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Large Vocabulary Speech Recognition with Multispan
Statistical Language Models

Jerome R. Bellegard&enior Member, IEEE

Abstract—Multispan language modeling refers to the integra- valuen = 9 would be necessary, a rather unrealistic proposition
tion of the various constraints, both local and global, presentinthe gt the present time.

language. It was recently proposed to capture global constraints At the other end of the spectrum, it is possible to take an
through the use of latent semantic analysis, while taking local ’

constraints into account via the usualn-gram approach. This overaII_VIeW of the e_ntlre S_entence, as_ oppo_sed to Justnthe_
has led to several families of data-driven, multispan language Preceding words. This requires aparadlgm_shlft toward parsing
models for large vocabulary speech recognition. Because of the and rule-based grammars, such as are routinely and successfully
inherent complementarity in the two types of constraints, the employed in small and medium vocabulary recognition applica-
multispan performance, as measured by perplexity, has been tjong This approach solves the locality problem, since it takes
shown to compare favorably with the corresponding n-gram ¢ level traints int t Unfortunatelv. it is still
performance. The objective of this work is to characterize the sen enC(-?*- gve constraints into account. rl1.or yna e.y, iLis st
behavior of such multispan modeling in actual recognition. Major 00 restrictive for large vocabulary recognition: parsing-based
implementation issues are addressed, including search integration methods do not (yet) scale well to general discourse, which is

and context scope selection. Experiments are cqnducted on aprecisely the reason why thegram framework was so widely
subset of the Wall Street Journal (WSJ) speaker-independent, adopted in the first place.

20000-word vocabulary, continuous speech _task. Results show This h ked int t in statistical | i deli
that, compared to standard n-gram, the multispan framework ) 'S_ as sparke '_n erest in S atisucal large Span_ modeling,
can lead to a reduction in average word error rate of over 20%. Whichis concerned with alternative ways to extract suitable long
The paper concludes with a discussion of intrinsic multi-span distance information (other than resorting to a formal parsing
tradeqffs, such as the influence of training data selection on the mechanism). Broadly speaking, the goal of statistical large-span
resulting performance. modeling is to relate to one another those words that are found

Index Terms—tatent semantic analysis, multispan integration, to be semantically linked from the evidence presented in the

n-grams, speech recognition, statistical language modeling. training text database, without regard to the particular syntax
used to express that semantic link.
|. INTRODUCTION One early attempt along these lines was based on the con-

) cept of word triggers [3]. In the above example, suppose that the
O VER the past decadei-gram language modeling hasyaining data reveals a significant correlation betwestacks”
steadily emerged as the formalism of choice for larggng fell” so that the pairgtocks, feliforms a trigger pair. Then
vocabulary continuous speech recognition in a wide range @k presence dftocks” in the document could automatically
domains. Concerns regarding parameter reliability, howevgqggerufe”'" causing its probability estimate to change. Be-
restrict current implementations to low valuesrof(cf., €.9., cause this behavior would occur indifferently in (1) and in (2),
[1]), which in turn imposes an artificially local horizon to theihe two phrases would lead to the same result. Thus, the trigger
language model. As a resuit;grams are inherently unable togpproach solves the problem, at least for those trigger pairs that
capture large-span relationships in the language. have been selected by the algorithm [4].
Consider, for instance, predicting the worilt” from the  ynfortunately, trigger pair selection entails a number of
word “stocks in the two equivalent phrases: practical constraints. First, only word pairs that co-occur
stocks fell sharply as a result of the announcement (1) N @ sufficient number of documents are considered. This
means that even thougdtstocks” may often co-occur with
“decreased,”and"“decreased”may often cooccur withifell,”
stocks, as a resull of the announcement, sharply fell. (2) the pair (stocks, fell”) will not be included unless it has itself
been frequently seen in the training data. In addition, a mutual
In (1), the prediction can be done with the help of a bigrafaformation criterion is typically used to further confine the
language model( = 2). With the kind of resources currently jist of candidate pairs to a manageable size. This may result
available, this is rather straightforward [2]. In (2), however, thg, 100 much “filtering” of the data, which limits the potential
of low frequency word triggers [4]. Still, self-triggers have

Manuscript received November 11, 1998; revised August 23, 1999. The Qse-en shown to be pf':\rtlc'ullarly poweﬁ_”' and FObU.St [3]* which
sociate editor coordinating the review of this manuscript and approving it fonderscores the desirability of exploiting correlations between

and

publication was Dr. James R. Glass. the current word and features of the document history. What
J. R. Bellegarda is with the Spoken Language Group, Apple Computer, Inc b ded i h flexible K

Cupertino, CA 95014 USA (e-mail: jerome@apple.com). séems to be nee_ edis a.somewl at more E).“ e' ra.mewor to
Publisher Item Identifier S 1063-6676(00)00321-7. exploit the long distance information present in this history.

