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Adaptive Co-Channel Speech
Separation and Recognition

Kuan-Chieh Yen and Yunxin Zha&®enior Member, IEEE

Abstract—An improved technique of co-channel speech sepa- acquisition is feasible (such as teleconferencing or speech
ration, S-AADF/LMS, and its integration with automatic speech controlled devices), the additional information makes more
recognition is presented. The S-AADF/LMS technique is based effective processing possible

on the algorithms of accelerated adaptive decorrelation filtering - L .
(AADF) and LMS noise cancellation, where a switching between Several techniques based on multimicrophone proce;smg,
the two algorithms is made depending upon the active/inactive Such as speech enhancement based on subband adaptive pro-
status of the co-channel signal sources. The AADF improves the cessing [7]-[9] and blind separation in multipath environment
p{egjﬁtl;/s agaptti_\/e tqlecor;relgtion a'QC:jrilthnzj ir; tﬁfr?ts of t%"yStt?m [10], have been explored in the recent years. Among the tech-
stability and estimation efficiency, and leads to better estimation . : ; - : )
of time-varying and reverberant channels. The S-AADF/LMS niques ysmg two-m!crophong speech achIS|t|0n., Widrow's
further improves the estimation accuracy when only one source LMS noise cancellation algorithm [11] has been widely used.
signal remains active during certain periods of time. A coherence- This algorithm focuses on restoring only the primary signal,
function based source signal detection algorithm is also presented, and has difficulties when the primary signal is also picked
\ll_vl\r/lligh istF‘CcestSfU':}’ used in t:he' swiltchfing bletwkeen AADF f‘r(‘jd up by the reference microphone. In recent literature, a few
and in extracting speech signals from leakage-corrupte . . : .
background. Experimegntspwere cogducted under a gmulatecfl) en- resea_rchers propos_ed r?llgo.rlthms for signal separat.lon via the
vironment based on the measurements made of certain real room- adaptive decorrelation filtering (ADF) between two simultane-
acoustic conditions, and the results demonstrated the effectivenessously acquired co-channel signals [12], [13]. These algorithms
of the proposed technique for co-channel speech separation andare shown to be capable of reducing the cross-channel inter-
recognition. ference and are more general than Widrow’s LMS algorithm.
Index Terms—Acoustic channel estimation, active source sig- In the current work, we propose several improvements
nal detection, adaptive decorrelation filtering, automatic speech to the ADF algorithm in the aspects of estimation stability

recognition, co-channel speech separation. and efficiency and describe an integrated co-channel
speech separation and recognition system [14], [15]. In this
|. INTRODUCTION system, two co-existent and independent speech sources are

. . qpnsidered, and their convolutive mixtures are acquired via
HE state-of-the-art speech recognition technology is st ) . : i
iwo microphones. The acquired signals are first processed

vulnerable to the presence of interfering signals [1 .
: 0, separate out the co-channel speech signals, and the
Many research efforts have focused on the stationary agé:i arated signals are then analyzed by a coherence-function
broadband noise sources [2]-[4]. These studies either ass%m@ 9 Y y

that the noise statistics are knovenpriori, or that they can as_ed source detection algorithm to determing the gctive.
be estimated from certain inactive period of speech. In actiVed'ons of eac_h Source. The separat_ed speech _S|gnals in their
environments where interfering signals are inherently timggspectlve active regions are r_ecognlzed by a h_|dden Markav
varying, such as the co-channel interference from a compet del (HMM) based speaker-independent continuous speech

talker, the noise characteristics estimated at one instant miéph ognition (SICSR) system [16].

not be applicable at a later time. Furthermore, a single micro- his paper is organized into eight sections. In Sectipn Il, the
phone is normally used for speech acquisition, which “migackground of the co-channel system and the adaptive decor-

the effectiveness of the techniques intended for handling tm{g_lation filtering algorithm are briefly described. In Section III,

varying interference [5], [6]. While this is usually the resylfeveral improvements to the ADF algorithm are discussed, in-

of system constraints (speech acquired on the telephone Iiﬁlé'ding a blockwise implementation, an upper bound of adap-

for example), in other applications where multimicrophon@t'on gain for stability, a power nqrmallzatlon on the_adapta-
tion gain, and an accelerated version of ADF. In Section IV, a
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Fig. 1. Block diagram of the co-channel system. y49 = + v

Fig. 2. Block diagram of the source separation system.
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Il. CO-CHANNEL SYSTEM AND SIGNAL SEPARATION

A. Co-Channel Speech Acquisition System coefficients can be estimated recursively by the following

equations:
In a co-channel speech acquisition system, each microphone
acquires not only its target signal, but also the interfering a® =g 4Bl V@l (1)
signals from the other sources. For simplicity, our discussion is b = pt-1 4 ()t (t— 1)(t)v§t’l)(t) ()

limited to the two-source two-microphone case. keft) and
x2(t) be the signals generated by sources 1 and 2, respectivgliiere o(*) and Q@) denote the estimates af and b at time
WhICh are assumed to be independent of each other. The signaing U(t Y(7) and v{~"(r) denote the values of signals

acquired by the microphone that targets the source 1 is denog (jr andvg( ) calculated according ta®=1 and plt—1.
by v1(t), and that acquired by the microphone that targets the B -

source 2 is denoted hys(t). Using the linear filtersi and B to W) = () — ()T
model the channel coupling effects and assuming no distortion (t—1) B -1

