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Abstract: A segmental probability distribution
model (SPDM) approach is proposed for fast and
accurate recognition of isolated Mandarin
syllables. Instead of the conventional frame-based
approach such as the hidden Markov model
(HMM), the model matching process in the
proposed SPDM is evaluated segment-by-segment
based on  information-theoretic  distance
measurements. The training and recognition
procedures for the SPDM are developed first.
Several distance measurement criteria, including
the Chernoff distance, Bhattacharyya distance,
Patrick-Fisher distance, divergence and a
Bayesian-like distance, are used, and formulations
and comparative results are  discussed.
Experimental results show that, compared to the
widely used sub-unit based continuous density
HMM, the proposed method leads to an
improvement of 15.27% in the error rate, with a
12-fold increase in recognition speed and less than
three quarters of the mixture requirements.

1 Introduction

For a practical automatic speech recognition system,
fast and accurate recognition is crucial. However, in
most situations, there is a trade-off between the recog-
nition accuracy and speed, i.e. the higher the recogni-
tion accuracy required, the more recognition time is
needed [1-3]. In this paper, a segmental probability dis-
tribution model (SPDM) approach is proposed. In this
approach, the computational complexity of the training
and recognition procedures is greatly reduced. In addi-
tion, improved recognition accuracy can be achieved,
compared to the hidden Markov model (HMM) based
approach, for recognition of the highly confusing iso-
lated Mandarin syllables.

The Chinese language is not alphabetic, and the
input of Chinese characters into computers remains a
difficult and unsolved problem. Voice input is believed
to be a very attractive solution. Mandarin Chinese is a
monosyllabic-structured tonal language [1]. Although
there are at least 100 000 commonly used words, com-
posed of more than 10 000 commonly used characters,
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the total number of phonetically allowed syllables is
only 1345. Moreover, each Mandarin syllable is
assigned a tone, and there are four lexical tones and
one neutral tone. If the differences in tones are disre-
garded, these 1345 Mandarin syllables can be reduced
to 408 different base syllables. As the tones can be sep-
arately recognised using primarily pitch contour infor-
mation, the recognition of all 408 Mandarin base
syllables is believed to be the key problem for large
vocabulary Mandarin speech recognition, due to the
monosyllabic structure of Mandarin Chinese.

The hidden Markov model (HMM) approach has
been tested with high recognition rates for Mandarin
base syllable recognition [1]; the similarity between a
test utterance and the acoustic models is measured
frame-by-frame with a Viterbi-searched optimal path
[2]. Although HMMs offer a fine stochastic representa-
tion of speech production, their computational load,
both in training and recognition, is extremely high. As
an alternative, a segmental probability model (SPM)
has been shown to be very suitable for Mandarin base
syllable recognition, especially considering the mono-
syllabic structure of the Chinese language [4]. The SPM
is very similar to continuous density HMM (CHMM),
except that the state transition probabilities are deleted
and a linear warping function is used to divide the syl-
lable utterances into N states. In other words, the sto-
chastic state transition behaviour in HMM:s is replaced
by a deterministic process in SPM, and the output dis-
tributions are also represented by Gaussian mixtures.
As shown in our preliminary results [4], comparable
recognition rates with the HMM approach can be
obtained in the SPM approach, with greatly reduced
computational complexity, when the same model con-
figurations are used.

In this paper, a segmental probability distribution
model (SPDM) approach is proposed to further reduce
the computational complexity for fast and accurate rec-
ognition of Mandarin syllables. The utterance to be
recognised is first divided into N segments, using the
linear warping function, as in the SPM approach. Each
segment is then represented by an associated probabil-
ity distribution (PD), for example, a unimodal Gaus-
sian distribution. These probability distributions are
used to measure the similarity between this utterance
and the acoustic models with some information-theo-
retic distance measurement criterion. In other words,
the similarity between training and testing speech spec-
tra is measured in terms of the distance between their
associated probability distributions. In this way, the
recognition process can be evaluated segment-by-seg-
ment instead of frame-by-frame [5]. The computational
load is significantly reduced because the processing
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time is proportional to the segment number N instead
of the total frame number 7T of this utterance and
explicitly N << T.

