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Abstract—A speaker adaptation strategy is described that speaker’s acoustic space, and using this transformed data to
is based on finding a subset of speakers, from the training estimate the model parameters.
set, who are acoustically close to the test speaker, and using
only the data from these speakers (rather than the complete
training corpus) to reestimate the system parameters. Further,
a linear transformation is computed for every one of the selected
training speakers to better map the training speaker's data to A. System Overview

the test speaker’s acoustic space. Finally, the system parameters I . .
(Gaussian means) are reestimated specifically for the test speaker We will first briefly describe the IBM large-vocabulary

using the transformed data from the selected training speakers. Speech recognition system. Essential aspects of the system
Experiments showed that this scheme is capable of providing an used in the experiments here have been described earlier

18% relative improvement in the error rate on a large-vocabulary  [2]-[4]; however, we will summarize the main features here.
task with the use of as little as three sentences of adaptation data. 1) Signal ProcessingA 60-dimensional (60-D) feature

Index Terms—Data transformation, speaker adaptation, vector is extracted from the input waveform at regular intervals
speaker clustering. of 10 ms [4]. The processing involves 1) computing 24-
band mel cepstra using a 25 ms window for the fast Fourier

I. INTRODUCTION tra_nsform (FFT), 2) §plicing together the cepstra from the

adjacents frames on either side of the current frame (typically

I N THE LAST few years, several advances have been_ , resyiting in a 216-dimensional vector), and 3) applying

made in improving the error rate of continuous-SPEEC- jinear transformation that brings the dimensionality of the
recognition systems [1]. For instance, the best word-error ra tor down to 60-D

on test data drawn from th@/all Street JournalWSJ)data

Il. TECHNICAL BACKGROUND

_ o _ The linear transformatiom mentioned above is actually a
base—as reported by different participants in tWSJ task composition of two linear transformations derived from the

[1—hover in the neighborhood of 7-8% for Iarge-vocabular%aining data using linear discriminant analysis [4]. In the first

speaker-independent systems. Though this represents a reasiy the [inear discriminants of the unspliced 24-dimensional

able level of performance on this particular test data, there '54_[)) cepstra are obtained, and applied on the cepstra. There
still scope for further improvement. One way to improve th

no change in dimensionality at this stage. The second step

performance of these systems is to make the system parameiers, technique attempts to capture the dynamics of speech
speaker dependent. However, large-vocabulary systems teng]tq_nhis transformed 24-D space. This is done independently

have a large number of parameters, and in order to robu each dimensiond, of the transformed space. Théh
. - , .

estimate these parameters, a large amount of training dafgynonent of the transformed cepstra acrass- 1 frames

is needed. This implies that the test speaker will have I9o taren and linear discriminants are obtained to maximally
furnish a large amount of data to specifically train the SyStegéparate subphonetic classes on the basis of(thist 1)-

to hisfher slpeer::h. Th!s IS u;ual!y not a practlﬁal SOIUt'OBimensional vector. Subsequently, the 60 most discriminative
Consequently, there is increasing interest in speaker adaptaliptie tions are chosen and put together with the first rotation
techniques that require only a small amount of data from t give the final composite transformation