: - vy (1) =ya(r) =y, (1) TBTY. (5)
between each microphone and its target source, the co-channel 2 21 =

system can be described in the frequency domain as

Yi(f) =Xu(f) + AN Xa(F)

o ... —_ T
V() = o) + BUX(). & 0= (=i o
t) = t t—Ng+1
This co-channel system is illustrated in Fig. 1. QQ( )= l2(®)- + ]
w0 =TV T - N+ D)
B. Signal Separation by Adaptive Decorrelation Filtering Ugtfl)(t) [Ugtfl)(t) o8 1)(t — N, + D"

Let A(f) andB(f) be the estimates of the channel filtets _ _ _ _ _ _
and B, respectively. Define the filte®'(f) = 1 — A(f)B(f), The adaptation gaip(¢) will be discussed in the next section.
and define the Fourier transforms of the signalg) andwv.(¢)
as [1l. M ODIFICATION AND ENHANCEMENT
ON ADAPTIVE DECORRELATION FILTERING

N =n() - f}(f)YQ(f) In [12], it is recommended to usgor +/t as the adaptation
Va(f) =Yalf) = BUHYL(S). (2) gain p(t), where~ is a constant. However, ifi(t) = ~v is
It is easy to verify that ifA(f) = A(f) and B(f) = B(f), used,y has to be very small in order to avoid instability,
then which limits the efficiency of the system. On the other hand,
) if u(t) =/t is used, the adaptation gain will diminish toward
Vi(f) = C(HXi(f), =12 zero ast increases, and hence is not suitable for time-varying

Therefore, if the filters4 and B are known, the signals from environments. Therefore, a blockwise implementation based

the sources 1 and 2 can be separated from the acquired sigR8|&(f) = 7/ is chosen. Furthermore, an upper bound-for
by (2). Furthermore, iC(f) is invertible, the source signals'S first derived for ensuring system stability, and then, a method

can be perfectly reconstructed by of ChOQSIﬂg'y based on power no_rmallzfatlon is devgloped
) . accordingly. An accelerated adaptation gain sequence is further
Xi(f)y=Cc(HVilf), i=1,2 3) proposed to replace(t) =~/ for enhanced efficiency, which
The (2) and (3) provide the basis for separating the sour ﬁvcralrnyellgnportant for the estimation of time-varying coupling

signalsz(¢) and z»(¢) from the acquired signalg, (¢) and
y2(t), and a block diagram of such a separation system |s
illustrated by Fig. 2. . Blockwise Implementation

Since in most applications the coupling channels are time-In the blockwise implementation, the co-channel speech sig-
varying and unknown, the filterd and B need to be adaptively nals acquired simultaneously by two microphones are blocked
estimated. It was shown in [12] that if the source signalato two sequences of frames, where the frames are synchro-
are zero-mean and uncorrelated, and if the filtérsand nized between the two channels. Each frame Nasamples,
B are finite impulse response (FIR) filters represented laynd the shift between successive framed/issamples. Here
a = [ag, -,an, 1]F and b = [bo,---,bn,_1]*, wWhere N is usually a multiple ofi/. The frames are labeled by =
the superscriptl” denotes vector transpose, then the filtay, 1, .-, and the acquired signal sample in the framdrom
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the channel is denoted ag; [, (t),t =0,---,N—1,i = 1,2, power of the incoming signals, and hence makes the system
ie., more efficient.
. The following two examples demonstrate the influence of
i ) (E) = y(M i), t=1,2, =01, : : o ;
Yisfn] () =i (M +-2) ' " the adaptation gain on the system stability and the effective-
t=01,-N-1 ness of the derived upper bound farln each example, source
The processing in each frame involves the following four stepgnals chosen from TIMIT database were mixed by a pair of
where the subscripin] denotes the frame index: fixed channel filters to generate the co-channel signals. The
Step 1: Initialize a;; and b, by o0 — V-1 o4 major delay caused by the channel filters was approximately
“m] Al 7 ] T ] 2 ms, and the attenuation was approximately 8 dB.