Experimental results show that not only can the rec-
ognition speed be greatly improved, but the recognition
accuracy can also be maintained by carefully choosing
the distance measurement criterion. A family of infor-
mation-theoretic distance measurement criteria, includ-
ing the Chernoff distance, Bhattacharyya distance,
Patrick—Fisher distance, divergence and a Bayesian-like
distance, are used and compared. The training and rec-
ognition procedures for the proposed SPDM are also
developed.

2 Formulations of model matching

The similarity between a test utterance O and the
acoustic model A is usually measured as the a posteriori
probability A given O, i.e. p(A|0). If the a priori proba-
bility of A is assumed to be constant, the similarity
measurement p(A|0) can be reduced to the conditional
density function p(O|A) by Bayes’ theorem.

2.1 Conventional frame-based approach

2.1.1 HMM: In the conventional approach, such as
HMM, the similarity is measured frame-by-frame as
the following form [2):

pOIN) = Y~ p(OIA, S)p(S|A)

all S

T
=Y [IpCo:ir, s:)p(SIN) (1)
all St=1
where S = 55, ... s7 a possible state sequence and O =
010, ... oy is the frame sequence with a total of T
frames. Here the statistical independence of observa-
tions is assumed. If the HMM A has the set of parame-
ters (4, B, m), where x is the initial state transition
probability, 4 = a,, ..., a5 1S the state transition
probability and B = by, ..., by, is the observation prob-
ability, eqn. 1 can be shown as [2]

p(0|)\) = Z Tsy b51 (Ol)aslsz bsz (02)
all S
e @sp_gspDsr (OT) (2)
where bg(o,) = p(o,|A, s,), as shown in eqn. 1. Instead,
the optimal state sequence with maximum probability
is selected using the Viterbi decoding algorithm, and
the corresponding probability value is used as the simi-

larity between the test utterance and the acoustic mod-
els [2]):

p(OI/\) = m?,‘x sy bsl (ol)asl 52 bsz (02)
ce - Qspoysy bST (OT) (3)

2.1.2 SPM: In the SPM, the probability p(O|A) has
the following [4]:

p(op‘) = bsl (Ol)bSQ (02) ... bST (OT) (4)

where s, = j, if flj — 1) < 1t <= f{j). f{j) denotes the end-
ing frame for state (segment) j in an utterance which is
predetermined by a linear warping function. In fact,
eqn. 4 is a simplified form of eqn. 3, where the decoded
state sequence is determined by the linear warping
function such that the probability of the state sequence
P(S|A) in eqn. 1 can be therefore deleted. Here a simple
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linear warping function is used to equally segment the
utterance into N states.

Figs. 1a and b show the search spaces needed in the
model-matching process for HMM and SPM, respec-
tively, which implies a great reduction in the computa-
tional complexity from HMM to SPM. Preliminary
experimental results indicate that not only is the com-
putational complexity greatly reduced in SPM, but
comparable recognition rates with CHMM can be
obtained [4].

model

frame
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5, S segment
| It 1 ] frame
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Fig.1 Search space for HMM, SPM and SPDM
a HMM

b SPM

¢ SPDM

2.2 Segment-based approach: SPDM

In the proposed SPDM approach, the pre-alignment
process applied in SPM is first used to divide the utter-
ance into N segments. The observation frame vectors in
each segment are then modelled by a PD function. In
this way, a sequence of feature vectors is replaced by
the parameters of the associated PD and the processing
unit is changed from frame to segment. The associated
PD for each segment not only reproduces the statistics
in this segment, but also captures the time dependency
of these observation vectors. Thus, the similarity
between a test utterance O and the acoustic model A
can be measured as

p(OjN)=p(o10z ... 07|\, 5)
=plor1 .. ~0f(1)|)\7 Sl)p(Of(1)+1 . -Of(2)|)‘7 82)
. e .p(of(N_1)+1 e OT{/\, SN)

