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ABSTRACT

A simple segmental hidden Markov model (HMM) is
proposed which addresses some of the limitations of
conventional HMM based methods. The important fea-
tures of this approach are the use of an underlying semi-
Markov process, in which state transitions are segment-
synchronous rather than frame-synchronous and state
duration is modelled explicitly, and a state segment
model in which separate statistical processes are used to
characterise “extra-segmental” and “intra-segmental”
variability. A basic mathematical analysis of gaussian
segmental HMMs is presented and model parameter
reestimation equations are derived. The relationship
between the new type of model and variable frame rate
analysis and conventional gaussian mixture based hid-
den Markov models is explained.

1 INTRODUCTION

In the context of speech pattern modelling a num-
ber of the assumptions which the standard hidden
Markov model (HMM) framework makes are clearly
incorrect. For example, the independence assumption
states that the probability of an acoustic vector given
a particular state depends directly on the vector and
the state but is otherwise independent of other vec-
tors in the sequence. Problems associated with this
assumption are compounded by the nature of the state
model, in which “extra-segmental” variations (such as
speaker, or choice of “target” for a particular utter-
ance), and “intra-segmental” variations (which occur
once the state target has been chosen) are characterised
by a single model. Hence, in principle, the model al-
lows extra-state factors such as identity of speaker to
change in synchrony with the frame rate of the acoustic
patterns.

This paper proposes a simple segmental HMM which
addresses this problem. The segmental model uses an
underlying semi-Markov process [5, 8] to model speech
at the segment level and, at the state level, employs sep-
arate models for extra-segmental and intra-segmental
sources of variability. This enables extra-segmental fac-

tors to be fixed throughout a state occupancy. The ba-
sic theory of gaussian segmental HMMs is presented, in-
cluding the extension of the conventional Baum-Welch
parameter estimation algorithm to this type of model.
Finally, some relationships between gaussian segmen-
tal HMMSs, conventional variable frame-rate analysis,
and conventional HMMs with gaussian mixture densi-
ties are described.

A similar model has been studied by Peter Brown [3].

2 SEGMENTAL HMMS

A segmental HMM M is a hidden semi-Markov model
in which extra-segmental variability associated with a
state o; is characterised by a probability density func-
tion (PDF) b; called the state target PDF. On arrival
at state o; a target is chosen according to this PDF.
This target is a PDF v which, intuitively, models le-
gitimate within-segment variation once all sources of
extra-segment variation have been fixed. Formally, the
statistical process associated with state ¢; is defined by
a PDF b; : P — [0, 1], where P denotes a set of PDFs
defined on the set of acoustic vectors, and a state dura-
tion PDF d;. A state duration D; is chosen according to
the PDF d; and a sequence of D; vectors is then gen-
erated randomly and independently according to the
target v.

Given a sequence of observation vectors y =
Y1,..,yr, the joint probability of a subsequence
y::-1+1 = Yt_,+1,---» Y, of length D; and a particular
target v given state o; is given by:

i

Pg,(y::_.+1,v) = d;(D;)bi(v) H v(y), (1)

t=t,_1+1

and the probability of y::_1+1 given o; is the integral
Pm(y::_,-u) = fu Po, (y::_1+17 v).

This paper presents an analysis of the alternative
probability function

Pa.'(y::_lﬂ) =Pa;(ytt,'_l+1:’7): (2)
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where v is the target which maximises Pa,(y,f:_lﬂ,v)A
¥ = argmax Py (Ys'_ 41:7) (3)

Given a state sequence £ = z1, ..., z7, such that a tran-
sition from state o; to state 041 occurs at time ¢;, the
“joint probability” P(y, z|M) of y and z given M, and
the “probability” P(y|M) of y given M are given by!:

N
Hai—l,iPU-(y::_1+l)’ (4)

=1

3 Ply,zIM) 5)

P(y, z|M)

P(y|M)

These and similar expressions can be computed using
the extensions of standard HMM algorithms to semi-
Markov processes [5, 8].

3 GAUSSIAN SEGMENTAL HMMS

Now consider the case where acoustic vectors are drawn
from n-dimensional space R", and for each state o; a
target is any gaussian PDF defined on R" with fixed
variance 7;. Then a target v = N, ,, can be identified
with its mean ¢, and P = R". If the state target PDF
b; is a gaussian PDF defined on R”, with mean y; and
variance 7;, then the resulting model M will be called
a gaussian segmental HMM (GSHMM). The number
of parameters in a GHSMM is only increased by the
variance terms 7; (i = 1,..., N) relative to a gaussian
HMM.