QESZ} = er]:{r:llf’ since the estimates afandb from the previous Example 1: In this experiment, a set of co-channel signals
frame are usually gc(;g)d initial vall(Jéa)s for the current frame. FQfa o processed with/ = N = 200. Three methods of
m = 0, simply seta;;’ = 0 andby,’ = 0. choosing adaptation gains were used:

Step 2: Adapt g[(;)ﬂ and Q[(% fromt =1tot =N-1 9
according to (4), withu(t) = ~/t. p(t) = - - 1/t

Step 3: Use Ay = QETJZ]—I) and Q[m] — Q[(TJ:;]—I) as the \/NaNb val{y;} var{yz}
estimates ofA and B for frame m, and computevy [,,(t) p2(t) = 1/t
and vy [,,,1(t),t = 0,---, N — 1, according to (5). max(N, var{yz}, N, var{glt})

Step 4: Compute the restored signalsg; [,(t) and s (8) 2 / 1

&9,;m(t), recursively fromt = 0 to t+ = N — 1 according - N, var{ys} + Np var{y; }
to [12, egs. (37) and (38)]: . . . :
[ as. (37) (38)] The stability of the system was examined after each iteration

i () of adaptation (i.e., every sample). Once the system became
1 No+Ny—2 unstable, the filter coefficients were reset to zeros and the
= c—(()) Vi, ) () — Z Cim) (B)Z; ) (£ — k) process continued qntil a!l the'signal samples were processed.
[m] k=1 In more than 40 million iterations, the system was reset 23
where times when usingu (¢); three times when using.(¢); and

. zero times when usings(¢). This example shows that the
N ) boundI” works well for the ADF algorithm in most situations.
o) (k) = 8(k) - Z o) (Dbpmy (k= 1), Example 2: In this experiment, the co-channel signals were
processed using(t) = 5I'/t, uo(t) = T'/t, and ps(t) =
0.2I'/t as the adaptation gain, respectively. To evaluate the
By using the blockwise method, the signals can be procesgmiformance of ADF, the squared estimation eroft), was
within time intervals of several frames, i.e., long before thdefined as
end of the utterances, hence, processing delay can be re- E(#) =[Aa®]TAd® + [AD]T AR
duced, which is especially important for real-time processing. Aal® — (t)__ . - -
Note that there are overlaps between successive frames when 4 =4 4
N > M. In this case, the multiple values corresponding to the AP =p*) - p* 8

same signal sample in different frames are averaged to produgfere = denotes the true filter coefficients. The relation
the restored sample. In general, allowing more overlaps yielggtweenZ(t) and the number of processed frames is plotted in
better restoration with the cost of increased computation. Fig. 3 for the three choices of the adaptation gains. Since the
filter coefficients were all initialized as zeros, the beginning
part of each curve represents the system behavior for a fast-
It can be shown that the following bound can be usedyforchanging channel, and the ending part represents the system
to maintain stability (see Appendix A for derivation): behavior for time-invariant channel. It is shown in Fig. 3(b)
0 2 . 6) that E(¢t) was reduced faster at the beginning wijth(¢),
<y < =1L but was more stable at the end with(¢). Also as shown
No vardya(D)} + N var{p (8)} in Fig. 3(a), the system quickly becam(e)unstable wpitlit),
Since the variances of(t) and #2(t),var{y1(¥)}, and which hasy > T.
var{y2(t)}, can be evaluated in each frame, the corresponding
' can be calculated for each frame as in (6). Therefore, the Accelerated ADF (AADF)

adaptation gain in a frame is chosen as In the adaptive estimation of the co-channel system, it is
u(t) = al'/t, 0<a<l 7 dgsiraple to apply a Ia}rger adaptation gain when thg pre-
vious filter estimates differ from the current channel filters
wherew is a positive constant chosen according to the expecteidnificantly; on the other hand, a smaller adaptation gain
time variation rate of the acoustic environment. As sucls desirable when the previous filter estimates are close to
v = ol is normalized by the power of the incoming signalshe current channel filters. A good way of implementing
in each frame and satisfies the condition stated in (6). Thiach an adaptation strategy is to use Kesten's procedure of
method reduces the dependency of system stability on thecelerating convergence for stochastic approximation [17],

=0
k=0, Ny+ Ny — 2

B. Choice of Adaptation Gain
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Fig. 4. Squared estimation error versus the number of processed frames:
(b) dotted curve: ADF witha = 1; dashed curve: ADF withx = 0.5; solid

Fig. 3. Squared estimation error versus the number of frames using thfsve: AADF with o = 0.5.

different adaptation gains: (@) (t) = 5I'/t; (b) dashed curvei»(t) = T'/t,
solid curve: u3(t) = 0.2I'/t, whereI' is the derived upper-bound of . L
adaptation gain constant for system stability. and the number of processed frames is plotted in Fig. 4 for