1063-6676/00$10.00 © 2000 IEEE



BELLEGARDA: LARGE VOCABULARY SPEECH RECOGNITION i

This observation led the author to explore the use of latesftLSA andn-gram + LSA language modeling, and just briefly
semantic analysis for such purpose [5]. Latent semantic ansiimmarize here.
ysis (LSA) was originally formulated in the context of infor-
mation retrieval, where it proved to be a very effective indexing Feature Representation
mechanism [6]-[10]. In latent semantic indexing, co-occurrence P
analysis takes place across much larger spans than with a tradiFhe first step is the construction of a matri%’{ of co-occur-
tional n-gram approach, and on a much larger scale than witdnces between words and documents. In marked contrast with
the trigger approach. The span of choice @ogumentwhich n-gram modeling, word order is ignored, which is of course in
can be defined as a semantically homogeneous set of sentellipeswith the semantic nature of the approach [16]. Thus, the ma-
embodying a given storyline. As for scale, every combinatiafix 17 is accumulated from the available training data by simply
of words from the vocabulary is viewed as a potential trigg&eeping track of which word is found in what document. Said
combination. Thus, to a large extent, the LSA paradigm camother way, the context for each word becomes the document
be viewed as an extension of the word trigger concept, whérewhich it appears.
trigger pair selection is addressed as part of the analysis, rathemong other possibilities, a suitable expression for the
than as a postprocessing step. This extension (in both span @ng)th element ofV is given by (cf. [12])
scale) leads to the systematic integration of long-term depen- ¢i i
dencies into the analysis. wi j = (1—e) n’ (3)

To take advantage of the concept of document, we of cours _ . : :
have to assume that the available training data is tagged at fH& ' °¢,J 1S the number of times; occurs ind;, n; is the total
document level, i.e., there is a way to identify article bouncﬂumberof words present iy, ande; is the normalized entropy

aries. This is the case, for example, with the ARW#rth Amer- Of w; in the corpusT . The expression foy; is easily seen to be:

ican Business Newsorpus (NAB) [11]. Once this is done, the 1 X ¢ ¢i g
LSA paradigm can be used for word and document clustering ST g N Z t;' log T (4)
(cf. [12] and [13]), as well as for language modeling [14]. In all j=1

cases, it was found to be suitable to capture some of the glogleret; = Zj ¢;,; is the total number of times; occurs in
constraints present in the language. In fact, hylbrgram + 7. Note that a value of; close to 1 indicates a word distributed
LSA language models, where LSA is embedded into the stageross many documents throughout the corpus, while a value of
dardn-gram formulation, were shown to result in a substantia} close to zero means that the word is present only in a few
reduction in perplexity [15]. specific documents. Henck- ¢; represents a global indexing
The objective of this paper is to assess the behavior of sugbight for the wordw;.

multispan language models in actual speech recognition experi-
ments. Specifically, we examine the achievable reduction in ag
erage word error rate, and discuss a number of factors which

influence performance. The paper is organized as follows. InThe second step, after the word-document matrix of co-oc-

the next section, we review the salient properties of LSA-basggdrrences is constructed, is to compute the singular value de-
statistical language modeling. Section Il addresses the mai@mposition (SVD) ofiV as

implementation issues involved in using the resulting multispan . T
models for large vocabulary recognition. In Section IV, we illus- WaW=USV (5)
trate some of the benefits associated with multispan modeliggere U is the (4 x R) matrix of left singular vectorss;
on a subset of thévall Street Journa(WSJ) task. Finally, Sec- (1 < i < M), S is the R x R) diagonal matrix of singular
tion V discusses the inherent tradeoffs associated with the gatues,V is the (v x R) matrix of right singular vectors;
proach, as evidenced by the influence of the data selectedtoti@ing j < N), R « M(<N) is the order of the decomposi-
the LSA component of the multispan model. tion, and superscrigt’ denotes matrix transposition. The role
of the SVD, intrinsically, is to establish a one-to-one mapping
between words/documents and left/right singular vectors. The
II. N-GRAM + LSA LANGUAGE MODELING left singular vectors represent the words in the given vocabu-
lary, and the right singular vectors represent the documents in
Let V, |V| = M, be some underlying vocabulary afida the given corpus. Thus, the (continuous) vector siseught
training text corpus, comprisiny articles (documents) relevantis the one spanned by andV'.
to some domain of interest (like business news, for example, inAn important property of this space is that two words whose
the case of the NAB corpus [11]). Typically/ and N are on representations are “close” (in some suitable metric) tend to ap-
the order of ten thousand and hundred thousand, respectivglgar in the same kind of documents, whether or not they actu-
7 might comprise a hundred million words or so. ally occur within identical word contexts in those documents.
The LSA approach defines a mapping between the discr&enversely, two documents whose representations are “close”
sets), 7 and a continuous vector spaSewhereby each word tend to convey the same semantic meaning, whether or not they
w; inV is represented by a vector in S, and each documed}  contain the same word constructs. Thus, we can expect that the
in 7 is represented by a vectoy in S. For the sake of brevity, respective representations of words and documents that are se-
we refer the reader to [5] for further details on the mechaniosantically linked would also be “close” in the LSA spage

Singular Value Decomposition
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C. LSA Language Modeling such weighting is motivated by the fact that the “prior” prob-

The third step is to leverage this property for language mo@Pility Pr(d,-1]w,) could change substantially as the current

eling purposes. Lets, denote the word about to be predicteddocumem unfolds. Thus, rather than using arbitrary weights, an

and,_; the admissible LSA history (context) for this partic-éltemative solution is to dynamically tailor the document history
9= ~

ular word, i.e., the current document up to waergl ;, denoted d,—1 so that the:-gram and LSA contributions remain empiri-

by ciq_l. Then the associated LSA language model probabiliﬁ?”Y balanced. We _refer to _this proce_dure as context scope se-
is given by lection, whose details are discussed in Section IlI-C.