In this case it can be shown that the target (mean)
¢ which maximises P,,(y, ¢) is given by:

BiTi + Z;;,,_,H WY
i+ T

é= (6)
Thus the “best target” is a linear combination of the
expected target for state o; and the actual observations.
If 7; is large, so that the observations are not expected
to be tightly constrained by the target process, then é is
biased towards the state mean y;. But if v; is large and
7; is small, é is biased towards the actual observations.

4 PARAMETER REESTIMATION
FOR GAUSSIAN SEGMENTAL
HMMS
A Baum-Welch type parameter reestimation process
can be derived for GSHMMs. As above, let M be an
N-state GSHMM with parameters y;, 4; and ;, and

!to simplify notation it will be assumed that (i) the underlying
Markov process is strictly left-right, and (ii) all observations are
scalar. Neither of these assumptions are necessary

let y be a sequence of observations vectors. Let M be
the GSHMM with parameters j;. v; and 7;, defined by:

o Exes, Py, e| M), ; Z:’:t.-;-}-l Y )

o = > ees, Py, e[M)K, D

Y = Z::tGS. P(ya r[M)(ﬂz - él:,i)z (8)
1 Z:{:ES, P(y,.t'M)

- Ezes. P(y’x]M)ZZ‘:t._l-}-l(éf.f - yt)2 )
" Yozes, Ply, 2| M)D;

where S; = {z : 2; = o3 for some t}, K5 ; = (% +D:i%i),
and & ; = (Bifi + Lpee,_,,, W3R} 1 (1) % > 7 for
i=1,..,N, and (ii) y = y1, ..., yr is not constant, then
P(y|M) > P(y|M).

The proof follows [1, 6]. Equations (7), (8) and (9)
occur as the unique critical point of an auxilliary func-

tion Q(M, M), defined by:

QM, M) = Py, | M)logP(y,z|M)  (10)

Properties (i) and (ii) are used to show that this func-
tion is concave and tends to —oo as M approaches the
boundary of the parameter space. The derivation of
equation (7) is included for completeness. Differentiat-
ing equation (10) with respect to ji; leads to,

o o . o - _

N o N
Y Py, 2| M)(5=-logN(p, 5.)(z )
T€S; Hi
b9
+ ), -87109-/\/(@,.-,;.-)(%)) (11)

t=t;—1+1
Taking into account the expression for 3,,,,- above

Di(Csi — i)

K

a -
ﬁloy)\f(ﬁiﬁ.’)(c-‘v,i) = (12)

(yi - 21‘15) (13)

o
—logNz_ . - =
dji; og (Cz,,,n)(y‘) K.

where O =37t ., y:. Therefore,

8 A SN . Di(eri — i)
g MM = ;P(y,le)(——————K”
S (=)
+ Y (19)
t=ti_1+1 Tt
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Setting this partial derivative to zero leads directly to
equation (7).

Note that equations (7). (&) and (9) do not constitute
valid Baum-Welch type reestimation formulae since the
parameters of M appear on the right-hand sides of the
equations. Intuitively correct reestimation formulae are
obtained by replacing j;, 7 and 7 with p;, v; and =
on ther right-hand-sides of the equations, but the use-
fulness of the resulting formulae for parameter reesti-
mation needs to be tested experimentally.

5 RELATIONSHIP WITH
GAUSSIAN MIXTURE
DENSITIES

A class of state output PDFs which is commonly used
with conventional HMMs is the class of gaussian mix-
ture densities. In such an HMM the state output PDF
b; associated with the ith state has the form

J
> wiN, v)(0) (15)

i=1

bi(o) =

for any observation o, where ijl w;j = 1. There is
also a continuous version:
M®=/menm@W' (16)
where f
for such models have been established in [6] and [4].

Gaussian mixtures are used to compensate for the
fact that the observations associated with a particular
state will not in general conform with a single gaussian
PDF. This is particularly true if the models are used to
characterise speech from a number of speakers. Thus,
gaussian mixtures are typically used to model broad
sources of extra-segmental variablity and hence, from
the viewpoint of this paper, they may exacerbate the
problems associated with the independence assumption
within a state.

The segment model proposed here is clearly related
to (16), however in the segmental model a single com-
ponent of the continuous mixture is chosen on entering
a state and all observations emitted during a particular
state occupancy are drawn from that component.