. _ _ all three cases. The results illustrate that the AADF with
where, instead of using the adaptation gafn) = o'/t forall » = 0.5 could track the channel variation almost as fast as
filter coefficients, the ADF estimation equations are modifiegle ADF with o = 1, and the AADF was almost as stable as

as the ADF with o« = 0.5 when the channel became steady. As
o — ,(=1) ol o= 1)(t — k)t (t— 1)( £) such, the accelerated algorithm enhances the system ability to
’ k iax(t) ° accommodate a wider range of channel variations.
® _ 1, ol g (t-1)
O N O] in(®) =Ky ) ©) IV. SOURCE SIGNAL DETECTION
where/: is the filter index, and Although the ADF and AADF algorithms can significantly
iak(1) =1; k=0,1,---,N, -1 attenuate the interfering signals in each channel, the residual
k(1) =1; k=0,1,---,N, — 1 interfering signals, referred to as leakage signals, still pose
. (1) (t b problems for automatic sp(_aec_:h re_cognit_ion: in regions where
bon(t+1) = { 'fa,k(t)a if Cj(t) (t B the target speech source is inactive (silent) for an extended
’ iok(t) +1, if a”a, S 0 period of time, even a weak leakage signal could cause
T (D)7 (1) recognition errors (mainly insertions) and hence deteriorate the
i _ ) ia(®), if 6,70, " >0 o : :
b p(t+1) = { ‘ = it—1) recognition accuracy. If the active regions of each source can
ik (t) + 1, i 070, <0 be identified so that the ASR is constrained to be performed
and within the active regions of each target signal, the recognition
() (t=1) (t—1) accuracy may be improved. For such a purpose, a source
@ =vy C(t—kup ()

detection algorithm is developed based on the coherence
function of the restored signals to determine the active and

As defined above, the signs (positive, negative) of tHBactive regions for each source.
consecutive correlation terms control the adjustment of the
adaptation gain for each filter coefficient, and the gain dé& The Use of Coherence Function for Source Detection
creases only when the sign changes. In fact, the two extremérom (1)—(3), the relationship between the restored sig-
cases of (9) are equivalent to usingt) = ol and using nals and the source signals in the frequency domain can be
n(t) = al'/t, respectively. This modified algorithm is referredepresented by
to as accelerated ADF (AADF) in the following discussion.

B = oV — iV (@),

The following example gives a performance comparison ¢ 7y — 1 - A(HB() Xl(f)+ A(f) — AL X(f)
between the ADF and the AADF algorithms. The co-channel 1—-A(f)B(f) —A(N)B(f)
signals in the examples of Section IlI-B was processed usin 3 3
th?a following three spchemes, with! = N = 203. gXQ(f) = % Xo(f) +1 B %(f)Bé((;) X1(f)

1) the ADF;a = 1. (10)

2) the ADF; a = 0.5.

3) the AADF; a = 0.5. where the first term in the right hand side of each equation

Similarly, the estimated filter coefficients were initialized as the linearly distorted source signal, and the second term is
zeros. The relation between the squared estimation &ty the leakage signal. Assuming that the filter estimateand
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B are very close to the true filters, ied(f) = fl(f) and Then by choosing a threshold valdefor the variableP, an
B(f) =~ B(f), then the linear distortion is ignorable and (10nctive/inactive decision on each source can be made according

can be simplified as to the following rule:
- Case 1: If P < T, both sources are active; set= 6, = 1.
)fl(f) ~ X1 (f) + G(H)Xa(f)s IGNHI <1, Vf Case 2:If P > T and E; > E», source 1 is active and
Xo(f) = Xo(f)+ H(HX1(S); [H(f)| <1, V. source 2 is inactive; set, = 1 andé, = 0.

(11) Case 3:If P> T and £y < Eg, source 1 is inactive and
source 2 is active; set; = 0 andé, = 1.
From (11), each restored signal is approximately the sum of
its source signal and a small leakage from the other sourge.|mplementation of the Source Detection Algorithm
Using a short-time discrete Fourier transform (DFT) of length

L, (11) can be written as To determine the presence/absence of each source signal at

time ¢, the coherence function at time denoted as(k;¢),
X1(k) = X1 (k) + G(k) X2 (k); |G(k)| < 1; needs to be evaluated. The short-time DFT coefficients of the
E=01.- L—1 restored signals at timeis defined as

Ra(k) ~ Xa(k) + HODXo (k) H(B) < 1

k=0,1,---,L—1 Z (8= L e BT

=1
The coherence functiop(k) for each frequency birk is  which can be computed efficiently by the recursion:
defined as . . .
- - Xi(k;t) = Xi(kst — D)e? ™D L g(8) — &5(t — L). (12)
E{X1 (R) X3 (k) YEAXT (k) Xo(F)}
p(k) = \/ (X (Qk)|2}E{|Xl BPy Since the second-order statistics of the DFT coefficients are
AT TR not available, they can be approximated by
Since z1 (¢) and z»(t) are both zero-mean and independent
of each other,X;(k) and X,(k) are also zero-mean andE{X (k; t)X*(k £)} D Z Wkt — ) j(k;t—u)

independent in each frequency bin. Define the short-time e
energy of the source signalin the frequency birk as (13)