test spegker. This data is used to move the parameters of thg) Acoustic Models:Words are represented as sequences of
speaker-independent system toward speaker-dependent valygsnes Each phone is further divided into three subphonetic
i In this paper, we present a speaker adaptation methoq s, which correspond roughly to the beginning, middle, and
is based on finding a cluster of speakers who are acousticallyy of each phone. The system uses context-dependent hidden
“close” to the test speaker, then individually transforming eagja .oy model (HMM) acoustic models for these subphonetic
of these training speakers’ data to bring it closer to the teghits For each subphonetic unit, a decision tree is constructed
from the training data [2]. Each leaf of the tree corresponds
Manuscript received February 17, 1996; revised February 14, 1997. Ttr% a different set of contexts. The acoustic observations that
associate editor coordinating the review of this manuscript and approvingciharacterize the training data at each leaf are modeled as a
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a forward transition. For an observed acoustic vector, weA further improvement on speaker-clustering can be ob-
compute the pdf value at each leaf. However, the pdf values @aned if the acoustic space of each of these training speakers
not used directly. In order to obtain a more robust model, we transformed to come even closer to the test speaker, to
compute the rank of each leaf by sorting the entire set of paifinimize the mismatch between the test and training data. This
values. The output distribution of each HMM is modeled asraay be done by using linear [5] or nonlinear [7] techniques;
discrete distribution on the ranks [3]. The system used in this this paper, for reasons of simplicity, we have opted to use
paper had approximately 6000 leaves and 17 000 Gaussianise maximum likelihood linear regression (MLLR) technique
3) Training Data: The training corpus for thaVSJtask of [5].
consists of 100-200 utterances from each of 284 speakers. Th&he adaptation scheme is described in more detail in the
total corpus size is about 35000 utterances. A transcriptionfoflowing section, and is shown to be capable of giving
each utterance at the word level is available. If a word hasasonable improvements in performance with a very little
multiple possible pronunciations, we refine the transcriptimmount of adaptation data. The notation used in the rest of
to indicate which particular pronunciation was used in th#e paper is as follows: underlining will be used to represent
utterance. We also indicate the presence of pauses betwaecolumn vector, and double underlining will be used to
words. Both these modifications to the original word-levekpresent a matrix.
script are done automatically. Once the modified transcription
is available, it is easily turned into the corresponding sequence I1l. THE ADAPTATION PROCEDURE
of Iea\{es using the Viterbi alignment proc_:edur_e_, and_ eaChThe adaptation procedure is summarized in Fig. 1, and com-
acoustic vector from an utterance can be identified with the. . . .
leaf it belongs to. prises the following step_s. First, (_:o_nstruct an acoustic _model
for each of the speakers in the training corpus. Next, using the
adaptation data to characterize the test speaker, find a subset of
B. Review of Adaptation Techniques the training speakers who are acoustically “close” to the test
Some adaptation schemes that have been proposed receifiaker. Then, compute a linear transform using the MLLR
include transformation methods [5]-[7], maximanposteriori technique of [5] to map the acoustic space of each selected
(MAP) estimation [8], [9], etc. In [5], the speaker-independeritaining speaker closer to the test speaker’'s acoustic space.
system is transformed to come closer to the test speakkigally, reestimate the Gaussians of the speaker-independent
acoustics by applying a linear transformation on the meaf®del using the transformed data from the selected training
of the speaker-independent Gaussians. The transformati@akers. The various steps in the adaptation procedure are
is computed so as to maximize the likelihood of the testescribed next.
speaker’'s adaptation data. The scheme used in [6] is similar
(the transformations are however constrained to be diagh- Models for the Training Speakers
nal)—here, the assumption is made that the acoustic spacgor the purpose of speaker clustering, it is necessary to
of the test speaker and the training data are related by a linggfain an acoustic characterization of each the 284 training
transformation, and the model parameters are reest|mated§‘ﬁéakerS in order to determine which training speakers are
the test speaker by applying this transformation on the mealj§se to the test speaker. We chose to model the acoustic
and covariance matrices of the speaker-independent systeRuracteristics of each speaker by a single Gaussian per leaf
Another related scheme that applies a nonlinear transformati@oo Gaussians)However, the 100-200 utterances that are
on the training data, in order to map it to the test speakefgajlable from each training speaker are not sufficient to
space, is the metgmorphic transformation of [7]. In contrasf[gbtam robust estimates of the parameters of the speaker-
these transformation schemes, [8] and [9] attempt to obtaify@nendent models. Consequently, we used Bayesian adaptation

Bayesian estimate of the model parameters from the "mitf'@chniques [8] to smooth each speaker-dependent model with
amount of adaptation data available from the test 5peak§rspeaker-independent model.