=p(G1|/\, sl)p(G2|’\a 52) .. p(GN‘)‘v SN)
(5)
where G; is the corresponding PD for segment j, with a
total of N PDs modelling the utterance. Since the prior
probability of A in each segment is assumed to be con-
stant, the similarity p(O|A) is measured as the multipli-
cation of joint probabilities of the distribution and the
acoustic models over all segments. This has the follow-

ing form:

p(OIA) = p(G1, A, 51)p(G2, A, s2) ... p(GN, Ay sN)
: (6)
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The similarity between training and testing speech spec-
tra is evaluated in terms of the distortion between their
associated PDs, instead of the distance between the
individual feature vector and the distribution repre-
sented by training speech. In other words, the recogni-
tion process depends on the N PDs, instead of the T
observation vectors. It is also obvious that the number
of probability distributions N is much less than that of
the feature vectors 7 in an utterance. This is why the
required recognition time in SPDM can be reduced sig-
nificantly compared to SPM.

As shown in Fig. 1, the required search spaces are
greatly reduced from HMM and from SPM to the pro-
posed SPDM. Two major problems arise in the pro-
posed SPDM approach:

(1) how to derive the acoustic models A in the SPDM.
(ii) how to evaluate the joint probability p(Gi, A, s;), i =
1...N.

In the following, we investigate the above two prob-
lems, and several solutions are presented and discussed.

3 Training procedure

The block diagram of the training procedure for the
SPDM is shown in Fig. 2. Conventionally, each Man-
darin syllable is decomposed into the consonant/vowel
format like in a western language, and the vowel part
includes possible medial and nasal ending [1]. There are
22 context independent (CI) consonants and 41 CI
vowels in Mandarin Chinese. These 22 CI consonants
can be further expanded into 113 context-dependent
(CD) consonants with respect to the beginning pho-
nemes of the following vowels. A linear warping func-
tion can be used to divide the syllable utterance into N
segments, with equal length for each segment consider-
ing the monosyllabic structure of Mandarin Chinese
[8]. In this way, the corresponding observation frames
that each state (segment) occupies in a Mandarin sylla-
ble utterance are easily obtained. For each segment, a
PD is then associated with the speech spectra of this
segment.

collect
distributions for
segment i of the

SPDMs

measurement |NO

) distance table
segmentation g

all training
syllable utterances

splitting
Gaussain

clustering
initial/final ¥
labelling Lre-estimation—H global merging

process

Fig.2  Block diagram of training procedure for SPDM

In this study, the unimodal Gaussian distribution is
used to represent the PD such that the corresponding
mean vector and covariance matrix can be derived for
each segment. In addition, to increase the trainability
of the SPDMs, the segment sharing concept is applied.
This is where the first few segments of the SPMs with
the same CD INITIALs actually bear similar charac-
teristics, and thus can share the same training data;
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likewise the remaining segments with the same CI
FINALs [6]. This is similar to the tied-state methods
used in HMM [13]. The modified K-means algorithm is
then used to classify these PDs into M mixture compo-
nents [7]. After the training procedure, those Gaussian
distributions with the lowest average measurement dis-
tances, i.e. the highest mutual similarities, can be
merged into the same mixture component. Compare
our method with the segmental K-means method for
training a SPM or CHMM, where all training observa-
tion samples are vector quantised using the Lloyd algo-
rithm based on the Euclidean distance {13]. In our
method, the SPDMs are derived from the Gaussian dis-
tributions modelled by these training observation sam-
ples, using the modified K-means algorithm based on
the information-theoretic distance measurement. As the
element to be merged is the Gaussian distribution
instead of the sample frame vector, the total training
numbers are greatly reduced and the computational
load can therefore be reduced tremendously.