E; . = B{|X;(k)|*}

where2D is the size of the averaging window. Based on (13),
E\(t), E5(t), and P(t) are computed, and the decision scores
61(t) andé,(t) are determined. The decision scores are further
E{|X1(E)]*} = E1p + |G(E)* Ea smoothed and thresholded to avoid the fragmentation of the
E{ |X2(k)| } =Eoy + |H(E)Eyk speech létter?ncefs tohfacri:itatcre] a;;tc&maticdspeecr;] recognition.
N A good value for the threshol@ depends on the acoustic
E{{(l( )X5(k)} = H (k) + (k) Ea e envir%nment, and’ is chosen experin?entally for the studied
E{X;(k)Xa(k)} = H(K)Ey 3 + G*(k)Ea. environment in the current work. When the noise level is
small or ignorable, the values d?(¢) differ significantly in
the region where both sources are active and in the region
twhere only one source is active. In this cagé,can be
Ehosen from a wider range of values while still resulting in
f|m|lar performance. However, the difference Bft) in the
! . Wo types of regions decreases as the noise level rises, and
much greater than that of the other signal in i frequency hence the choice df" becomes more critical. In this case, a

bm.’ thgn the coherence funct|on.of th|_s bin W'I.I be close tf(’)nger averaging window can help reducing noise effect, and
unity, i.e., p(k) = 1. A source signal is very likely to be therefore improve the detection accuracy.
inactive if its short-time energy is much weaker than that of

the other source for an extended period of time. Define tl&e
decision variable®;,: = 1,2, as

and it follows that

It can be shown that i, ;, = E» , i.e., the short-time ener-
gies of the two sources are comparable in itie frequency
bin, then the coherence function of this bin will be close
zero, i.e.,p(k) = 0. On the other hand, i , <« FEs; or

Ey i > Esy, i.e., the short-time energy of one source signal [S

Performance

The following example illustrates the performance of the
source detection algorithm. The two source signals from the
TIMIT database were made to have different and yet partially
and define overlapping active regions. The source signals, the acquired

S5 — { 1: Sourcei is active
‘ 0: Sourcei is inactive

L—1 co-channel signals, and the AADF-restored signals in both
E; = {|X:(k) %} channels are shown in Figs. 5-7, respectively. The signal-
k=0 to-interference ratio (SIR) is about 10 dB in both channels
L-1 before processing, and is about 22 dB after processing. After
r= p?(k) computing the length-32 DFT coefficients of the restored sig-
k=0 nals according to (12), two different sized averaging windows
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Source Signals Restored Signals
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Fig. 5. Source signals—an example: the unittaf in sample(s), and the Fig. 7. AADF-restored signals of the mixed signals in Fig. 6.
sampling rate is 10.67 kHz.

Mixed Signals

Ch.

0 0.5 1 15 2 25 3 35 4 45
t (D=1000) x 10*

o 0.5 1 15 2 25 3 35 4 45

N 2 s " L s 2 0 0.5 1 15 2 25
0 05 1 15 2 25 3 35 4 45 t (D=3000)

t x10*

gig. 8. P(t) curves of the restored signals in Fig. 7. In the first curve, an
averaging window of2 = 1000 was used and in the second curve, a window
of D = 3000 was used. The vertical dotted lines indicate the true boundaries
between the active and inactive regions.

Fig. 6. Co-channel convolutive mixture of the two source signals in Fig.

(D = 1000 and 3000) were used in (13) to calculatgt),
which are plotted in Fig. 8 for both cases.

As can be observed from Fig. 8, boff(t) curves dropped channels were active; however, the algorithms encountered
toward zero shortly before the source signal 2 became actipegblems when either of the source signals became inactive.
and then rose back again shortly after the source signaFtom the co-channel model of (1), if the source 2 is inactive,
became inactive. There were certain excess regions before bad =2(t) = 0 for an extended period of time, the system
after the true active regions being detected as active regiobgecomes
These excess regions were ignorable for the shorter window,
but were not ignorable for the longer window which introduced
too much temporal smoothing. On the other hand, B{e) N =x(f)
curve of the shorter window was noisier than that of the longer Ya2(f) =B(HXi(f)- (14)
window where the latter reduced randomness in estimating
the second order statistics of the short-time DFT coefficients, ) ) . i )

Therefore, the size of the averaging window needs to be chosc€ there is no information of filted in 4.(#) and 2(?),
based on the trade-off between the temporal resolution of th¢ 2daptive estimation based on the decorrelation @) and

detection boundary and the reliability of the estimate of tH&(f) may result in large estimation error of filter while the
coherence function. estimate of filtetB continues to converge. Therefore, when the

source 2 is detected as inactive, which can be accomplished
by the source detection algorithm discussed in Section 1V, it
is desired to stop the adaptive estimation of filtérand to
continue the estimation of filteB. In such a case, an obvious

From experiments, we observed that the ADF and AADéhoice for the adaptive estimation of filtds is the LMS
algorithms worked well when the source signals in bothlgorithm of Widrowet al. [11].