Pr(wy|Hy—1, S) = Pr(w,|dy—1) (6) E. Clustering

where the conditioning of reflects the fact that the probability Before addressing implementation details, however, let us

depends on the particular vector space arising from the S\apefly review how to exploit the above framework to generate

representation. additional families of multispan language models. Because the
The contexid,_; can be thought of as an additional colum#-SA spaceS is a continuous vector space, it is easy to perform

of the matrix/¥, and therefore has a representation in the spagiéistering of words and/or documents é The nice thing
S given by about such clustering is that, fundamentally, it takes the global

context into account, as opposed to conventiengtam-based
Tyo1 = Jqf_lUS—l (7) clustering methods which only consider collocational effects.
This in turn results in a number of smoothing benefits (cf. [5],
after some straightforward algebraic manipulation of (5). Th[5]).
vector representation fak,_; is adequate under some consis- To illustrate, assume that a set of word clustéfs1 < & <
tency conditions on the general patterns present in the doméainhas been produced & for example through a combination

considered; see [5] for a complete discussion. of K-means and bottom-up clustering [20]. Then
Intuitively, Pr(w,y|d,—1) reflects the “relevance” of word K

w, to the admissible history, as observed through;. As Pr(wg|dy_1) = ZPr(quCk)Pr(Cklciq_ﬁ (9)

such, it will be highest for words whose meaning aligns k=1

most closely with the semantic fabric af—, (i.e., relevant represents an appropriate expansion of (6), which carries over
“content” words), and lowest for words which do not convey, (g) in a straighforward manner. Exploiting document clusters
any particular information about this fabric (e.g., “function’instead of word clusters leads to a similar expansion. Finally, an
words like ‘the’). This behavior is exactly the opposite Ofgypression analogous to (9) can also be derived to take advan-
that observed with the conventionaigram formalism, which {age of both word and document clusters. Associated with these
assigns higher probabilities to (frequent) function words thafkferent families are various tradeoffs discussed in detail in [5].
to (rarer) content words. Hence, the attractive synergy potential

between the two paradigms. ll. | MPLEMENTATION |SSUES

This section addresses the computational complexity of the
n-gram + LSA approach, as well as three implementation issues

Finally, the fourth step is to exploit this potential by inte'of particular interest: 1) how to efficiently integrate the hybrid

grating the two toge_ther. ThIS mteg_ratlon canoccurina nymbﬁ-rgram + LSA language model into the search; 2) how to dy-
of ways, such as simple interpolation, or within the maximu

) X pa rF]‘amically perform adequate context scope selection; and 3) how
entropy framework [4]. Alternatively, if we denote I8, _, the

; X ' to initialize a suitable representation of this context.
overall available history (comprising arrgram component as
well as the LSA component mentioned above), then a suitalle Computational Effort
expression for the integrated probability is given by [5]

D. Integration with/N-grams

Of particular concern here is the—on-line—cost of com-

Pr(wy|H,-1) puting the hybrid probability (8), assuming the LSA spdte
Pr(wg|wy—1wy_s - wy—nt1) Pr(dy_1|w,) is already in place. (For a discussion of the—off-line—cost of

= ~ - (8 deriving S, see [5].) Disregarding any clustering for simplicity,
Ze:v Pr(wifwg—1wy—z - wy—nt1) Pr(dg—|wi) this online cost has three components: 1) the construction of

R the pseudo-document representatiorsinas done via (7); 2)
Note that, ifPr(d,_+ |w, ) is viewed as a prior probability on thethe computation of the LSA probabilitPr(w,|d,—1) in (6);
current document history, then (8) simply translates the classieaid 3) the integration proper, in (8). For the proposed paradigm
Bayesian estimation of the-gram (local) probability using a to be useful, all of this ultimately must be done in real-time.
prior distribution obtained from (global) LSA. The end result, Clearly, the cost of constructing the pseudo-document rep-
in effect, is a modified:-gram language model incorporatingresentation inS depends on the number of nonzero entries in
large-span semantic information. dq—1. Let us denote by:,_; the fraction of the total vocabu-

In practice, expressions like (8) are often slightly modified slary size M associated witll,_; at instantg. This fraction is
that a relative weight can be placed on each contribution (hegeiaranteed to increase monotonically wittn fact,z,—1 could
then-gram and LSA probabilities). Usually, this is done via empotentially span the entire [0, 1] range, depending on the under-
pirically determined weighting coefficients. In the present caskying vocabulary as well as the characteristics of the document
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currently being created. On the other hand, the typical denskignce, we can expres@ as

of W, defined as the ratio of the number of nonzero entries over

M N, is about 0.25% (cf. [17]). So, on the averagg, would - omy—1- 1—g;

be expected to hover around that value. dy = n dg—1+[0---0 n
Assuming that theX/ x R) matrix US~! is precomputed, ! !