4 Recognition procedure

In the recognition procedure, the syllable utterance to
be recognised is first divided into N segments and each
segment is modelled by a Gaussian distribution, as in
the training phase. Taking the logarithm of eqn. 6, the
similarity p(O|A;) between the test utterance and the
model A; for syllable i can be expressed as

N
p(OIx) = logp(Gj, Ai, 55) (7)
j=1
where G; is the unimodal Gaussian distribution model-
ling the speech spectra of the jth segment for this utter-
ance. Here two scoring methods for evaluating the joint
probability p(G;, A;, s;) are used:

(i) partitioned distance:

(i1) mixture-weighted distance:
M
PG, Niys5) = D wili, KD Mr(Gj, Aiy s5)) (9)
k=1
where wyj, k) is the mixture gain for adjusting the con-
tribution of each mixture to the similarity, /(-) is the
individual similarity for each segment and while DM(-)
is the measurement distance for the mixture component

L.| DM(Gy, 4, §) I__¢

DM(Gy, A §0)

e
ESPDM Py

Fig.3 Evaluation of similarity measurement in SPDM

P(ON)

Fig. 3 shows the similarity measurement procedure in
the recognition phase of SPDM. Note that lower meas-
urement distance implies higher individual similarity.
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In order to maintain the recognition accuracy with a
conventional model-matching approach such as HMM
or SPM, the information-theoretic distance measure-
ment criterion must be carefully chosen.

5 Information-theoretic distance measurement
criteria

In this Section, a family of information-theoretic dis-
tance measurement criteria are used to measure the dis-
tance between two PDs, including the Chernoff
distance, Bhattacharyya distance, divergence, Patrick—
Fisher distance and a Bayesian-like distance [11].

5.1 Chernoff distance D,

Given two classes r; and r, with the PDs H;(x) and
Hy(x), respectively, the overlap & between these two dis-
tributions can be used as a measure of the similarity
between them, which is also called Bayes’ error. It is
obvious that the higher the value of ¢ means a greater
similarity between these two classes. The mathematical
form of the overlap € can be expressed as

ey = / Hy(2)' Hy (2)°da (10)

Using the fact that min(H,(x), H)(x)) = H(x)'™s H)(x),,
0 = 5 = 1, the upper bound of & which is called ¢,, can
be easily obtained:

5u=/min(H1(x),H2(x))dm (11)

Moreover, if these two PDs are normal (i.e. N(U;, Z,)
and N(U,, Z,), where U, and X, represent the mean vec-
tor and covariance matrix for H; respectively) ¢, can
be simplified to

ey =e D¢ (12)

where
s(1—
D, = (_232([]1 —U)7

X (sD1 4 (1= 9)%y) " (U1 — Uy)
|521 + (1 - 8)22'
|Z1]5|Ea ]t e

This is called the Chernoff distance 8], which can be
used as the distance measurement in eqns. 8 and 9.

In order to obtain the parameter s of the Chernoff
distance, two kinds of methods are used. First, the
parameter s is fixed to 1/2, which is a special case of
the Chernoff distance called the ‘Bhattacharyya’ dis-
tance (D). Secondly, the parameter s is optimised
empirically. In practice, the parameter s can be
designed with a different value for different models or
an unique value for all models. Different optimisation
criteria can be applied to find the optimal value of s,
instead of estimation by experiments.

+110
2 g

5.2 Divergence Dy
The divergence is a kind of distance-like criterion from
information theory which can be expressed as [9)

Dy=E {1og g;g; |r1} +E {log g%)rg} (13)

where the expected values of the log-likelihood-ratio
for classes r; and r, are used. When H;(x) and H,(x)
are represented by Gaussian distributions as mentioned
above, eqn. 13 can be extended as follows:
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1
Dy = (U = Up)" (57" +557)(U1 — )

1
+ Etrace(EflEg +35'8 —2I)  (14)

where trace(A) means the summation of the diagonal
terms of the matrix A.

