
MISSING DATA THEORY, SPECTRAL SUBTRACTION AND SIGNAL-TO-
NOISE ESTIMATION FOR ROBUST ASR: AN INTEGRATED STUDY

A. Vizinho, P. Green, M. Cooke and L. Josifovski

Department of Computer Science, University of Sheffield
Regent Court, 211 Portobello St, Sheffield S1 4DP,UK

{A.Vizinho,P.Green,M.Cooke, L.Josifovski }@dcs.shef.ac.uk

ABSTRACT

In the missing data approach to robust Automatic
Speech Recognition (ASR), time-frequency regions
which carry reliable speech information are identified.
Recognition is then based on these regions alone.  In
this paper, we address the problem of identifying
reliable regions and propose two criteria to solve this
based on negative energy ( $s < 0 ) and SNR

( $s s n2 21
2< + ).  These criteria are evaluated on the

TIDigits corpus for several noise sources and compared
with spectral subtraction.  We show that in this task the
missing data method performs considerably better than
spectral subtraction and the combination of the two
techniques outperforms either technique used alone.  We
report robust performance at 0dB SNR for car noise and
10dB SNR for factory noise.

1. INTRODUCTION

In the missing data approach to robust ASR, two
problems arise: the identification of the non-reliable
time-frequency regions of the speech and recognition
techniques to deal with the incomplete data set.  We
concentrate here on the first problem, with the aim of
finding an automatic procedure for masking unreliable
regions.  A more detailed treatment of both problems
and literature review is available in Cooke et al [2].

Previous work by Drygajlo and El-Maliki [3] combined
missing data with spectral subtraction by treating the
negative components after subtraction as missing.  This
is termed the negative energy criterion below. This
criterion alone results in a modest improvement in
recognition performance [2] but essentially corrects
errors made by spectral subtraction rather than
addressing the challenge of reliable data selection.  We
develop here another masking procedure which uses an
additional SNR criterion.

Section 2 summarises the missing data recognition
technique we used for this work.  The masking criteria
are related to noise estimation: several such techniques
are described in section 3.  Section 4 formalises the
masking criteria employed for the experiments.

Recognition results using TIDigits in additive noise
from the Noisex database are presented in section 5.

2.  MISSING DATA THEORY

Two approaches for classification with missing
components exist: data imputation and marginalisation.
The theory of both techniques is covered in [2] and in
the companion paper [5].  For this work,
marginalisation was used.

The objective is to compute the HMM (Hidden Markov
Model) state output probabilities using a reduced
distribution based on reliable components.  We assume
that HMMs have been trained on clean data and the
density in each state Ci  can be modelled using mixtures

of M Gaussians with diagonal covariance structure:
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where x is the input data vector and ( )P k Ci|  are the

mixture coefficients.

The marginal is determined by integrating over all
missing components:

( ) ( )f x C f x x C dxr i u r i u| , |= ∫  (2)

where ( )x x xr u= ,  has been partitioned into reliable and

unreliable parts from the masking procedure.  In the
following, the time-frequency regions containing data
deemed reliable are collectively referred to as the mask.

After substitution, using the independence of reliable
and unreliable subvectors within each mix and
integrating the right part of (2), we obtain
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For an acoustic vector in the spectral energy domain,
bounds can be placed on the possible values of the
unreliable components: they must lie between zero and
the energy in the speech+noise mixture.  If unreliable

components are bounded by [ ]x xlow high, , (3) becomes
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Assuming diagonal Gaussians for the components of the
mixture, the integral in (4) can be expanded as the
difference of two error functions.

3. NOISE ESTIMATION METHODS

In the case of spectral subtraction, the noise estimate is
subtracted from the signal and resulting negative
amplitudes are set to zero.

A.  Simple Estimation

A simple way to estimate the noise spectrum is to use
the periods of non-speech activity.  The average of the
first 10 frames is taken as the noise spectrum.

B.  Weighted Average Method

This method, introduced by Hirsch and Ehrlicher [4],
attempts to adapt its estimate to changes in the noise.  It
is based on a first order recursion to estimate the level of
noise and uses an adaptive threshold to stop the
recursion when the speech is most likely to be present.
For each frequency band, an estimate of the noise
magnitude in frame i is obtained by the first order
recursion:

if ,  then X i N i N i N i X i( ) ( ) ( ) ( ) ( ) ( )≤ − = − + −β α α1 1 1

    else N i N i( ) ( )= −1 (5)

where X is the spectral magnitude, N the noise
magnitude estimation, β ≈ 2  and α ≈ 0 98. .  The

initialisation is based on technique A.

C.  Second Order Method

Use of equation (5) tends to overestimate the noise in
the frequency channels where the signal-to-noise ratio is
low.  In order to reduce this error, a second order
recursion is added:

E N E N X ii i( ) ( ) ( ) ( )‘2 2 1 21= + −−α α    (6)

Equations (5) and (6) estimate the noise mean and
variance respectively.  Both B and C are applied only
when the frame is considered noisy:

X N k b− ≤ σ (7)

where σ b  is the noise standard deviation [7].

D.  Histogram Method

This technique was also developed by Hirsch and
Ehrlicher [4].  It is an improved version of the weighted
average method (technique B).  Past spectral values
below the adaptive threshold (equation 5) over a given

duration window are used to produce sub-band energy
histograms.  Because the speech distribution has been
roughly eliminated from such a histogram, the noise
level is estimated as its maximum.  To obtain a more
accurate estimation of the noise spectrum, a Gaussian
distribution can be fitted to the energy values.

4.  INTEGRATING SPECTRAL SUBTRACTION
AND MISSING DATA THEORY

Identification of unreliable data is based on the negative
energy and SNR criteria.