the cost of (7) in floating-point operations (flops) is seen to be

(2pt4—1 M —1) R flops per pseudo-document. Similarly, the cost/

of computingPr(w,|d,—1 ) can be shown to b@ R — 1) R flops

per word [5]. As for (8), the normalizing factor is needed when 5 o= e~ 117 i+ I—e wS—L. (14)

computing perplexity numbers, but can be ignored when de- ! ng ! ng

riving pseudo-likelihood scores. This yields a cost of just one

additional multiplication for the integration of LSA into they; js easily verified that (14) requires onlyR + 1 = O(R)

n-gram formalism. The total cost to compite{w, | H,—1), PET  finating point operations. Thus, we can update the pseudo-doc-

word and pseudo-document, is thus obtained as ument vector directly in the LSA space at a fraction of the cost

. _ . previously required to map the sparse representation to the space
Neot = 2(ptg-1 M + R— )R+ 1= O(MR). (10) S. With this strategy, the total cost of the hybriegram + LSA

For sufficient values of, this is guaranteed to be dominated byanguage model, in terms of computifig(w, [/ ,-1), becomes
the pseudo-document calculation.

0---01"  (13)

hich in turn implies, from (7)

Niot = 2(R+1)? = O(R?). (15)
B. Search Integration

) For typical values of, this amounts to less than 0.05 Mflops.
There are two ways to take advantage of multispan modelipghijle this is definitely more expensive than the usual table
f(_)r large vocabulary spee_ch rec_ognltlon. One is to rescore Pl§ok-up required in conventional-gram language modeling,
viously produced N-best lists using the integrated models. (Thiss total cost (15) arguably represents a relatively modest over-

was the scenario implicitly assumed in [15] and [5].) The othgfaad. This allows multispan language modeling to be taken ad-
is to use the multispan models directly in the search itself. Thgntage of in early stages of the search.

latter is preferable, since it allows incremental pruning based on
the best knowledge source available.
Compared to N-best rescoring, however, integrating mulic  context Scope Selection
span modeling into the search entails a much higher compu-
tational cost, because of the large number of partial hypothesi¢\nother major implementation issue has to do with the dy-
paths to score. The problem is not so much in the computatiBmic selection of the context scope. During training, this scope
of the LSA probabilities (6), which can be classically allevis fixed to be the current document. During recognition, how-
ated through appropriate thresholding and caching. More trd?)er. the concept of “current document” is ill-defined, because
blesome is the calculation of each pseudo-document vector répits length grows with each new word, and 2) it is not nec-
resentation in (7), which, as just shown, requitési/ R) flops. essgr_lly clear at which point completlon occurs. As a result, a
As it turns out, this cost can be reduced by exploiting trdecision has to be made regarding what to consider “current,”
sequential nature of pseudo-documents. Clearly, as each ac{@Esus what to consider part of an earlier (presumably less rele-
theory is expanded, the associated document context remai@gt) document.
largely unchanged, with only the most recent candidate wordThe simplest solution is to postulate that all utterances spoken
added. Assume further that the training corplisis large since the beginning of the session are part of the current docu-
enough, so that the normalized entrapy(1 < i < M) does Ment. This is adequate only if the user starts a new session each
not change appreciably with the addition of each pseudo-dodiioe she/he wants to work on a new document. (Again, this was
ment. Then it is possible to express the new pseudo-documtlif scenario implicitly assumed in [15] and [5].) If, however, the
vector directly in terms of the old pseudo-document vectd#Ser needs to dictate in a heterogeneous manner, this solution
instead of each time recomputing the entire mapping frofight fail, because the (single, cumulative) pseudo-document
scratch. built under this assumption might not be sufficiently representa-
To see that, considet,, and assume, without loss of genertive of each individual topi'c. Note, from (14), that this approach
ality, that worch; is observed at timg. Then, from (3), we will corresponds to the following closed form expressionufor
have, fork = 1

Cig—1+1 n,—1 1—¢; g
g = (1—¢g)—2 =4 i g— 11 -1 Ny G—1
w; g = (1) "y "y Wi, g—1+ "y (11) vq_n—q;(l—ezp)uzpé’ (16)
while,forl <k < M,k # 4

ng — 1 (12) wherei, is the index of the word observed at timgand the
Whg—1- initial pseudo-document vector is taken to be identically zero.

Wk,q =
n
q
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An alternative solution is to limit the size of the history conthe NAB corpus. This was convenient for comparison purposes
sidered, so as to avoid relying on old, possibly obsolete fragince conventionak-gram language models are readily avail-
ments to construct the current context. The size limit could lable, trained on exactly the same data [11].
expressed in anything from words to paragraphs. If, for example,
only the lastP words are assumed to belong to the current doch- Experimental Conditions