These schemes assume a prior distribution on the modefqr phurposes of notation, Idt denote the total number of
parameters, that leads to a very simple adaptation processieayes,d denote the dimension of the acoustic features, and
In (;ontrast to .the above schemes, the adaptati(_)q sche, 7 7A§ndi — 1,..., L denote the parameters of a speaker-
described here is based on the fact that the training difi@ependent acoustic model that models each leaf with a
contains a number of training speakers, some of whom &fgle diagonal Gaussia(@nd is a d-dimensional vector and

closer, acoustically, to the test speaker, than the otherst [1%m1 is a ded diagonal matrix); further, let théth training
If the model parameters are reestimated from the subsgét . DAk - . &

. ) Sheaker be parametrized W, AY i = 1,---, L, with A
of training speakers who are acoustically close to the test. =

speaker, they should be reasonably close to the speakeer'-ng diagonal. The MAP reestimation strategy of [8] assumes

dependent parameters that would be obtained by training arE rlc()rkdzsxir;bl::]%n;; (tfg;no?st?(f f?r?(;ameters being estimated,
large amounts of data from the test speaker (if such data were Hir i) P

available) [13], [14F Oniar = arg max p(6)p(yi /6) (1)

!Some similar ideas have recently been reported in [11] and [12]. 3Because of storage constraints, the training speaker models (6000 Gaus-
2The simplest implementation of such a clustering strategy would Isans) are much smaller than the speaker-independent and speaker-adapted
gender-dependent processing. systems (17000 Gaussians).
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Fig. 1. Adaptation procedure.
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B. Speaker Clustering

The next step in the adaptation procedure is to find a subset
of the training speakers who are closest to the test speaker.
The adaptation data from the test speaker is first decoded
using a speaker-independent system (with 17000 Gaussians)
in order to obtain a transcription. Subsequently, the data is
Viterbi aligned against the transcription and each acoustic
observation is tagged with a leaf id. The acoustic likelihood
of the adaptation data, conditioned on this alignment, is then
computed using each training speaker’s model, and the training
speakers are ranked in the order of this likelihood. TheXop
speakers are then picked as being acoustically close to the test
speaker.

C. Transform Computation

A transformation to bring a training speaker’s data closer to
the test speaker’s acoustic space may be computed in several
ways [5]-[7]. For reasons of simplicity, we have opted to use
the MLLR technique of [5]. We will briefly summarize this
procedure next. Recall that we have already obtained a tran-
scription of the adaptation data using a speaker-independent
system with 17000 Gaussians. Using this transcription and
the speaker-independent model, it is possible to compute the
posterior probability¢;(t), of theith leaf at timet, conditioned
on all the acoustic observations in the adaptation data. Unlike
the MLLR technique, however;(¢) is not obtained using the
model for thekth training speaker, but is obtained using the
gender-independent model.

We will assume that a linear transformatiot", is applied

where y{ is the training data from théth speaker. In [8], to the means of the training speaker’s mo¢a§l, and compute

it was shown that the choice of a normal-Wishart density fohe transformation so as to maximize the likelihood of the
the the prior distribution on the Gaussian parametgf8), adaptation data, given the training speaker’s model. This is
resulted in a convenient estimation strategy. Consequentyuivalent to minimizing the following objective function [5]:
choosing the prior distribution to be of the form

p(0) =1 e [ (o T - )] 2 Ol AT ) oA 9
- - - - - - it
e [ (4] @
Here, A" is a(d)z(d-+1) matrix, andi*; is a(d+1)z1 vector
leads to the reestimation formulae obtained fromu*; as(i*;)" = [(u*;)*1]". The reestimation
L + rypind formulae foré’“ are identical to those in [5] and will not be
py = ————— (3) repeated here.
B ¢+ i In the above development, it was assumed that the same
AY = [y, + 7 [APd 4 piod it Tk BT (4) matrix A¥ was applied to all means. However, if sufficient data
- GTT= - - - is available, it is possible to compute several transformations,
where with different transformations being applied to disjoint clusters
of leaves. The clusters can be obtained based on the acoustic
= alt) 5= alb)y, similarity of the leaves using a bottom-up procedure as in [5].
t t
i = a®yyi 7= const (5)