V. ALGORITHM SWITCHING FOR
IMPROVED FILTER ESTIMATION
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Normalized Estimation Error
X0 M10)
® :
E ¥ + e (1)
Fig. 9. Filter estimation model when one of the source signals is inactive. % 50 100 12,0 200 - 250 300
In this case, the Widrow's LMS algorithm can be applied. Number of Frames
1
A. The LMS Algorithm oer
® 0.6
Assume the source 2 as inactive and denote the fittand g, : . : ]
its estimate at time by & and ', respectively. From (14), s : ; e
the relationship betweem (#) andy»(t) can be written as ' : f f
00 50 100 150 200 250 300

Number of Frames
ya(t) =y, (070
Fig. 10. Normalized estimation error, witf®) = 0 andd(®) = 0. The
source 2 is inactive in the time region 2, and the source 1 is inactive in the
time region 4. The dashed curve is without algorithm switching and the solid

curve is with algorithm switching.

Define the error function as

£(t) = () — y, ()7 2

Nommalized Estimation Error

The filter coefficientsb can be estimated by minimizing T
E{*(t)}. According to the LMS algorithm of Widrovet al.
[11], b can be estimated iteratively by

b = b 4 2pe(t)y, (1) (15)

150
The block diagram of the LMS algorithm is illustrated in Numbar of Frames
Fig. 9. 0403
Similarly, if the source 1 is inactiveg can be estimated 00251
iteratively by e |
£
Q(H—l) = Q(t) + 2NC(t)Q2(t) (16) o.<;05—
AN

Where Number of Frames

T (%) Fig. 11. The normalized estimation error, with?) ~ a* andh(o) ~ b*.
Ct)=wn(t) - QQ(t) a’’. The source 2 is inactive in the time region 2, and the source 1 is inactive in
the time region 4. The dashed curve is without algorithm switching and the
B | | tati d Perf solid curve is with algorithm switching.
. Implementation an erformance

From the above discussion, depending on the OUtcomeaOffined as
source detection, the adaptive estimation algorithm is switche%

between the ADF or AADF and the LMS by the following la® — a*|?
rule: Ealt) = |a*|?
Case 1: If both sources are active, update the filter coeffi- | p _ b |2
cients according to (4) (for ADF) or (9) (for AADF). Ep(t) = W
Case 2: If the source 1 is active and the source 2 is inactive, -
update only the filter coefficients d¢ according to (15). and were measured after each frame of signals was processed.
Case 3: If the source 2 is active and the source 1 is inactivdwo different initial conditions were tested. In the first condi-
update only the filter coefficients of according to (16). tion, the filter coefficients were initialized as zeros to simulate

Below is an example which shows the different behaviorfje significant difference between the current filter estimates
in terms of filter estimation error, of the AADF algorithm inand the true filter coefficients. In the second condition, the
two types of regions: both sources are active vs. only ofiter coefficients were initialized to be close to the true
source is active. In both types of regions, the estimation errdilger coefficients. The NEE’s for the two cases are plotted
without and with the algorithm switching are compared. An Figs. 10 and 11, respectively, where the dashed curves
pair of co-channel signals generated from the TIMIT databasgpresent the case of without algorithm switching, and the
were processed using AADF withh = 0.5, N = 1000, solid curves represent the case of with algorithm switching.
and M = 200. The SIR is about 10 dB in both channelsAccording to the presence or absence of one of the source
The normalized estimation errors (NEE) for both filters wergignals, the time axis of each plot is divided into four regions:
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Fig. 12. Room-acoustic environment of House Ear Institute, Los Angeles, 5_0.2_ J
which was used for measuring the cross-channel acoustic paths.
-0.4} B
. . 0 2‘0 4‘0 6‘0 B‘O 1(‘)0 1&0 1;0 1&0 1;0 200
Region 1: frames 1 through 75, both sources were active. n
Region 2: frames 76 through 150, only the source 1 waBg. 13. Impulse responses of the cross-channel acoustic paths measured in
active Fig. 12: the filter A corresponds to the acoustic path from the talker 2 to

. . the microphone 1, and the filtd® corresponds to the acoustic path from the
Region 3: frames 151 through 225, both sources were agiker 1 to the microphone 2. The sample rate is 10.67 kHz.

tive.
Region 4: frames 226 through 300, only the source 2 wa . -
g active. g 4 ﬂsﬂe two filters are plotted in Fig. 13, where the length of the

N . filters were both 200 samples, that correspond to 18.7 ms at
. As can bg observed in F|gs_. 10 apd L .W'thOUt the alg “sampling rate of 10667 Hz. The frequency responses of the
rithm sw!tchlng,_ the N.EE of f'"eTA in Region 2 and the filters are also plotted in Fig. 14. The average attenuations
NEE of filter B in Region 4 both increased, as compared W troduced by the filtersi and B are 10.34 dB and 11.23 dB
tEe Nfle E’? with alg(f)rirt]hm Iswit_cr:ling. Th(re]_res_ults demOnStrarfr%spectively. The filtersA and B were 'used to gener'ate thza
the effectiveness of the algorithm switching in preventing the : . )
filter estimates from drifting away from the true filters. Tth_ChannEI signals from the source signals according to (1).
combined AADF and LMS based on the algorithm switchin% Estimation of Reverberant Channels

is referred to as the switched AADF/LMS (S-AADF/LMS).
From Fig. 13, most energy in each impulse response con-

