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Noise-Compensated Hidden Markov Models
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Abstract—The technique of hidden Markov models has been
established as one of the most successful methods applied to the
problem of speech recognition. However, its performance is consid-
erably degraded when the speech signal is contaminated by noise.
This work presents a technique which improves the performance
of hidden Markov models when these models are used in different
noise conditions during the speech recognition process. The input
speech signal enters unchanged to the recognition process, while
the models used by the recognition system are compensated ac-
cording to the affecting noise characteristics, power and spectral
shape. Hence, the compensation stage is independent of the recog-
nition stage, allowing the models to be continually adjusted.

The models used in this work are from a continuous density
hidden Markov algorithm, having cepstral coefficients derived
from linear predictive analysis as state parameters. It is used only
static features in the models in order to show that, when prop-
erly compensated for the noise, these static features contribute
significantly to improve noisy speech recognition. It is observed
from the results that the parameters kept their capability to
discriminate among different classes of signals, indicating that, in
the context of speech recognition, the use of autoregressive-derived
parameters with noisy signals does not represent an impediment.
A matrix-way of converting from autoregressive coefficients to
normalized autocorrelation coefficients is presented.

The affecting noise is assumed additive and statistically in-
dependent of the speech signal. Although the noise dealt with
should also be stationary, good performance was achieved for
nonstationary noise, such as operations room noise and factory
environment noise. The concept of intra-word signal-to-noise ratio
is presented and successfully applied. The resulting compensated
models revealed to be less dependent on the training data set
when compared to the trained hidden Markov models. Due to the
computational simplicity, the time required to adjust a model is
significantly shorter than the time to train it.

Index Terms—Background noise, hidden Markov models,
intra-word signal-to-noise ratio, speech recognition.

I. INTRODUCTION

SOLUTIONS to the problem of speech recognition in noise
may fall in two categories, both of them aim to reduce the

mismatch between training and recognition situations. One cat-
egory focuses on the restoration of the clean speech signal from
the noisy one (speech enhancement), while the other category
can cope with the presence of noise in the recognition process,
which is the approach of this work.
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There is not a clear boundary between these two categories,
which can have their methods combined to improve recogni-
tion performance. Some successful methods of speech enhance-
ment include:spectral subtraction(SS) suggested by Boll [1],
[2]; signal restoration by spectral mappingintroduced by Juang
and Rabiner [3]; adaptive filtering techniques asKalman fil-
tering [4] andall-pole modeling of degraded speech,proposed
by Lim and Oppenheim [5], that conveniently combines Wiener
filtering with the linear prediction technique; andmultiple mi-
crophone arrayswhich aims to improve the signal-to-noise ratio
at the input of the recognition system [6].

Along the boundary of the mentioned categories we have
cepstral mean subtraction(CMS) [7], [8] which is simple and
effective to reduce distortions introduced by microphones and
transmission channels. Also, robust metrics and features have
shown to be very useful and important at improving recognition
rates of noisy speech. Theprojection-based likelihood measure
[9], [10] uses the fact that additive white noise causes the cep-
stral vector norm to diminish but leaving its orientation practi-
cally intact. Features that exploit the time varying properties of
speech spectra (dynamic features) [11] brought significant im-
provement to the problem as well as features that exploit the
human auditory perception model, like RASTA-PLP [12] that
improves speaker independency, reduces the influence of back-
ground noise, attenuates the influence of the acoustic channel
variations and deals with noisy Lombard speech [13].

This work differs from the mentioned methods in the sense
that it depends on the specific noise spectral characteristics (in-
tensity and spectral shape) affecting the recognition procedure.
In this way, it is similar to other kinds of model compensa-
tion strategies like:noise-adaptive prototypes[14] which trains
a mapping between noisy and clean features;state-based fil-
tering [15] where Wiener filters, designed for each state of a
hidden Markov model, are used to filter the sequence of noisy
speech observation vectors;model decomposition[16] which is
a generalization of conventional hidden Markov modeling that
provides an optimal method of decomposing simultaneous pro-
cesses (noisy speech into clean speech and noise signals); and
parallel model combination(PMC) that is similar to our work in
the sense that the speech models are modified to be more repre-
sentative of the speech in the new acoustic environment given an
estimate of the additive noise. In thedata-driven parallel model
combination(DPMC) [17] the speech models are used to gen-
erate separate samples of speech and noise which are then com-
bined appropriately to obtain the noise corrupted speech sam-
ples which are used to estimate the compensated models.