5.3 Patrick-Fisher distance D,

The Patrick-Fisher distance between the two Gaussian
distributions H,(x) and H,(x) can be derived from the
following measurement criterion, based on the integral
of the Euclidean distance for each observation vector x
[10]:

GD”

Il

1/2
mewmmﬂﬂ
_ l_ 2
V2151 + So|1?
X e*%(U1*U2)T(21+22)71(U1*U2)
1 1 1/2

+ + ]

\/277'221‘1/2 \/2#'222|1/2

(15)
Taking the logarithm of eqn. 15, we can obtain the
Patrick-Fisher distance D,.

5.4 Bayesian-like distance Dy,

The Bayesian-like distance is derived from the conven-
tional likelihood function of observing a feature vector
sequence 010, ... o7 for a class r; with Gaussian distri-
bution H;(x). The likelihood function can be measured
by Bayes’ theorem as in eqn. 1, which has the following
form:

T
HP(Ot]ﬁ)

- ! o= i (=) "m0 =)
\/2_7TT|211T/2

(16)

If the frame sequence 0,0; ... o is modelled by an uni-

modal Gaussian distribution N(U,, £,), eqn. 16 can be
expressed in another form:

Tl o~ 3(U1=U2)"S7 (U1 —U2) = S trace(S227 1)

% 27 ]21 ]T/2
— e—Dbz
(17

Thus, taking the minus logarithm of eqn. 17, we can
obtain the Bayesian-like distance Dy,

From the above discussion, we can conclude that the
similarity between two PDs can be measured based on
the following three criteria:

(i) the overlap or unoverlap regions between them such
as D, D, and D,

(ii) the discriminant information due to entropy meas-
ures, e€.g. in D, the difference of entropy and cross-
entropy of the two PDs is used.

(iii) the likelihood scores, given a probability distribu-
tion and the data derived from another distribution.

Note that similar forms can be obtained for two
Gaussian distributions, i.e. the distance measurement
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can be separated into two terms, where the first term
gives class separability due to the mean difference, and
the second term gives the class separability due to the
covariance difference. Moreover, the first part of the
distance measurement due to mean difference is the
weighted Euclidean distance (i.e. Mahalanobis dis-
tance), in which different weighting factors are derived
from the combination of the covariance matrices X,
and =, of the two distributions for different distance
measurement criteria. On the other hand, different for-
mulations using the covariance matrices Z; and X, are
provided for different distance measurement criteria in
the second part. Despite theoretical differences for
these measures, we can choose between them according
to recognition speed and accuracy for the purpose of
speech recognition.

6 Experimental results and discussion

6.1 Speech database

The speech database used in all experiments was pro-
duced by three speakers. For each speaker, four utter-
ances of each of the 1345 Mandarin tonal syllables
were produced in isolation. In all experiments, three
utterances of each of the 1345 Mandarin syllables are
used in training and one utterance is used in testing for
three speakers, respectively. The quoted recognition
rates are the average of the rates for each of the speak-
ers. All the speech data are obtained in an office-like
laboratory environment. They are low-pass filtered,
digitised by an Ariel S-32C DSP board with sampling
frequency 16kHz. After end-point detection is per-
formed, a 20ms Hamming window is applied every
10ms with a pre-emphasis factor of 0.95. 14-order mel-
frequency cepstral coefficients, derived from the power
spectrum filtered by a set of 30 triangular band-pass fil-
ters, are used as feature parameters.

6.2 Experiments

6.2.1 Choose the distance measurement crite-
rion: The experimental results with respect to different
distance measurement criteria discussed in Section 5 are
shown in Table 1, where the partitioned distance is
used for evaluating the recognition procedure. It can be
found that the Chernoff distance D, yields the best rec-
ognition accuracy, which indicates a recognition rate as
high as 91.62%. Here the value of the parameter s in
the Chernoff distance is optimised by experiments.
Fig. 4 shows the influence of s on the recognition
rates, where the value of s ranges from 0.1 to 0.9. In
addition, slight degradation on recognition rates is pro-
vided using the Bhattacharyya distance D, (s = 0.5)

and Bayesian-like distance Dy, i.e. 91.47% and 91.06%.
The recognition rates are also reduced by 3.27% and
4.57% using the divergence D, and Patrick—Fisher dis-
tance D, respectively.