VI. EXPERIMENTS AND SYSTEM PERFORMANCE centrates in a small numbgr of samplgs with a short delay,
In th . h h | si | . hich corresponds to the direct acoustic path. However, due
N the gxperlmen_ts, the co-channel signa separa.tlon teg “reverberation, the impulse response lasts for an extended
niques discussed in the previous sections were mtegra iod of time and hence requires much longer FIR filters in
W'th_ an ASR t;syst(ejm and were evaluated :nde;r a sm?ula gaptive estimation. Long FIR filters not only require more
envwonmentdgse Ionhmeasur_emer;]ts made of a rea ro(?:'Hr'nputation, but also slow down the convergence of the filter
acoustic condition. In this section, the acoustic env'rc.mm%‘gtimates, and therefore deteriorate the system performance.
is first descnbed._Next, a strategy of accelerating estimatio .o the energy of an impulse response concentrates in the
convergence for high-order f|n|te|mpul_se response (FIR)_f'Iteﬁ?st 50 some samples, we experimented with a filter-order
IS .d'SCUSSEd.' The ASR system used_ n the_expe_rlment IS Fhﬁﬂlding—up scheme that starts the estimation with a low-order
briefly described. Furthermore, the linear distortion removing, . - then switch to a high-order filter when the low-order
part of the signal separation algorithm [specified by (3)] is N timation was about to converge. This method significantly

pherformeq n thel systelm, and the rea§or(1j IS dlscussefd.hFlns IPfortened the convergence time required for long filters and
the experimental results are summarized in terms of the nce improved the system performance.

the word recognition accuracy (WRA), and the word error rate The following example shows the difference in the speed of

before and after the adaptive co-channel processing. convergence between using a low estimation order and a high
estimation order. A set of co-channel signals were generated
using the filtersA and B as described in the above section,
The cross-channel acoustic paths were measured in the rowithh the source signals chosen from the TIMIT database. The
environment described in Fig. 12 at the House Ear Institutidter coefficients were initialized as zeros. The co-channel
Los Angeles, and were represented by FIR filtdrand B of signals were processed using AADF with two choices of the
order 200, where filter ordersN, and IV, : the first choice wasV, = N, = 100
Filter A: the acoustic path from talker 2 to microphone land the second choice wdg, = N, = 200. The NEE's
Filter B: the acoustic path from talker 1 to microphone 2for both cases are plotted in Fig. 15. The results show that
In order to simplify the estimation problem, the channeallthough using, = &N, = 200 achieved lower NEE's
distortions from talker 1 to microphone 1 and from talker 2ventually, usingV, = N, = 100, the NEE’s decreased much
to microphone 2 were assumed negligible. This distortion wilhster at the beginning stage of estimation even though half of
be addressed in the future work. The impulse responsestiué filter coefficients were not estimated.

A. Simulation of Acoustic Environment
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TABLE |
SIGNAL-TO-INTERFERENCE RATIO, WORD RECOGNITION ACCURACY, AND WORD ERROR RATE
BEFORE AND AFTER PROCESSING WHEN AcousTiC NORMALIZATION WAS USED IN THE SICSR SSTEM

The word recognition accuracy for source signals = 91.2 % (error rate = 8.8 %)

Before Processing After Processing
Relative Source Channel SIR WRA (Error Rate) SIR WRA (Error Rate)
Energy Condition Original | Extracted Original | Extracted
Both sources heve Ch. 1 10.34 4B 18.3 % 36.3 % || 23.79 dB 64.1 Y% 84.8 Y

the same energy

~

81.7 %) | ( 63.7 %)

—~

35.9 %) | (15.2%

Ch. 2 11.23 dB 16.7 % 32.8 % || 24.02 4B 62.5 ¥ 81.5 %

~

83.3 %) | (67.2°%)

—~

37.5% | (18.5 %

Source 1 is Ch. 1 20.34 dB 59.2 % 79.4 Y% || 33.37 dB 68.9 ¥ 91.3 %

10 dB stronger

—~

40.8 %) | ( 20.6 %)

~

31.1 %) (8.7%
Ch. 2 1.23 dB -18.9 % -9.1 % || 16.67 dB 45.8 Y 65.2 %

(118.9 %) | (109.1 %)

~

54.2 %) | ( 34.8%)

Source 2 is Ch. 1 0.34 dB -20.6 % -10.7 % || 16.56 dB 43.1 % 64.2 Y

10 dB stronger (120.6 %) | (110.7 W

~

66.9 %) | ( 35.8 %)
Ch. 2 21.23 dB 54.0 % 74.8 % || 33.46 4B 71.7 % 89.5 ¥

(46.0 %) | (26.2%)