Our proposed approach to the problem is strongly founded
on basic principles, as it will be seen, resulting in a very ef-
fective method, allowing a straight forward implementation and
short execution time. If a label should be given to this kind of
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approach it could bespectral addition,as opposed to the basic
principles rulingspectral subtraction.

The next section presents the proposed method, followed
by the section showing the results achieved employing the
NOISEX-92 database [18]. The work is finished with some
conclusions.

II. COMPENSATING THEMODELS

In the hidden Markov model (HMM) technique, as in all the
other techniques of automatic speech recognition, there are two
phases involved in the recognition process, a first phase where
the speech recognition system is trained, and a second phase of
pattern matching, which is the recognition itself. When training
the system, every set of input signals must have good represen-
tatives of the word to be modeled, having the least amount of
extra noise. Models created (trained) with speech signals having
the least amount of noise will be referred in this work asclean
models. In the recognition phase an input word is compared
with each of the trained models and deemed to be the one cor-
responding to the model which matches most closely. However,
in practice the incoming signal in the recognition procedure will
contain spurious components (noise), not present in the training
phase. As the amount of noise increases, the clean models lose
the property of characterizing the input signals accurately. One
solution to this problem would be to train all the models of the
vocabulary with the corrupted signals. The resulting models of
such training procedure will be referred asnoisy models, that is,
models trained by the signals corrupted by the noise affecting
the current recognition. Such solution could be applied if the
computational cost of the training procedure was not so expen-
sive, since a new training session would be required whenever
the noise spectral properties change. A more practical solution
would be the creation of acompensated, oradjusted model, from
the clean model, which has the probabilistic information of the
noise-free speech conveniently combined with information of
the affecting noise, as illustrated in Fig. 1. The great advantage
now is the generation of a new model, without the need of an
expensive training session. It is expected that an adjusted model
will perform better in the degraded situation than a clean model.
Thus, the performance of a clean model is a lower limit to the
acceptability of an adjusted model, which has as its target the
performance of the corresponding noisy model.

The basis of the method is the fact that the autocorrelation
function of the signal resulting from the addition of two sta-
tistically independent signals is equal to the sum of their indi-
vidual autocorrelation functions. Therefore, in adjusting a clean
model, its state spectral representation is transformed from the
autoregressive, or cepstral, domain to the autocorrelation do-
main. Then, the autocorrelation of the clean model is added to
a sample of the autocorrelation of the affecting noise, resulting
in the autocorrelation of the noisy signal, which is transformed
back to the original spectral representation. At the end of this
process, an adjusted model results with better capabilities of
handling the noisy signal. Due to the uncorrelation assumption

Fig. 1. Creation of an adjusted model.

and the nature of the experiments, the Lombard effect1 can not
be addressed.

It was observed that the noise influence affects mainly the
spectral characterization of a model, leaving its temporal prop-
erties effectively unaltered. In other words, it is the emission
probabilities of the states of the model that we are interested in
compensate for the noise, while the transition probabilities do
not need to be altered.

As we are employing a continuous density HMM, the
emission probabilities of the states of a model are characterized
by multivariate Normal distributions, consequently, the model
compensation method results in the adjust of the mean vector
and covariance matrix of each Normal distribution. Next
we show the compensation method for multivariate Normal
distributions using cepstral coefficients derived from the linear
predictive analysis as coefficients.

A. Adjusting the Means

Let , , and , , be the normalized auto-
correlation coefficients ( ), the linear prediction coeffi-
cients (lpc), and the cepstral coefficients, respectively. Let

be the mean vector of the multivariate Normal
distribution. The corresponding vector of linear predictive coef-
ficients can be obtained from [7]

(1)

Once the linear prediction coefficients,, are determined, the
corresponding normalized autocorrelation coefficients,, can
be computed by

(2)

where , , and we
have found that can be defined as described in Appendix I.
Another way of computing from is to use the recursive
step-down procedure in conjunction with the Levinson algo-
rithm [19]. The inverse procedure is done by the well known
relation (autocorrelation method)

(3)

1The natural speaker response to stress the voice when speaking in a noisy
environment.
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where is the symmetric Toeplitz matrix formed by the values
.