—

. . i N )

1 02 03 04 05 06 07 08 0.9
time, s

Fig.4 Recognition rates with respect to different parameters s in CD-

SPDM

recognition
rate, %

[BBE2RE

6.2.2 Choose the scoring method in the rec-
ognition procedure: Table 2 shows the experimen-
tal results for the two scoring methods in the
recognition phase, i.e. partitioned distance and mix-
ture-weighted distance, for the SPDM based on the
Chernoff distance (CD-SPDM). Note that the required
recognition time using the partitioned distance is much
less than that using the mixture-weighted distance, with
an increased recognition rate of 2.61%. Therefore, the
CD-SPDM using the partitioned distance is used in all
the following experiments.

6.2.3 Comparative results for various acoustic
models: The extensive experimental results for the
various SPMs, various CHMMs based on different
acoustic units and the CD-SPDMs proposed here are
compared in Table 3. The symbol (N, M) in syllable-
based CHMM and SPM means N states (segments)
and M mixtures per state. In SS-SPMs, a segment
shared concept based on the CD consonant/CI vowel
format of a Mandarin syllable is applied for SPM, as
mentioned in Section 3. In fact, the model configura-
tion of the CD-SPDMs is the same as that of the SS-
SPMs, i.e. the first few segments model the 113 CD
consonants and the remaining segments model the 41
CI vowels. In addition, two widely used sub-unit-based
CHMMs for Mandarin syllable recognition such as
consonant/vowel-based CHMM and phone-based
CHMM are evaluated as a comparison [12]. In the con-
sonant/vowel-based CHMM, the symbol (n;, n,, M)
means the first n; states model the 113 CD consonants,
the remaining n, states model the 41 CI vowels and
each state contains M mixtures. On the other hand, in
phone-based CHMM, 149 right context-dependent
(RCD) phone-like units are used. The symbol (N, M)
means each RCD phone-like unit is modelled by N
states, where each state is represented by M mixtures.
CD-SPDM outperforms SPM both in recognition
rates (91.62% against 90.61%) and in speed (0.083 s/syl.

Table 1: Comparative results according to different distance measurement criteria

Chernoff Bhattacharyya

Divergence Patrick-Fisher Bayesian-like

Recognition rates (%) 91.62 91.47

88.35 87.05 91.06

Table 2: Experimental results for two scoring methods in
recognition phase using CD-SPDM with model configuration

2,3,3)
Model Recognmon time Recogz\mon
(s/syl in SPARC 10)  rates (%)
CD-SPDM Partitioned distance 0.083 91.62
Weighted distance 0.103 89.01
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Table 3: Comparison of recognition accuracy, speed and number of distributions

for various acoustic models with different model configurations

Recognition -
SPARC 10) ?
SPM (3,2 2448 0.996 90.61
SS-SPM (1,2,3) 585 0.214 89.20
(2,2,3) 924 0.254 91.37
(2,3,3) 1047 0.226 92.37
Syllable-based CHMM (3,2 2448 3.846 79.73
Consonant/vowel-based (3,3,3) 1386 2.012 88.10
CHMM (3.4,2) 1006 1.799 88.50
(3,4,3) 1509 2.337 89.74
Phone-based CHMM (2,2 596 1.074 87.24
(2,3) 894 1.486 88.60
(3,3) 1341 2.262 90.43
CD-SPDM (1,2,3) 585 0.047 87.90
(2,2,3) 924 0.074 90.28
(2,3,3) 10.47 0.083 91.62

against 0.996 s/syl.), with far fewer mixtures required
(1047 against 2448). However, compared to SS-SPM,
nearly three times the recognition speed can be
achieved (0.083 s/syl. against 0.226 s/syl.) in the CD-
SPDM at the expense of a 0.75% recognition rate
(91.62% against 92.37%) when the same model configu-
rations are used. Furthermore, in comparison with the
phone-based CHMM, more than 25 times the recogni-
tion speed can be achieved (0.083 s/syl. against 2.262 s/
syl.) with a 12.43% error rate reduction (91.62% against
90.43%) using less than 4/5 mixture numbers (1047
against 1341) in the proposed CD-SPDMs. Note that
from Table 2 SS-SPM and CD-SPDM can provide the
best performance on recognition accuracy and speed,
respectively.

