can be expected to
be more pronounced than in the standardn-gram case. This
is because recognition errors are potentially able to affect the
LSA context well into the future, through the estimation of
a flawed representation of the pseudo-document in the LSA

TABLE II
WORD ERROR RATE REDUCTION (WER) USINGN -LSA LANGUAGE

MODELING WITH WORD CLUSTERING IN LSA COMPONENT

space. This lingering behavior, which can obviously reduce
the effectiveness of the LSA component, is a direct by-product
of large-span modeling. Clearly, the more accurate the recog-
nition system, the less problematic this unsupervised context
construction becomes.

In terms of CPU performance, we observed an increase in
decoding time of about 30% when using the bi-LSA language
model, as compared to the decoding time obtained when using
the conventional bigram. This, of course, can be traced to the
overhead calculated in (15). For our recognition system, this
translates into a CPU load roughly comparable to that of a con-
ventional trigram.

C. Tri-LSA versus Bi-LSA Modeling

To illustrate the performance improvement achievable
through clustering, we then repeated the experiments corre-
sponding to the last column of Table I, but this time expanding
(6) using (9), i.e., using the word-clustered bi-LSA model.
The results are reported in the first column of Table II.With
clustering, all speakers again show marked improvement, with
a reduction in word error rate ranging from around 8% to
more than 35%. The reduction in average error rate increases
to 22.5%. Comments similar to those made regarding Table I
apply here as well.

To assess whether the LSA component still helps to the same
extent when a larger ordern-gram is used, we also combined the
word-clustered LSA model with the standard trigram, and mea-
sured the performance of the resulting (word-clustered) tri-LSA
model against the baseline trigram performance. The results are
reported in the second column of Table II.

The qualitative behavior of the twon-LSA language models
appears to be quite similar. Quantitatively, the average reduc-
tion achieved by tri-LSA is about 30% less than that achieved
by bi-LSA. This is most likely related to the greater predictive
power of the trigram compared to the bigram, which makes the
LSA contribution of the hybrid language model comparatively
smaller. (Interestingly, this contribution seems to vary substan-
tially from speaker to speaker, reflecting the varying role played
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TABLE III
INFLUENCE OFCONTEXT SCOPESELECTION ONWORD ERRORRATE REDUCTION, THROUGHDIFFERENTVALUES OFEXPONENTIAL FORGETTINGFACTOR�

by global constraints from one set of spoken utterances to an-
other.) For the sake of simplicity, we will adopt the bi-LSA
framework for the remainder of this paper.

D. Context Scope Selection

One way to measure the influence of context scope selection
is to vary the value of the parameter� in the exponential forget-
ting framework. Recall from Section III-C that the value� = 1

corresponds to an unbounded context (as would be appropriate
for a very homogeneous session), while decreasing values of�

correspond to increasingly more restrictive contexts (as required
for a more heterogeneous session). Said another way, the gap be-
tween� and 1 tracks the expected heterogeneity of the current
session.

Table III presents recognition results for values of� ranging
from � = 1 to � = 0:95, in decrements of0:01. In all cases we
considered the same word-clustered bi-LSA framework as just
used above, so the results can be compared to those of the first
column of Table II (where, as mentioned before,� = 0:975). It
can be seen that, with no forgetting, the overall performance is
substantially less than the comparable one observed in Table II
(approximately 13% compared to 22.5% reduction in word error
rate). This is consistent with the characteristics of the task, and
underscores the role of discounting as a suitable counterbalance
to frequent context changes.

Performance rapidly improves as� decreases from� = 1 to
� = 0:97, presumably because the pseudo-document represen-
tation gets less and less contaminated with obsolete data. If for-
getting becomes too aggressive, however, the performance starts
degrading, as the effective context no longer has an equivalent
length which is sufficient for the task at hand. In the present case,
this happens for� < 0:97. Not surprisingly, this degradation is
more or less severe depending on the actual article fragments ut-
tered. For example, speaker 00b seems to be considerably less
affected than, say, speaker 001.

V. INHERENT TRADEOFFS

In the previous section, the LSA component of the multi-span
language model was trained on exactly the same data as its

n-gram component. This is not a requirement, however, which
raises the question of how critical the selection of the LSA
training data is to the performance of the recognizer. This is par-
ticularly interesting since LSA is known to be weaker on hetero-
geneous corpora (cf., e.g., [13]).

A. Cross-Domain Training

To ascertain the matter, we went back to the original expres-
sion (8) with the direct model (6), so the results could be com-
pared to those of Table I. We kept the same underlying vocab-
ulary V , left the bigram component unchanged, and repeated
the LSA training on non-WSJ data from the same general pe-
riod. Three corpora of increasing size were considered, all cor-
responding to Associated Press (AP) data:

1) T1, composed ofN1 = 84; 000 documents from 1989,
comprising approximately 44 million words;

2) T2, composed ofN2 = 155000 documents from 1988
and 1989, comprising approximately 80 million words;

3) T3, composed ofN3 = 224000 documents from
1988–1990, comprising approximately 117 million
words.

In each case we proceeded with the LSA training as described in
Section II. The resulting word error rate reductions are reported
in Table IV.

Two things are immediately apparent. First, the performance
improvement in all cases is much smaller than in Table I. Larger
training set sizes notwithstanding, on the average the multispan
model trained on AP data is about four times less effective than
that trained on WSJ data. This suggests a relatively high sen-
sitivity of the LSA component to the domain considered. To
put this observation into perspective, recall that: 1) by defi-
nition, content words are what characterize a domain; and 2)
LSA inherently relies on content words, since, in contrast with
n-grams, it cannot take advantage of the structural aspects of the
sentence. It therefore makes sense to expect a higher sensitivity
for the LSA component than for the usualn-gram.