ment, this approach corresponds to computing the latest pseudorhe training text corpug was composed of abouf =
document vector using a truncated version of (16), namely 87 000 documents spanning the years 1987 to 1989, comprising
approximately 42 million words. The vocabulavywas con-
) g structed by taking the 20 000 most frequent words of the NAB
By = 5 Z (1— e, )u;, 871 (17) corpus, augmented by some words from an earlier release of the
p=g_P+1 WSJ corpus, for a total af/ = 23 000 words.
We performed the singular value decomposition of the
matrix of co-occurrences between words and documents using
The problem here is the difficulty of determining the consf@nt the single vector Lanczos method [18]. Over the course of this
a priori, since it is highly dependent on the kind of documenigecomposition, we experimented with different numbers of
spoken by the user. Also note that this requires a slight modingular values retained, and found tHat= 125 seemed to
fication to (14), so that the oldest factor in the summation (i.eachieve an adequate balance between reconstruction error (as
associated with timg — P + 1) is properly subtracted when measured by Frobenius norm differences) and noise suppres-
incrementing;. sion (as measured by trace ratios). This led to a vector space
It is also possible to adopt an intermediate solution, whigst dimension 125, which we used to construct the direct LSA
does not require a hard decision to be made on the size of fhedel (6).
caching window. This solution uses exponential forgetting to Drawing on the results of [15], we then applied the combi-
progressively discount older utterances. Assuniing A < 1, nation of K -means and bottom-up clustering described in [5] to
this approach corresponds to the closed form solution given Bgrive X' = 100 word clusters irS. This enabled us to construct
the word-clustered LSA model (9). Finally, using (8), we com-
L bined each of these models with the standard bigram, as well as
. no—n _1 the word-clustered model with the standard trigram.
Ve = _Z’\( ! P)(l_gip)u”s (18) The resulting multispan language models, dubbed (direct
or word-clustered) bi-LSA and tri-LSA models, respectively,
were then used in lieu of the standard WSJO bigram and trigram

where the parameteéris chosen according to the expected hefodels in a series of speaker-independent, continuous speech
erogeneity of the session. As before, this requires a slight motficognition experiments, detailed below. These experiments
fication to (14), so that the firstterm in the right hand side is noWere conducted on a subset of the WSJ 20 000 word-vocabulary
multiplied by A. In addition, it is straightforward, if desired, totask. The acoustic training corpus consisted of 7200 sentences
concurrently place a hard limit on the size of the history, in tHef data uttered by 84 different native speakers of English (WSJO

n
g p=1

same vein as (17). S1-84). The test corpus consisted of 496 sentences uttered by
12 additional native speakers of English.
D. Initialization All experiments relied on the same set of continuous pa-

. e A rameter hidden Markov models with tied mixture diagonal
What remains to be specified is how to initialize the pseudg: . D :
- S ~ . : aussian output distributions (see, e.g., [19]). Since the focus
document vectof,. One possibility is to takeé, to be identi- . . .
: . . . was on measuring language modeling improvements, we
cally zero, as in the previous discussion. At the other extreme, : . h .
L . .. sélected a fairly basic set up for acoustic modeling. We used
we could initialize it to be the centroid vector of all training,~ . .
decision trees (cf., e.g., [20]) to cluster the observed triphones

docu_n_1ents._ Or, alternatively, coulc_zl be set FO the Ce_ntro_|d of a.li'nto 2000 allophones. Each allophone was then assigned a
specific region of the LSA space, if some information is avail-

. . . mixture of distributions from a total of about 20000 distribu-
able regarding the expected subdomain of the session. . : S .
. iy . tions tied at the state cluster level. Training was carried out
Clearly, this decision does not make a great deal of difference

when forgetting is used, due to data discounting (in the caseoF. 2 speaker-mdependent ba§|s using maximum likelihood
estimation. No speaker adaptation was performed.

exponential forgetting), or elimination (in the case of a rectan- " .
. . . _The recognition system used a two-pass decoding strategy
gular window). It is only relevant when a homogeneous sessi : L .
. ; . . S ], with a Viterbi beam search in the forward pass and an
is expected, in which case it makes most sense to initialize tf)e :
: . . stack search in the backward pass. In the forward pass,
pseudo-document as close as possible to the main topic of the . . -
: scores for optimal partial paths from the beginning node to
session. -
each within-beam language model node were stored at each
frame. These scores were then used as the heuristics in evalu-
ating incomplete paths in the backward pass. On the test data
With the basic implementation framework in place, one caronsidered, this system produced a baseline error rate of 16.7%
now proceed with actual recognition experiments. Followingcross the 12 speakers, using the standard bigram language
[5], we have trained the LSA component on the WSJO part ofodel (the corresponding perplexity was 215).

IV. RECOGNITION RESULTS
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TABLE | TABLE 1l
PERPLEXITY AND WORD ERROR RATE WORD ERROR RATE REDUCTION (WER) USING N -LSA LANGUAGE
REDUCTION USING Bi-LSA L ANGUAGE MODELING MODELING WITH WORD CLUSTERING IN LSA COMPONENT
Reduction Reduction WER WER
Speaker in in Speaker Reduction, Reduction,
Perplexity | Word Error Rate Bi-LSA Model | Tri-LSA Model
001 22.8 % 8.4 % 001 11.2 % 8.8 %
002 28.5 % 21.5 % 002 35.0 % 24.6 %
00a 30.6 Y% 17.5 Y% 00a 25.9 % 19.1 Y%
00b 27.4 % 10.1 % 00b 7.8 7% 8.5 Y%
00c 33.6 % 10.0 % 00c 17.6 % 12.9 %
00d 26.2 Y% 17.3 % 00d 35.4 Y% 22.4 %,
00f 33.3 Y% 11.5 % 00f 16.9 % 12.5 %
203 35.3 9% 16.1 % 203 34.2 Y 21.2 %
400 15.4 % 14.8 % 400 19.8 % 15.5 %
430 19.7 % 19.3 % 430 20.2 % 18.1 %
431 20.0 Y% 12.2 Y% 431 18.3 % 13.4 %
432 24.7 % 7.8 % 432 l 27.9 % 14.3 %
Overall 24.7 % | 13.7 % Overall | 22.5 % 15.8 ¥

space. This lingering behavior, which can obviously reduce
the effectiveness of the LSA component, is a direct by-product