The negative energy criterion was introduced by
Drygajlo and El-Maliki [3].  If the observed magnitude
in any frame is denoted by s n+  and the estimated

noise spectrum by  $n , then the negative energy
criterion drops spectral regions from the mask if:

s n n+ − <$ 0 (8)

$ $s s n n= + −  is the resulting “cleaned” speech.

In the context of spectral subtraction, the estimate of the
noise spectrum can be used to identify those regions
dominated by noise. This SNR criterion treats data as
unreliable when the estimated SNR is negative:
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By adding $s 2 in both sides of (9) and using the Cauchy-
Schwartz inequality, we obtain the SNR criterion which
treats data as missing if

$s s n2 21
2< + (10)

5.  ASSESSING THE MASKING CRITERIA

In order to compare the masks obtained by applying the
criteria of section 4 with the `right answer' we form `a-
priori masks'  using the clean speech signal in addition
to the noisy speech.  The a-priori mask is formed from
those regions where the energy in the noisy speech is
within 1dB of the energy in the clean speech: i.e. the
regions which are speech-dominated.

Figure 1 shows the a-priori mask and the masks
resulting from the negative energy criterion alone and
from both criteria (the joint mask) for a spoken digit
sequence "439" added to factory noise at 10dB.
Technique A was used for both criteria.  Unless the
spectral subtraction is near perfect, it is clear that the
negative energy criterion is not good enough on its own
but in conjunction with the SNR criterion we obtain a
good approximation to the a priori mask.  Because we
are using a constant noise estimate rather than the real
(varying) noise level, the joint mask has a cleaner



appearance than the a-priori mask.  More examples of
such masks can be found in [2]. How well does this
technique stand up in recognition experiments?

    
(a) (b)

    
(c) (d)

Figure 1: Masks obtained from a noisy signal (speech “439”
mixed with the factory noise at 10dB), (a) spectrogram, (b) a-
priori mask, (c) negative energy mask and (d) joint mask.

6. RECOGNITION EXPERIMENTS

A.  Experimental Details

The Tidigits corpus (American English digit sequences)
was used to test the approaches outlined in the previous
sections.  Acoustic vectors were obtained via a 64
channel auditory filter bank [1] with centre frequencies
spaced linearly in ERB-rate from 50 to 8000 Hz.  The
instantaneous Hilbert envelope at the output of each
filter was smoothed with a first order filter with an 8ms
time constant, and sampled at a frame-rate of 10ms.
The training section of the corpus was used to estimate
the parameters of 12 HMMs (1-9,’oh,’zero’ and a
silence model), each with 8 emitting states.
Observations in each state were modelled with a 10-
component mixture.  Testing was performed on a 240
utterance subset of the TIDigits test portion.  HTK [8]
was used for training and a local MATLAB Viterbi
decoder adapted for missing data was used for all
recognition tests.

Three noise signals (car, lynx helicopter and factory)
from the Noisex corpus were added at a range of SNRs.
Because of limited space, we present only the results
obtained with factory noise here. This is the most
difficult for recognition, because it is the least
stationary,  has energy peaks in the formant region and
additional impulsive energetic regions (hammer blows).
Similar conclusions to those presented below were
obtained for the different noise sources, albeit from a
higher performance baseline.  For a full account, see [2].

B.  Results

1) Spectral Subtraction comparisons

Baseline performance, with no noise estimation
technique, and performance with spectral subtraction
alone is shown in figure 2 as a function of SNR with
added factory noise.  Spectral subtraction uses the
different noise estimation techniques described in
section 3.  As can be seen, all these techniques improve
recognition accuracy but the weighted average and
histogram methods give the best results.

2) Missing Data results

Figure 3 shows the performance with the missing data
method only, by using the joint criterion to define a
mask for recognition on the noisy speech.  For
convenience, only  plots for simple noise estimation and
weighted average estimation are shown. Results are
given for missing data recognition with and without the
bounds constraint (equations 3 and 4). Performance
improves dramatically with the use of  bounds. This can
be explained by the following argument:

• In the joint-constraint masks (see figure 1) there are
time segments in which all or nearly all of the data
is deemed unreliable.

• In these regions, the marginalisation expression (3)
provides little or no discrimination.

• The counter-evidence provided by the bounds
constraint (equation 4) recovers some
discrimination.

The missing data results represent a significant
improvement upon those obtained from spectral
subtraction.  Hirsch's weighted average technique
produces a small advantage at low SNRs.

3) Combination results

Table 1 shows the recognition results when spectral
subtraction and missing data  (i.e. marginalisation with
bounds) are combined.  The results show a further small
improvement from missing data alone. Useful
performance on factory noise is obtained up to around
10dB SNR For the more benign car noise, a level of 0dB
can be tolerated. For lynx helicopter noise the
corresponding level is around 5dB [2].
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Figure 2: Recognition accuracy against SNR (factory noise)
for spectral subtraction alone, with the different techniques
described in section 3.
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Figure 3: Recognition accuracy against SNR (factory noise)
for missing data alone (without and with bounds), with two
techniques from section 3.  The accuracy obtained from the a-
priori information is also added for comparison.

SNR 0 10 20
no processing 10 33 58
technique A 34 81 94
technique B 38 83 95

a-priori 65 93 97
Table 1: Recognition accuracy (%) on factory noise for
combination spectral subtraction/missing data with bounds,
with two noise estimation techniques (section 3) and for the a-
priori information.

6. CONCLUSION

For the application of missing data theory, it is crucial
to identify the reliable data.  Here, we proposed a joint
criterion for detecting the unreliable information
containing in the signal.  The recognition results
obtained from the marginalisation with bounds are very
promising.

The a-priori mask results indicate that reliable
information is present: performance depends on how
good the noise estimation technique is.
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