Assuming zero mean signals, the signal-to-noise ratio can be
defined as

SNR (4)

where and are the average energy of the speech signal
and noise, respectively. Letting

the normalized autocorrelation coefficients of the noisy signal,
, can be approximated by

where is the vector with the normalized autocorrelation co-
efficients of the noise, which can be estimated at some instant
preceding a recognition process. Once is defined, the cor-
responding is computed by (3), and is obtained by
the inverse procedure of equation (1), which is explained in [7].
Repeating this procedure to the mean vector of every Normal
distribution of all the models we complete the process of com-
pensating the means for the affecting noise. The mean compen-
sation process is illustrated in Fig. 2.

B. Adjusting the Covariances

The idea is to transform the covariance matrix of the model
from the cepstral domain to the log-energy domain, where we
can combine it to the covariance matrix of the noise in this do-
main. When this is done, we obtain the noisy covariance matrix
in the log-energy domain, which can be transformed back to the
cepstral domain as we show now. The transformation from the
cepstral domain to the log-energy domain is effected by the ap-
plication of the discrete cosine transform (DCT) [20]. The DCT
of a discrete sequence , is defined
by [21]

(5)

where is the th DCT coefficient. Representing in a ma-
trix form, we have

where is the DCT matrix.
Let and be the means of the firstcepstral coefficients

of clean speech (clean model) and noise (estimated), respec-
tively, and and the corresponding covariance ma-
trices. As mentioned before, the transformation to the log-en-
ergy domain is done by

Fig. 2. Diagram of the mean compensation process.

where and are the log-energy components of clean speech
and noise, with the respective covariance matricesand .
Now we show how to combine both of these matrices to get

, the covariance matrix of the noisy signal in the log-energy
domain. Once is determined, the covariance matrix of the
noisy signal in the cepstral domain is computed by

(6)

It only remains to show how to determine . This matrix
is defined by

(7)

Where , , , represent the components of
the energy spectra of clean speech and noise, respectively, sat-
isfying a given SNR. That is,

and

Based on the observation that the energy in a frequency band
is dominated either by signal (clean speech) energy or by noise
energy, we model the energy as the larger of the separate ener-
gies of signal and noise in the band. Mathematically, at band,
we have that2

which is applied to (7) in four distinct spectral conditions:

•
;

•
;

•
;

•
.

The above can be visually interpreted in Fig. 3.
In Fig. 3, the large square with dotted outline represents the

covariance matrix of the noisy signal in the log-energy domain,

2This approximation is also used, for instance, in [14] and [16].
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Fig. 3. Composing the noisy covariance matrix� , at a givenSNR.

, and every inner dotted rectangle is the corresponding
block taken from or . Rectangles with “0” inside represent
null matrices of the corresponding block dimensions. Since
and are at least positive semi-definite, the same is also true
for the whole matrix.

If we define the -function

if
if

the covariance matrix of the noisy signal in the log-energy do-
main is computed by

(8)

Then, using this last result in (6), we can compute .
If the original cepstral covariance matrices of clean speech,

, and noise, , were assumed diagonal, the resulting
matrix has the off-diagonal terms set to zero. Fig. 4
illustrates the process of compensating the covariance matrix.

C. Intra-word SNR

In this section we present the concept of intra-word signal-to-
noise ratio, and how it can be used with advantage in the pro-
posed compensation technique.

For a given SNR in a recognition process, we can easily no-
tice that there is a change in SNR along an utterance, for in-
stance, due to the different energy levels of voiced and unvoiced
portions along it, the SNR will be higher in the voiced por-
tion than in the unvoiced one. Relying on the capability of the
hidden Markov technique to segment the utterance into distinc-
tive portions, and including energy information into the states of
a model, anintra-word SNR, , can be defined for every
state , , of a model

SNR

where , , is the attached energy value of state
, which is computed in the training procedure of the model. To

be practical, this expression should be modified to take account

Fig. 4. Diagram of the covariance matrix compensation process.

of the actual speech signal energy in the recognition process.
This can be made considering the relationship betweenand

which can be regarded as an ensemble average energy of the
signal given by the trained model. Supposing fairly stable
acoustic conditions, on average, the ratio is one. Thus,
the actualintra-wordSNR, SNR, for the state of a model can
be defined as

SNR

SNR SNR (9)

where the last term of (9), SNR , depends only on values de-
fined by the model.