It is important to note that the task chosen represents a sev@réarge-span modeling. Clearly, the more accurate the recog-
test of the LSA component of the multispan language moddaition sys_tem, the less problematic this unsupervised context
By design, the test corpus is constructed with no more th§RNstruction becomes. _ _
three or four consecutive sentences extracted from a single ar" trms of CPU performance, we observed an increase in
ticle. Overall, it comprises 140 distinct document fragment@€coding time of about 30% when using the bi-LSA language
which means that each speaker speaks, on the average, aBi#te!, as compared to the decoding time obtained when using
12 different “mini-documents.” As a result, the context effedhe conventional bigram. This, of course, can be traced to the
tively changes every 60 words or so, which makes it somewtyerhead palculated in (15). For our recognition system, this
challenging to build a very accurate pseudo-document repHnslates into a CPU load roughly comparable to that of a con-
sentation. This is a situation where it is critical for the mulventional trigram.
tispan model to appropriately forget the context as it unfolds, _ . . _
to avoid relying on an obsolete representation. Throughout, fre TH-LSA versus Bi-LSA Modeling
used the exponential forgetting approach described in the lasfo illustrate the performance improvement achievable
section, with a value. = 0.975. (For the sake of illustration, through clustering, we then repeated the experiments corre-
this means that the word which occurred 60 words ago is dsponding to the last column of Table I, but this time expanding
counted through a weight of about 0.2.) (6) using (9), i.e., using the word-clustered bi-LSA model.

Table | summarizes the performance achieved using the (@ihe results are reported in the first column of Table [I.With
rect) bi-LSA language model, as compared with that achievellistering, all speakers again show marked improvement, with
using the baseline bigram. The comparison is made in termsaofeduction in word error rate ranging from around 8% to
both reduction in test data perplexity (first column) and reduerore than 35%. The reduction in average error rate increases
tion in actual word error rate (second column). It can be se&m22.5%. Comments similar to those made regarding Table |
that all speakers substantially benefit from multispan modelingpply here as well.
displaying a reduction in perplexity ranging from about 15% to To assess whether the LSA component still helps to the same
more than 35%, and a reduction in word error rate ranging froxtent when a larger ordergram is used, we also combined the
about 8% to 21.5%. Overall, we observed a perplexity reductierord-clustered LSA model with the standard trigram, and mea-
of about 25%, and an average word error rate reduction on thaed the performance of the resulting (word-clustered) tri-LSA
order of 15%. model against the baseline trigram performance. The results are

As usual, the reduction in average error rate is less than tteported in the second column of Table II.
corresponding reduction in perplexity, due to the influence The qualitative behavior of the tweo-LSA language models
of the acoustic component in actual recognition, and ttappears to be quite similar. Quantitatively, the average reduc-
resulting “ripple effect” of each recognition error. In the caston achieved by tri-LSA is about 30% less than that achieved
of n-LSA language modeling, this effect can be expected hy bi-LSA. This is most likely related to the greater predictive
be more pronounced than in the standargram case. This power of the trigram compared to the bigram, which makes the
is because recognition errors are potentially able to affect th8A contribution of the hybrid language model comparatively
LSA context well into the future, through the estimation o$maller. (Interestingly, this contribution seems to vary substan-
a flawed representation of the pseudo-document in the LSially from speaker to speaker, reflecting the varying role played

B. Error Rate versus Perplexity
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TABLE I
INFLUENCE OFCONTEXT SCOPESELECTION ONWORD ERROR RATE REDUCTION, THROUGH DIFFERENTVALUES OF EXPONENTIAL FORGETTING FACTOR A

Speaker | A=1.0 | A=099 | A=0.98]A=097] A=0.96 [ A =10.95

001 7.7 % | 11.9 % 11.2 % 4.9 % | —2.1 % | —-3.5 %
002 27.7 % | 33.3% | 33.9% | 35.0% | 37.9% | 36.2%
00a 16.7 % | 256.2% | 21.2% | 256.9 % | 23.0% | 20.8 %
00b 8.2 % 9.7 % 7.8 % 9.7 % 7.8 7% 7.8 %
00c 10.3 % | 12.9 % 17.6 ¥ 16.5 % 16.5 % 16.2 %
00d 16.1 %} 27.8 % | 33.6% | 35.4% | 39.2% | 33.0%
00f 10.7 % | 11.1 % 15.3 % 16.9 % 16.5 % 16.9 %
203 15.4 % | 21.5 % | 32.2% | 34.2% | 33.6 % | 28.9 9%
400 15.9 % | 17.0 % 18.1 % 19.8 % 19.2 % 16.5 %
430 12.6 % | 19.3 % | 20.2 % 17.6 % 14.3 10.9 %4
431 8.9 % | 15.0 Y 18.3 % 18.3 % 17.8 % 13.6 %
432 11.2 % | 16.2 % | 23.56 % | 27.9 % 27.9 % | 26.3 %
2 4 1 9 6 3

Overall [13.2 %[ 18.4 % [ 21.1 % [ 21.9% [ 21.6 % | 19.