4The reason for doing this was that the models for the training speakers
are very crude (only 6000 Gaussians); consequently, one could expect the
] . - o . . alignment of states produced by using these models to be much poorer than for
Here’cZ,(_t) is thea posterlorl.probablhty ,Of the leaf: at time the case where the larger gender-independent model is used. The expectation
t, conditioned on all acoustic observath@%, and the terms maximization (EM) algorithm typically gives the posterior probability(t)
Ci(t)vmv% are usually referred to as the E-M counts. Thef the jth Gaussian, at time, conditioned on all the acoustic observations.

= . . . T . By summing these probabilities over the Gaussians that model a:lehk
parameterr; in the expression for the prior distribution (2) iSposterior probability of the leaf at time ¢(t), conditioned on the acoustic

usually chosen to be a constant. observations can be obtained.

t
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D. Reestimation of the Gaussians TABLE |
. . Test 1
Once the transformations have been computed, one possi-
bility is to accumulate the transformed model means of the Baseline | N=20 | N=30 | N=50 | N=70 | N=142
selected training speakers to obtain the means of a speakerError (%) 14.43 | 14.15 | 1347 | 135 | 13.47 | 1415
adapted system. However, as the training speaker models usBel Impr (%) | NA 1.9 | 66 6.6 6.6 1.9

only 6000 Gaussians, this would result in a speaker-adapted
system with only 6000 Gaussians. This is not desirable, as our
original objective was to obtain a speaker-adapted version o$¥stem used to transcribe the test data had 6000 leaves, and
much larger system that had 17 000 Gaussians. Consequerftf000 Gaussians modeling the leaves. The language model
though the above formulation computed a linear transformdsed was the official 20 K language model that was provided
tion on the training speaker models, in the final stage of tiy the National Institute of Standards and Technology [1]
adaptation procedure these transformations will be appliedf® the November 1994 Advanced Research Projects Agency
the training data rather than to the models. The rationale {#xRPA) evaluation, which represents a 97.6% coverage of
this comes from the fact that the transformed means of tHe test vocabulary. The adaptation data for each test speaker
training speaker's model can be obtained either by applyifignged from 3-30 sentences (20-220 s). The other set of test
a linear transformation on the original means of the speaképta (Test 2) comprised about 15 sentences (150 s) from each
or by app|y|ng the same transformation on the training da‘l_@f, 20 Speakers from the November 1994 evaluation data of
and then estimating the means from the transformed data. the WSJtask. Unsupervised adaptation was used in all cases,
transformed data is then used to reestimate the means of itRe the adaptation data was transcribed with the speaker-
larger 17000 Gaussian system. For the case where multifigependent system, and the transcription used for further
transformations are applied to a training speaker, it is necessBfcessIng.
to know what leaf (context-dependent subphonetic state) an
acoustic observation corresponds to, in order to apply the Speaker Selection
appro_pri.ate transf_ormation. This informa’Fion is obtained from The first experiment examines the effect of picking a subset
an existing Viterbi alignment of the training data. o x training speakers who are close to the test speaker,
The Gaussian means are reestimated from the training dafay reestimating the model parameters from the training
of the selected speakers using the reestimation formulae giygp, provided by the selected speakers. The adaptation data
below. Let comprised of three sentences from each speaker (20 ss). The
* z} be thetth acoustic observation from tHeh speaker; performance of the system is shown in Table | as a function
* 1, be the leaf (context-dependent subphonetic state) cef-the number of selected speakers, and is seen to provide, at

responding to the acoustic observatigft best, a relative improvement of 6.6%.
* ;,; be thejth Gaussian of théth leaf of the speaker-  An interesting observation may be made at this stage by
independent system examining the training speakers who are hypothesized to be

* ¢ ;(t) be the posteriori probability of thith Gaussian of close to the test speaker. Fig. 2 shows the distance between a
the leafl, conditioned on the current acoustic observatiompale test speaker and each of the 142 male and 142 female
and the alignment, i.e., summingi(t) over all the training speakers in th&/SJSI-284 corpus. For the sake of

Gaussians that model the current léaquals one; ease of interpretation, the distances have been sorted before

« AF be the transformation corresponding to tieleaf of being plotted, and the distances to the male and female training

the kth speaker. speakers are plotted separately. It can be seen that if the closest

Then, the mean of thgth Gaussians modeling leafmay be /N training speakers were selected, they could include male as
reestimated as well as female speakers.