6.2.4 Evaluating the training procedure: Table
4 shows the experimental results that the acoustic mod-
els in SS-SPMs are directly used to perform the CD-
SPDM, in which the recognition rate is reduced from
91.62% to 88.20%. This is because of the unmatched
conditions in training and recognition. Accordingly, the
effectiveness of the proposed training procedure can be
confirmed.

Table 4: Experimental results for evaluating the training
procedure

Recognition rates
using CD-SPDM (%)

91.62
88.20

CD-SPDM
SS-SPM

6.2.5 Beam search processing: The beam search
is the most well known method to speed up the recog-
nition process in the HMM-based approach [2].
Table 5 exhibits the experimental results with different
beam widths for various acoustic models. It is obvious
that less beam width in the recognition process implies
less recognition time and, in most situations, lower rec-
ognition rates. Table 5 shows that when the beam
width is set to 400, the recognition rates are reduced by
0.32% and 0.34%, respectively, in phone-based and
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consonant/vowel-based HMM, and nearly three times
the recognition speed can be obtained. However, in
comparison with the CD-SPDMs as listed in the last
row of Table 5, the recognition speed is nine times
higher and the error rates are increased by more than
15%. On the other hand, this beam search method can
be also used in the CD-SPDMs. Here the searching ele-
ment is changed to segment instead of frame, and the
total beam width is 408. The experimental results, as
shown in the last part of Table 5, indicate that the
beam search method can further speed up the recogni-
tion procedure in the CD-SPDMs with a slightly
reduced recognition rate. As the beam width is set to
70, the required time to recognise a syllable is reduced
from 0.083s to 0.067s, and an identical recognition rate
of 91.62% with full search can be achieved. Accord-
ingly, in comparison with the most successfully sub-syl-
labic CHMMSs, more than 12 times the recognition
speed and 15.27% error rate reduction can be achieved
using less than 3/4 of the mixture numbers only in the
proposed CD-SPDMs.

Table 5: Experimental results for various acoustic mod-
els using beam search method

Model type Beam width Time (s/syl) Rate (%)
Phone-based 300 0.624 89.02
CHVMM (3,3 400 0.754 90.11
500 0.881 90.21
800 1.282 90.38
full search 2.262 90.43
Consonant/ 300 0.657 88.01
vowel-based  4q9 0.792 89.40
CHMM (3, 4, 3) 500 0.936 89.59
800 1.429 89.72
full search 2.337 89.74
CD-SPDM 30 0.060 90.65
(2,33 50 0.063 91.32
60 0.065 91.47
70 0.067 91.62
full search 0.083 91.62
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In the last experiment as shown in Fig. 5, we applied
the beam search method to the SPDMs based on dif-
ferent information-theoretic distance measurement cri-
teria. Similar trends as with the CD-SPDMs can be
obtained, i.e. the error rate increase is less than 0.5%
when the beam width is set higher than 50. However,
around 1% recognition rate reduction can be achieved
when the beam width is reduced to 30.