by global constraints from one set of spoken utterances to angram component. This is not a requirement, however, which

other.) For the sake of simplicity, we will adopt the bi-LSAraises the question of how critical the selection of the LSA

framework for the remainder of this paper. training data is to the performance of the recognizer. This is par-
ticularly interesting since LSA is known to be weaker on hetero-

eneous corpora (cf., e.g., [13]).
D. Context Scope Selection g pora ( g [13)

One way to measure the influence of context scope selectidn Cross-Domain Training

is to vary the value of the parametein the exponential forget-  To ascertain the matter, we went back to the original expres-
ting framework. Recall from Section IlI-C that the valde= 1 sion (8) with the direct model (6), so the results could be com-
corresponds to an unbounded context (as would be approprigéed to those of Table I. We kept the same underlying vocab-
for a very homogeneous session), while decreasing valugs qfjary 1, left the bigram component unchanged, and repeated
correspond to increasingly more restrictive contexts (as requingg | SA training on non-WSJ data from the same general pe-
for amore heterogeneous session). Said another way, the ga{egr. Three corpora of increasing size were considered, all cor-
tween and 1 tracks the expected heterogeneity of the currgdkponding to Associated Press (AP) data:

session. . i 1) 71, composed ofV; = 84, 000 documents from 1989,
Table Il presents recognition results for values\oinging comprising approximately 44 million words:

from A = 1to X = 0.95, in decrements di.01. In all cases we 2) 75, composed ofV, = 155000 documents from 1988
considered the same word-clustered bi-LSA framework as just an’d 1989, comprising approximately 80 million words:
used above, so the results can be compared to those of the firsé) T comp,osed ofNs = 224000 documents from’

column of Table 1l (where, as mentioned befoxer 0.975). It 1988-1990, comprising approximately 117 million
can be seen that, with no forgetting, the overall performance is words
substantially less than the comparable one observed in Table]\ Il ' . - . .
(approximately 13% compared to 22.5% reduction inword err r}each case we proceeded with the LSA training as described in

o : . | e ction Il. The resulting word error rate reductions are reported
rate). This is consistent with the characteristics of the task, ble IV
underscores the role of discounting as a suitable counterbala'r?c.f:a e . : . .

wo things are immediately apparent. First, the performance

to frequent context changes. : . : .
q g improvement in all cases is much smaller than in Table I. Larger

Performance rapidly improves asdecreases from = 1 to - ; . . .

B training set sizes notwithstanding, on the average the multispan
A = 0.97, presumably because the pseudo-document represen- ; . : .

: : : fmodel trained on AP data is about four times less effective than
tation gets less and less contaminated with obsolete data. If t%r-

getting becomes too aggressive, however, the performance star‘% trained on WSJ data. This suggests a relatively high sen-

. 4 .~ Sitivity of the LSA component to the domain considered. To
degrading, as the effective context no longer has an equwale[ﬁ this observation into perspective, recall that: 1) by defi-
length which is sufficient for the task at hand. In the present cads Persp ' ' y

. o : .. nition, content words are what characterize a domain; and 2)
this happens fok < 0.97. Not surprisingly, this degradation is : ) ) . .
i . LSA inherently relies on content words, since, in contrast with
more or less severe depending on the actual article fragments Ut-

. -grams, it cannot take advantage of the structural aspects of the
tered. For example, speaker 00b seems to be considerably le ) o
sentence. It therefore makes sense to expect a higher sensitivity
affected than, say, speaker 001.

for the LSA component than for the usuagram.
Second, the overall performance does not improve appre-
ciably with more training data, a fact already observed in [5]
In the previous section, the LSA component of the multi-sparsing a perplexity measure. This supports the conjecture that,
language model was trained on exactly the same data asnissmatter the amount of data involved, LSA still detects a

V. INHERENT TRADEOFFS
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TABLE IV TABLE V
MULTISPAN SENSITIVITY TO LSA TRAINING DATA: CROSSDOMAIN STtuDY MULTISPAN SENSITIVITY TO LSA TRAINING DATA: WITHIN-DOMAIN
TARGETED STUDY
AP AP AP
Speaker 84 K 155 K | 224 K Targeted | Targeted
Docs Docs Docs Speaker Direct Clustered

001 0.0%] 6.3%] 7.04% Model Model
002 0.0 % 4.0 % 5.1 % 001 13.3 % 18.9 Y%
00a 8.4%| 9.5%|11.3Y% 002 28.2 % 50.3 %
00b -3.1%|-3.1%|-3.1% 00a 21.5 % 40.9 Y
00c 2.1 9% 2.0 % 2.4 % 00b 15.2 % 26.1 Y%
004 2.6 % 2.4 9% 2.9 % 00c 14.1 % 27.4 Y
00f 2.7%| 2.7%| 3.8% 004 15.5 % 43.3 %
203 3.4%1 3.1%| 4.74% 00z 18.0 % 28.4 %
400 7% 7.3% ) T4 203 17.4 % 40.9 %
430 5.0 % 3.4 0.0 % 400 14.8 ¥, 29.1 Y%
431 -0.5 % 4.2 % 3.3 Y% 430 23.5 % 31.1 9%
432 1.7 % 2.2 % 4.5 Y% 431 17.4 :/. 30.0 :/.
Overall | 2.4 % | 3.3 %] 4.0 % 432 10.6% | 34.1%
Overall | 17.1 % [ 33.6 %