> oAb Zcﬁj(t)@‘] B. Speaker Selection and Transformation
j‘}apted =k ! . (7) In this experiment, three sentencgs 22 s) from each
o ZZCﬁj(t) test speaker were used as the adaptation data, and a global
E ot transformation was computed for each test-training speaker

pair. Table Il shows the error rate as a function of the number
IV. EXPERIMENTAL RESULTS of training speakerslV, selected to reestimate the Gaussians

This section summarizes the results of various experime®fsthe adapted system. For comparison purposes, the error
that were conducted to evaluate the speaker-adaptation algée obtained with the MLLR adaptation scheme [5] is also
rithm. One set of test data (Test 1) comprised of 20 senten&®Wn. It can be seen that the MLLR scheme of [5] yields
from ten speakers (five males, five females). The test speak@rd0.3% improvement over the baseline. In contrast, the

were drawn from theWSJ SI-37 training data baseThe best performance of the clustering/transformation technique
corresponds to usingy = 50, and is around 18% better than
5The reason for selecting the test data was that eaqh of the test speakerghaspaseline system, a relative improvement of 7.7% over the
around 1200 sentences of data that can be used to estimate a speaker-depepgle, h Th | N — 5 il b d i I
system, and thus compare its performance with that of the speaker-ada scheme. 'e value o - 50 wi _e used In a
system. subsequent clustering/transformation experiments.
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Fig. 2. Distances between a test speaker and the training speakers.

TABLE I
TesT 1

Baseline | MLLR | N=284 | N=142 | N=70 { N=50 | N=30 | N=20
Error (%) 14.43 12.95 12.46 12 12.24 | 11.84 | 12.06 | 12.24
Rel Impr (%) NA 10.26 13.65 16.84 15.18 | 17.95 | 16.42 | 15.18

C. Effect of Increasing Amount of Adaptation Data speaker-dependent results. As mentioned earlier, around 1200
In this experiment, we examine the effects of using addfentences are available for each test speaker, and we used

tional adaptation data, and of using multiple transforms to m&gyesian adaptation [8] to reestimate the model paramaters for
each training speaker's data into the test speaker's acou§ff’z,ch test speaker from th|s_ c_iata. As 1200 §entences represents
space. We conducted two experiments that used three gnfglrly large amount of training data, we will assume that the

15 sentences, respectively, of adaptation data from each f¥formance of the Bayesian adapted system is very close to

speaker. For the former case, as the amount of adaptamaker-dependent performance. The results obtained with the

data is very limited, it was only possible to estimate a singfe@Yesian adapted system are summarized in Table 1V, along
global transformation for every test-training speaker pair; fyfith the results obtained with the clustering/transformation

the latter case, there is sufficient data to compute more tr%q}aptanobn schemfe W't?_ tglret?vadr?ptartllon ;enter_lces. .
one transformation per speaker-pair, with acoustically similar tcan be seen from Table [V that the adaptation technique