Second, the overall performance does not improve appre-
ciably with more training data, a fact already observed in [5]
using a perplexity measure. This supports the conjecture that,
no matter the amount of data involved, LSA still detects a
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TABLE IV
MULTISPAN SENSITIVITY TO LSA TRAINING DATA: CROSS-DOMAIN STUDY

substantial mismatch between AP and WSJ data from the same
general period. This, in turn, suggests that the LSA component
is sensitive not just to the general training domain, but also
to the particular style of composition, as might be reflected,
for example, in the choice of content words and/or word
co-occurrences. On the positive side, this bodes well for rapid
adaptation to cross-domain data, provided a suitable adaptation
framework can be derived.

B. Within-Domain Targeted Training

Knowing the results obtained using out-of-domain training
data, it is tempting to go the other way and investigate the per-
formance that can be achieved using perfectly within-domain
training data. In addition, this might be useful to establish an
upper bound on multispan performance. So, we opted to re-
train the LSA parameters on just the test set, which we refer
to as targeted training. We therefore defined a (much smaller)
corpusT4, composed of only theN4 = 140 test documents.
This corpus comprised approximately 8500 words, which effec-
tively reduced the vocabularyV to about 2500 words. We then
repeated the above experiments, again with the bigram compo-
nent left unchanged. The resulting error rate reductions are pre-
sented in the first column of Table V, labeled “targeted direct
model.” As before, this label refers to the expression (8) with
the direct model (6).

A couple of points can be made. First, there is a limit to the
performance that can be gained by applying LSA constraints.
With the direct model (6), this limit is seen to be around 17%.
However, this improvement may not be indicative of the best
possible achievable with the multispan language model, due
again to the atypical document fragmentation existing in the
test data. Second, this overall performance improvement is only
about 25% better than that observed in Table I (13.7%). This
may, in part, be due to the importance of composition style
mentioned earlier. Indeed, targeted data may not offer much
value-add if we presume that “style” can be appropriately cap-
tured using general datafrom the same sourcein the same do-
main. This, in turn, suggests that within-domain adaptation may
not generally be compelling.

TABLE V
MULTISPAN SENSITIVITY TO LSA TRAINING DATA: WITHIN-DOMAIN

TARGETED STUDY

Finally, to gauge the effect of clustering with such a narrow
training set, we repeated the experiments once more with the
word-clustered model (9), using the same clustering set up as in
Section IV. We postulated that most clusters would be sharply
defined, given the relatively small amount of training data. The
resulting error rate reductions are presented in the last column
of Table V, labeled “targeted clustered model.” The overall per-
formance improvement (33.6%) is seen to be almost 50% better
than the comparable one observed in the first column of Table II
(22.5%). We believe, however, that this is partly a consequence
of the artificially limited task at hand. In a way, it simply trans-
lates the power of clustering when clear-cut regions of the LSA
space can be isolated.

C. Discussion

The results so far suggest that the hybridn-gram + LSA ap-
proach studied in this paper is a promising avenue for multispan
language modeling. Clearly, one has to be cognizant of some of
the limitations of the method, as evidenced by the sensitivity to
LSA training data demonstrated above, as well as the earlier dis-
cussion on context scope selection. As already mentioned, these
limitations can be mitigated through careful attention to the ex-
pected domain of use, and a judicious choice of the exponential
forgetting factor�.

There is another limitation, however, which has only been al-
luded to briefly in Section V-A. We pointed out earlier that LSA
is inherently more adept at handling content words than func-
tion words. But, as is well-known, a substantial proportion of
speech recognition errors come from function words, because
of their tendency to be shorter, not well articulated, and acous-
tically confusable. In general, the LSA component will not be
able to help fix such errors. Thus, the benefits of the multispan
approach will not extend to this particular class of large vocab-
ulary recognition errors.

VI. CONCLUSION

We have investigated the behavior of multispan (hybrid
n-gram + LSA) language models, constructed by embedding
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latent semantic analysis into the standardn-gram formulation,
in actual recognition experiments. When compared to the
associated standardn-gram on a subset of the WSJ large vo-
cabulary task, the multispan approach resulted in a substantial
improvement in performance, as measured by both perplexity
and average word error rate

Compared to the standard bigram, the bi-LSA language
model achieved a reduction in perplexity of about 25%, and a
reduction in average word error rate of about 15%. The latter
figure improved to 22.5% after performing word clustering
in the LSA space. Compared to the standard trigram, the
word-clustered tri-LSA language model achieved a reduction
in average word error rate of about 16%.

The experimental task chosen showed marked document
fragmentation, which underscored the importance of dynamic
context scope selection. We have experimented with different
parameters within an exponential forgetting framework, and
found that appropriate discounting of obsolete data could make
a substantial difference when several “mini-documents” were
uttered in quick succession. This is likely to have practical
implications in product implementations incorporating the kind
of multispan language modeling proposed in this paper.

We have also looked at the influence of the LSA training data
on the resulting performance. The multispan approach showed
much more sensitivity to the training domain than to the size
of the training data. This suggests that cross-domain adaptation
has greater potential than within-domain adaptation for adaptive
multispan language modeling. Future efforts will concentrate
on the derivation of an adaptation framework suitable for this
purpose.
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