substantial mismatch between AP and WSJ data from the same, i i
general period. This, in turn, suggests that the LSA componem'_:'na”y' to gauge the effect of clus_terlng with such a narrow
is sensitive not just to the general training domain, but aldfpining set, we repeated the experiments once more with the

to the particular style of composition, as might be reflectedf0rd-clustered model (9), using the same clustering set up as in

for example, in the choice of content words and/or Worgection IV. We postulated that most clusters would be sharply

co-occurrences. On the positive side, this bodes well for ragi§ined. given the relatively small amount of training data. The

adaptation to cross-domain data, provided a suitable adaptaﬁ%ﬁumng error rate “reductlons are presented n the last column
framework can be derived. of Table V, labeled “targeted clustered model.” The overall per-

formance improvement (33.6%) is seen to be almost 50% better
B. Within-Domain Targeted Training than the comparable one observed in the first column of Table Il
Knowing the results obtained using out-of-domain trainin 22.5%)._\/_Ve_ beli_ev_e, however, that this is partly a consequence
f the artificially limited task at hand. In a way, it simply trans-

data, itis tempting to go th_e other way and mvestlgaj[e the Pites the power of clustering when clear-cut regions of the LSA
formance that can be achieved using perfectly W|th|n-d0maé ace can be isolated

training data. In addition, this might be useful to establish a

upper bound on multispan performance. So, we opted to ¢€- piscussion
train the LSA parameters on just the test set, which we refer _
to as targeted training. We therefore defined a (much smallepThe resul_ts S0 far_ suggesF that the_h_ybﬂgram +LSA ap-
corpusT,, composed of only theV, = 140 test documents. proach studied |r_1th|s paper is a promising avenL_Jefor multispan
This corpus comprised approximately 8500 words, which effeI inguage _modelmg. Clearly, one has to be cognizant of some of
tively reduced the vocabulady to about 2500 words. We thentne limitations of the method, as evidenced by the sensitivity to
repeated the above experiments, again with the bigram coméf?'A training data demonsirated above, as well as the earlier dis-
nent left unchanged. The resulting error rate reductions are p, ssion on context scope selection. As already mentioned, these

sented in the first column of Table V, labeled “targeted direg{nitations can be mitigated through careful attention to the ex-

model.” As before, this label refers to the expression (8) Wi@ected domain of use, and a judicious choice of the exponential

the direct model (6). O?rel;t:ggi}sfgiftﬁér limitation, however, which has only been al
A le of point b de. First, there is a limit to t T , ' - . i
coup’e of polnts can be made. First, tere 1s a imr 1o eded to briefly in Section V-A. We pointed out earlier that LSA

performance that can be gained by applying LSA constrain e

With the direct model (6), this limit is seen to be around 179%; inherently more adept at handling content words than func-

However, this improvement may not be indicative of the begf)n words. BUt_' asis well-known, a substa\_ntlal proportion of
possible achievable with the multispan language model, Ry, eec_h recognition errors come from func_tlon words, because
again to the atypical document fragmentation existing in o) their tendency to be shorter, not well articulated, and acous-
test data. Second, this overall performance improvement is oH lly confus_able. In general, the LSA component will nqt be
about 25% better than that observed in Table | (13.7%). TH: le to help_flx such errors. Thus, th_e benefits of the multispan
may, in part, be due to the importance of composition sty proach W|I_I _not extend to this particular class of large vocab-
mentioned earlier. Indeed, targeted data may not offer muligry recognition errors.

value-add if we presume that “style” can be appropriately cap-
tured using general dafeom the same sourda the same do-
main. This, in turn, suggests that within-domain adaptation mayWe have investigated the behavior of multispan (hybrid
not generally be compelling. n-gram + LSA) language models, constructed by embedding

VI. CONCLUSION
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latent semantic analysis into the standardram formulation,
in actual recognition experiments. When compared to the
associated standargdgram on a subset of the WSJ large vo- 9]
cabulary task, the multispan approach resulted in a substantial
improvement in performance, as measured by both perplexitﬁo]
and average word error rate

Compared to the standard bigram, the bi-LSA language
model achieved a reduction in perplexity of about 25%, and &1
reduction in average word error rate of about 15%. The latter
figure improved to 22.5% after performing word clustering[12]
in the LSA space. Compared to the standard trigram, the
word-clustered tri-LSA language model achieved a reductiorﬁls]
in average word error rate of about 16%.

The experimental task chosen showed marked document

. ; . .E14]

fragmentation, which underscored the importance of dynami
context scope selection. We have experimented with different
parameters within an exponential forgetting framework, ands]
found that appropriate discounting of obsolete data could make
a substantial difference when several “mini-documents” wergie]
uttered in quick succession. This is likely to have practical
implications in product implementations incorporating the kind
of multispan language modeling proposed in this paper. [17]

We have also looked at the influence of the LSA training data
on the resulting performance. The multispan approach showe%g]
much more sensitivity to the training domain than to the sizg19]
of the training data. This suggests that cross-domain adaptation
has greater potential than within-domain adaptation for adaptiv&o]
multispan language modeling. Future efforts will concentrate
on the derivation of an adaptation framework suitable for this

purpose. (21]

(8]
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