Thus, instead of using (4), the intra-word SNR, , given
by (9), can be used in the compensating procedures described
in Sections II-A and II-B. So, each state of the model will be
compensated according to its particular energy level, which is
related to the energy level of the corresponding portion of the
utterance.

In the next section we present the recognition results when
the described procedures are applied.

III. RESULTS

A. Experimental Data

This section shows the results of the application of the tech-
nique described. The training of clean and noisy models and
the recognition process are done through the use of the speech
recognition software HTK [22]. Speech and noise signals are
from the NOISEX-92 [18] database, which provides a carefully
controlled set of experiments where speech and noise signals
have been added together at several values of SNR. It provides
a set of control data that can be easily used and for which com-
parative experimental results become available.

The speech data is partitioned into training and testing data
sets. The training data set consists of two sequences of 100
digits, one recorded by a male speaker and one by a female
speaker. Every sequence of 100 digits is made up by ten rep-
etitions of each one of the ten digits, from zero to nine. The
testing data set is achieved on the same way. In this work we are
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employing the data from the male speaker. So, there are 20 repe-
titions of each digit. Half of the repetitions was used to train the
models (training data set) and the other half to test the proposed
technique (testing data set).

The noise data was taken from the same database. Every ut-
tered digit corresponds to a defined piece of noise in the noise
data set. The speech and noise were added together digitally at
five different signal-to-noise ratios: 18, 12, 6, 0, and6 dB. The
0 dB SNR noisy speech is created simply by adding together the
provided clean speech and noise signal. For SNRs above 0 dB,
i.e., less noise, 6 dB steps were obtained by successive multi-
plication of the noise signal samples by 0.5 (hence, 0.5, 0.25,
0.125, for SNR values of respectively 6, 12, and 18 dB); for
noisy speech at a SNR of6 dB the noise signal samples were
multiplied by 2.0, before adding them to the clean speech signal.
We present the results for operations room and factory noises at
these values of SNR.

Both speech and noise were sampled at 16 kHz. The speech
data were pre-processed using a window of 25 ms (
samples per window), at every 10 ms, and lpc-cep-
stral coefficients computed. The autocorrelation of the noise was
computed with the same expression as the autocorrelation of
the speech signal in the predictive analysis. The actual normal-
ized autocorrelation coefficients of the noise signal,, were
achieved from the average of a number,, of normalized auto-
correlation vectors taken randomly from the noise signal. In the
experiments, an average of normalized autocorrelation
vectors produced .

The models have ten left-to-right states, and every state with
a continuous Normal output probability density. The covariance
matrices are assumed diagonal. The training process produces,
for each digit, theclean model(trained with clean speech) and
a noisy modeltrained with noisy speech for each SNR under
consideration in our experiments in the next section. The clean
model is used by the compensation technique to produce acom-
pensated modelfor each SNR, and the noisy model is used to
have its performance compared to the performance of the com-
pensated model.

B. Recognition Results

The tables are divided in two parts:train and test. Under
train, we have the recognition percentage when the training data
set was employed in the recognition process. Undertest, we
employed the testing data set, which is independent from the
trained models. As there are a total of 100 digits for training
and 100 digits for testing, the number of correctly recognized
digits represents the recognition percentage.

Table I shows the recognition percentage results for opera-
tions room noise. The termsnoisy, andcleanrefer to the trained
models with noisy and clean speech, respectively. The terms
intra, andcomp.refer to the compensated models, where we
applied the concept of intra-word SNR to the former. Table II
presents the recognition percentage results for factory noise.

In order to examine further the performance of the proposed
compensation technique, we observed the behavior of the values
of the coefficients of mean vector and covariance matrix under
different noise conditions. For instance, Fig. 5 presents the mean
values of cepstral coefficient of index 4 for five different vowels,

TABLE I
OPERATIONSROOM NOISE

TABLE II
FACTORY NOISE

namely, /a/ (hat), /e/ (get), /i/ (she), /o/ (hot), and /u/ (too). The
straight dash-dotted line represents the mean values for the clean
models for each vowel. The dotted line represents the mean
values for the noisy models when the SNR varies from 18 to6
dB in steps of 6 dB, for each of three different kinds of noise:
Lynx, F16, and car noises [18]. That is, a total of 75 mean values
forms the dotted line for all five vowels. Lastly, the solid line are
the mean values for the compensate models. We can notice that
the mean values of the compensated models are tracking fairly
well the means of the noisy models (assumed as target).