93
92 91,32 9.1 91.62
o1 91.47
S 91.06
22 90 90.79
§’ g% 88.35
g8 5757 N e
87 87.05
86 —"""86.58
a5 , , . . ,
30 50 60 70 408(full)
beam width

Fig.5  Recognition results with respect to different beam width for differ-
enf information-theoretic distance measurement criteria
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7 Conclusions

A segmental probability distribution model (SPDM)
approach for Mandarin syllable recognition has been
proposed. Instead of conventional frame-by-frame dis-
tortion measures, the recognition process was evaluated
segment-by-segment based on information-theoretic
distance measurements. A family of distance measure-
ment criteria were used and compared, including the
Chernoff distance, Bhattacharyya distance, Patrick—
Fisher distance, divergence and a Bayesian-like dis-
tance. Experimental results show that not only can the
recognition time be reduced tremendously, but also
improved recognition rates and fewer mixture require-
ments can be achieved in the proposed SPDM as com-
pared to the widely used sub-unit based CHMMs.

8 Acknowledgments

The author would like to thank Dr. Lin-shan Lee for
his valuable suggestions and discussions, the reviewers
for their insightful comments.

390

9

13

References

LEE, LS., TSENG, C.Y., GU, HY. LIU, FH, CHANG,
C.H. LIN,Y.H., LEE, YM, TU,S.L., HSIEH, SH., and
CHEN, C.H.: ‘Golden Mandarin(I) - a real-time Mandarin
speech dictation machine for Chinese language with very large
vocabulary’, IEEE Trans. Speech Audio Process., 1993, 1, (2), pp.
158-179

RABINER, L.R.: ‘A tutorial on hidden Markov models and
selected applications in speech recognition’, Proc. IEEE, 1989, 77,
(2), pp. 257-286

OSTENDORF, M., DIGALAKIS, V.V,, and KIMBALL, O.A.:
‘From HMM’s to segment models: a united view of stochastic
modeling for speech recognition’, IEEE Trans., Speech Audio
Process., 1996, 4, (5), pp. 360-378

LYU,R.Y., HONG,ILC., SHEN,JL., LEE,MY. and
LEE, L.S.: ‘Isolated Mandarin base-syllable recognition based
upon the segmental probability model (SPM)’, IEEE Trans.
Speech Audio Process., 1998, 6, (3), pp. 293-299

SHEN, J.L., and LEE, L.S.: ‘A Chernoff distance based segmen-
tal probability model (CD-SPM) approach for Mandarin syllable
recognition’. Proceedings of Eurospeech, Madrid, Spain, Septem-
ber 1995, pp. 1491-1494

SHEN, J.L.,, WANG, H.M,, LYU, R.Y,, and LEE, L.S.: ‘Incre-
mental speaker adaptation using phonetically balanced training
sentences for Mandarin syllable recognition based on segmental
probability models’. Proceedings of international conference on
Spoken language process, Tokyo, Japan, 1994, pp. 443-446
WILPON, J.G., and RABINER, L.R.: ‘A modified K-means
clustering algorithm for use in isolated word recognition’, IEEE
Trans. Acoustics, Speech Signal Process., 1985, ASSP-33, (3), pp.
587-594

FUKUNAGA, K.: ‘Introduction to statistical pattern recognition
(Academic Press, Chap. 3, San Diego, 1990)

PATRICK, E.A., and FISHER, F.P.. ‘Nonparametric feature
selection’, IEEE Trans., Information Theory, 1969, 15, pp. 577-
584

KULLBACK, S.: ‘Information theory and statistics’ (Wiley, New
York, 1959)

LEE, Y.T.: ‘Information-theoretic distortion measures for speech
recognition’, IEEE Trans. Signal Process., 1991, 39, (2), pp. 330-
335

LYU, RYY,, WANG, HM,, and LEE, LS.: ‘A comparison of
different units applied to isolated/continuous large vocabulary
Mandarin speech recognition’. Proceedings of international con-
ference on Computer processing of oriental languages, May 1994,
(Korea),pp. 211-214

LEE, C.H.,, GIACHIN, E.,, RABINER, L.R., PIERACCINI,
R., and ROSENBERG, : ‘Improved acoustic modeling for large
vocabulary continuous speech recognition’, Computer Speech
Language, 1992, 6, pp. 103-127

IEE Proc.-Vis. Image Signal Process., Vol. 145, No. 6, December 1998