leaves sharing a transformation. The use of the bottom-{ posed in 'this paper, with t'he use of only three adaptation
procedure mentioned in Section II-C resulted in an average ntt_ances, gives an 18% relative |mpr0v_ement in the error rate;
two transformations being made for each test-training spea tis more than halt the 30% relatlvg .|mprqvement that can
pair. The value ofN (number of training speakers selecte(l])e obtained by speaker—dgpgndent training with 1200 sentences
as being close to the test speaker) was set to 50. The resmtgpeaker—dependent training data.
are shown in Table Ill. For comparison purposes, the error
rates obtained with the MLLR scheme are also shown. It c&n Auto-Adaptation on WSJ Task
be seen from the table that, though the performance improvesinally, in this experiment, we present results using auto-
with the use of additional adaptation data, the improvemeadaptation on the Test 2 data. As mentioned earlier, this data
due to the additional data is quite small; increasing thobmprises about 15 sentencgs 150 s) from 20 speakers,
amount of adaptation data five-fold only increases the relatigdd represents a standardized data base that was used for the
improvement from 18 to 19.5%. November 1994 evaluation of thSJtask. The test data was
first transcribed with the speaker-independent system, and all
of this data was used as the adaptation data for reestimating
In this experiment, we compare the performance improvéie model paramaters. This resulted in an average of three
ment obtained by the clustering/transformation technique t@nsformations being made per test-training speaker pair. As

D. Comparison to Speaker-Dependent Baseline
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TABLE Il incurred because the training data has to be processed again
Test 1 to reestimate the model means.
3 sentences 15 sentences However, in spite of the increased complexity, there are
Baseline | MLLR | Clstr/Trans MLLR | Clstr/Trans ~ S€Veral tasks, such as the ARPA-sponsoWw&J [4] and
Error (%) 14.43 | 12.95 11.84 12.33 11.62 Hub 4 task [15], [16], or the Switchboard task, where the
Rel Impr (%) | NA 10.26 17.95 14.55 19.47 adaptation algorithm proposed in this paper is particularly

applicable because 1) the computational complexity is not a

TABLE IV major constraint in these tasks, and 2) the amount of available
TesT 1 adaptation data is very limited (15 sentences in\gJtask,

as few as one or two sentences in the Hub 4 task), and from

P sze:;e lerl/ Zams Bi%e?:n the experimental results of Section IV-B, for small amounts
: ’ ) of adaptation data, the algorithm presented in this paper can

Rel Impr (%) | NA 17.95 29.66 provide a fair amount of performance improvement over that

provided by the MLLR techniqué.
TABLE V
TeST 2 VI. CONCLUSION

Baseline | MLLR | Clstr/Trans A speaker-adaptation strategy was described that is based on

Error (%) 1476 | 12.91 19.95 finding a subset of training speakers in the training corpus who
Rel Impr (%) | NA 12.53 17.00 are acoustically the most similar to the test speaker, and then

computing a set of linear transforms for each of the selected
training speakers that maps the training speaker’s data closer
in earlier experimentsN' was set equal to 50. The samdo the acoustic space of the test speaker. The Gaussians of
data was then redecoded using the adapted model. The redbis speaker-independent system are then reestimated using
of the experiment are summarized in Table V. The resulde transformed data from the selected training speakers.
obtained with the MLLR scheme are also shown in the tabiéhe scheme is computationally more complex than other
From Table V, it can be seen that the clustering/transformatiédaptation schemes such as [5]; however, it is seen to provide
scheme provides a relative improvement of 17%, which &fair amount of gain over these other schemes. Comparisons
about 4.5% better than the 12.5% improvement provided Wth the performance of speaker-dependent systems (estimated
the MLLR scheme. from 1200 sentences) also showed that this adaptation scheme
is able to go more than half the way to speaker-dependent
performance with as little as three sentences of adaptation data.
Also, the performance of the scheme does improve with the
amount of adaptation data; however, this improvement is not
The performance improvement of the clusterery jarge, and most of the gain is obtained with the first few
ing/transformation technique is obtained, however, at tR@ntences of adaptation data. The main applicability of the
expense of a large increase in complexity. As mentiong@iaptation scheme is felt to be in tasks such as the ARPA-
in Section Ill, the various steps involved in the C|U3ter5ponsoredNSJand Hub 4 tasks, etc., where the amount of
ing/transformation scheme during the decoding process arggaptation data is very limited, and computational complexity
1) selectingV training speakers who are closest to the tef not a major constraint.

V. COMPUTATIONAL COMPLEXITY

speaker;
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