Fig. 6 shows the change in the variance values for the same
coefficient index, in the same experimental situation described
for Fig. 5. We see that the tracking is not as precise as for the
means, but the variance values of the compensated models are
slightly bigger than the noisy ones most of the time. This may
explain why the compensated models had superior performance
to the noisy models in some situations in Table II, when using



538 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 8, NO. 5, SEPTEMBER 2000

Fig. 5. Mean values changes of cepstral coefficient of index 4.

Fig. 6. Variance values changes of cepstral coefficient of index 4.

the testing data set: a higher value in the variance should allow
more flexibility when dealing with the (independent) testing
data set.

IV. CONCLUSIONS

From the results it is clear the advantage in using the compen-
sated models over the clean models. It is clear also the superi-
ority of the noisy models in relation to the compensated models,
but such superiority is reduced when we employed the testing
data set. We see that there is a loss of performance of the noisy
models when we change from the training data set to the testing
data set. Such loss of performance (from training to testing data
set) is less noticed with the compensated models. This shows
that the compensated models are less dependent on the training
data set than the noisy models. Since real data are independent
from the training data set, we can infer an almost equivalence
between noisy and compensated models. The idea of intra-word
SNR seems to be reasonable, since we achieved improvements
in terms of recognition percentage when we compare the results
betweenintra andcomp. models (Tables I and II). It must be
mentioned that the extra energy coefficients did not participate
in the training and recognition processes as added parameters
in the computation of output state probabilities. They solely en-
tered in the computation of the intra-word SNR.

It is not asserted that autoregressive-derived coefficients pro-
duce good models of noisy signals. What has been shown by

the results however is that, in the context of speech recognition,
representing the signal by such coefficients does not constitute
an impediment to achieving good improvements when compen-
sating techniques are used. It is known that dynamic features
perform better than uncompensated static features under noisy
conditions [23]. Using only static features in this work, and
noting the superior performances of the compensated models
over the clean ones, we have shown that the static features from
the clean models also proved to be useful when appropriately
compensated for the noise.

One advantage of the approach is that the input speech signal
does not need to be pre-processed, making the model compensa-
tion independent of the recognition stage. This allows the com-
pensation to be made at moments when the recognition system
is inactive, making the adjusted models compensated for the last
affecting background noise characteristics. Using a second mi-
crophone, directed to the specific source of noise, and a reliable
measure of the current SNR, the compensation can be accom-
plished even during moments of system activity.

The compensation technique is per Normal
probability density, where is the linear prediction order,
is the number of signal samples in one window andis the
number of normalized autocorrelation vectors averaged to pro-
duce . In

• the term is due to the solution of the system ofequa-
tions (3) and the multiplication of matrices as in expres-
sion (6);

• the term is from the estimation of , the normal-
ized autocorrelation of noise.

All other transformations in the compensation method are
or less. The estimation of do not need to be done

on the compensation of each probability density, but only
once in one compensation session, since the samewill be
used to compensate every probability density of all models of
the recognition system. So, the complexity to compensate
probability density functions is .

We believe that the validity of the approach’s principle was
justified by the experimental results achieved, its computational
simplicity, and the sound potential of its applicability.

APPENDIX

CONVERSIONMATRIX

This appendix is related to Section II-A, expression 2.
Expanding the matrix expression (3), putting the’s to the

left-handed side we have that

...
...

. . .
...

...

(10)

Row of this set of equations, defining

for
for or

(11)
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can be given by

(12)

Representing this set of equations in a matrix
form, having ’s as the independent vector, we obtain

...
...

. . .
...

...
...

The above matrix can be rewritten as

...
...

...
. . .

...

...
...

. . .
...

...

Applying (11) to the above, we arrive to the desired matrix

...
...

...
. . .

...

...
...

. . .
...

...

It can be shown that has an inverse if
are such that the filter

is stable.
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