)dj = 1. Parameter reestimation formulae

6 RELATIONSHIP WITH
VARJABLE FRAME RATE
ANALYSIS

The gaussian segmental HMM based analysis proposed
here can be interpreted as a natural extension and in-
tegration of conventional Variable Frame Rate (VFR}
analysis and hidden Markov modelling.

VFR analysis is a method for data-rate reduction
which has been shown to give improved performance
over fixed frame rate analysis for automatic speech
recognition [7]. In its simplest form VFR is used to re-
move vectors from an observation sequence. A distance
is computed between the current observation vector and
the most recently retained vector, and the current vec-
tor is discarded if this distance falls below a threshold
T. When a new observation vector causes the distance
to exceed the threshold, the new vector is kept and
becomes the most recently retained vector. VFR anal-
ysis replaces sequences of similar vectors with a single
vector, and hence reduces the amount of computation
required for recognition.

This basic VFR algorithm can be improved:

(1) Rather than replacing a sequence of acoustic vec-
tors ys,...,y: with y,, the first vector in the se-
quence, it should replaced with an average y! over
the sequence.

For a finite sequence y = yi,...,yr the “left-
right” threshold based segmentation used in the
basic VFR algorithm should be replaced with a
“global” dynamic programming based segmenta-
tion algorithm ([2]) which partitions the sequence
y into M subsequences yi’ -
(1<t <

i ta
sYti—141s 2 Yipe 141
.. <ty = T) such that some criterion

ZD(%, 1+1

is minimised. D(y}’_ ,,) is typically a distortion

Dist(ty, ., ti, ooy tag) = (17)

measure on the sequence y;:_l_H, for example the
sum of euclidean distances between vectors in the
sequence and the sequence mean.

In HMM based speech pattern processing it is
clearly sub-optimal to segment the sequence of
acoustic observation vectors and discard informa-
tion during VFR analysis, and then to perform a
second state-level segmentation. The segmenta-
tion of the observation sequence during VFR anal-
ysis should be integrated with the state-level seg-
mentation performed in the model based analysis.

(ii)

Extending the basic VFR algorithm in these ways
leads naturally to a segmental HMM based analy-
sis. Suppose that M = (=, 4, {b;}) is a HMM, with
b; = Jv(u,m): and that y = w1, ..., Y1, ..., Y7 1S a sequence
of acoustic vectors in R". In a dynamic programming
based VFR scheme of the type alluded to above, af-
ter VFR analysis the sequence y is represented by the
sequence § = g{l,...,g{;_lﬂ, ...,gjx_ﬁl, where g;’;_lﬂ
denotes an average over the sequence ;' ;.
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During subsequent HMM based processing, dynamic
programming is used again to find a state sequence

T = x1,..., xpr relative to the HMM M, such that the
probability
M
P(g,2IM) = [ s,y o0, (Di)be, (31, 41)  (18)
i=1

1s maximised. d, is a state dependent duration PDF
which is applied to the VFR count D;.

Ideally the two equations (17) and (18) should be
optimised jointly. Let

t,
Z Deve(y, Ui_,41) (19)
t=ti_1+1

D(y:f_wl) =

where Dgpe denotes the squared euclidean metric.
Then, since

Deve(y, B1i_,41) = —Kilog(Nye - () + K2 (20)
o+

where K; and K, are constants, minimising equation
(17) is equivalent to maximising the quantity

~uo=11 T #

i=lt=ti1+1

P(ty,... 1, a(w) (21)

Combining (18) and (21) gives an evaluation crite-
rion Q((g, | M) for a joint VFR-HMM analysis scheme
which satisfies (i), (ii) and (iii) above:

Haz. Lo d

QM) = (D), (3, 41)

H e am) (22)

t=t;_1+1

But this has the same form as equation (4), with ; = 1,
for all 4, and 4}’ .| = ¢,

In other words, replacing the basic VFR analysis pro-
cedure described above with a dynamic programming
based method and integrating this with the higher-level
HMM based processing leads naturally to the type of
gaussian segmental HMM based analysis proposed in
this paper.

7 SUMMARY

This paper presents a segmental HMM which addresses
some of the limitations of conventional HMMs in the
context of speech pattern modelling. Specifically the
segmental model alleviates some of the problems caused

by the (time) independence assumption and its interac-
tion with the single process state model. A basic math-
ematical analysis 1s presented and Baum-Welch type
parameter reestimation formulae are presented for the
special case of Gaussian segmental HMMs. Interesting
relationships between segmental HMMs, conventional
variable frame rate analysis, and continuous gaussian
mixture HMMs are exposed.
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