~

28.3 % | (10.5 %)

(8 Frequency Response Nomnalized Estimation Error
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Fig. 14. Frequency responses of the cross-channel acoustic paths meaq{,—@dla

9. Normalized estimation errors, with® = 0 andb® = 0. The
in Fig. 12.

dashed curve correspondsity = N, = 200 and the solid curve corresponds
to N« = N, = 100.
C. Automatic Speech Recognition

. . " with a total of 62 units as defined in the TIMIT (excluding
A speaker-independent continuous-speech recognition sgﬁ,#,,) [18]. The average mixture size per mixture density is

tem was used to recognize the speech signals. The SICR o imately 19, and the total number of triphone contexts
system is based on the HMM's of phone units: each phong-apout 4500. The TIMIT speech data were downsampled
unit HMM has three tied-states; each state is modeled Bym 16 to 10.67 kHz. The cepstrum coefficients of the

a Gaussian mixture density. For each mixture density, thg p analysis (eighth-order) and log energy were taken as
basis Gaussian densities are context-independent; the nytantaneous features, and their first-order 50-ms temporal
ture weights are triphone context-dependent; the mixture sigjression coefficients as dynamic features. The recognition
and the Gaussian density parameters were determined teigk has a vocabulary size of 853 and a grammar perplexity of
a bottom-up merging algorithm. The phone models wet®5. Further details of the background materials can be found
trained from a subset of 717 sentences in the TIMIT database,[16]. The recognition system allows an optional acoustic
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TABLE I
SIGNAL-TO-INTERFERENCE RATIO, WORD RECOGNITION ACCURACY, AND WORD ERROR RATE BEFORE
AND AFTER PROCESSING WHEN AcousTic NORMALIZATION WAS NoT UseD IN THE SICSR SSTEM

The word recognition accuracy for source signals = 88.6 ) (error rate = 11.4 %)

Before Processing After Processing

Relative Source Channel SIR WRA (Error Rate) SIR WRA (Error Rate)
Energy Condition Original j Extracted Original | Extracted
Both sources heve | Ch. 1 10.34 dB 27.7 % 39.5 % || 23.79 dB 70.8 % 76.9 ¥,
the same energy (72.3%) | (60.5% (29.2 %) ] C23.1%
Ch. 2 11.23 dB 21.2 % 32.2 % || 24.02 dB 68.6 % 72.2 %
(78.8%) | (67.87%) (31.4%) | C27r.8%
Source 1 is Ch. 1 20.34 dB 63.2 % 77.9 % || 33.37 dB 77.1 % 83.2 %
10 dB stronger (36.8% | (22.1% (22.9% | ( 16.8 %)
Ch. 2 1.23 dB ~12.2 % -3.2 % || 16.67 dB 48.1 % 58.1 %
(112.2 %) | (103.2 %) (51.9% | (41.9%0
Source 2 is Ch. 1 0.34 dB -14.6 % -8.0 % || 16.56 dB 47.0 % 60.4 %
10 dB stronger (114.6 %) | (108.0 %) (83.0% | (39.6 %)
Ch. 2 21.23 dB 62.9 % 74.3 % || 33.46 dB 76.0 % 81.1 %
(37.1 %) | (25.7%) (24.0%) | (18.97%)

normalization on the cepstral features of test speech, where Were generated, with the relative source energy levels defined
acoustic normalization was based on cepstral bias estimatasthe following:
which was bootstrapped by cepstral mean estimation, andset 1: Both sources have the same energy:;

details can be found in [19]. Set 2: Source 1 is 10 dB stronger than source 2;
Set 3: Source 2 is 10 dB stronger than source 1.

The S-AADF/LMS withee = 0.5, N = 1000, and M = 200
was used in the channel estimation. The source detection

In Section I, it is shown that the linear filt€¥—!( f) serves algorithm was performed using length-32 DFT, with =
to transformw, () andw»(t) into & (t) andi»(t) by removing 1600 and 7' = 0.67. Six sentence pairs were first processed
the linear distortiorC( f). Similar to the treatment af; (¢)’'sin  with N, = N, = 100 and «® = 5® = 0. Using the
(10), thew;(t)'s can also be decomposed into the source pagstimation results as the initial estimates, adaptive processing
and the leakage parts. It can be shown that the linear filigas made with the filter orders set ¥, = N, = 200
C~Y(f) usually introduces larger gains on the leakage pais each set of co-channel signals. The separated signals
than on the source parts (see Appendix B for explanation)ithin the detected active regions were then extracted and
and therefore the improvement in removing distortion usualigcognized by the SICSR system discussed in Section IV-C.
comes at the cost of reducing the SIR. Due to the built-mhe average SIR’s and the WRA's for the three sets of co-
adaptation to channel distortion and the fact that the chanegknnel signals before and after processing are summarized
filters A and B do not have a strong distortion effect, the gaiin Table | for the case of using acoustic normalization. The
in removing distortion usually does not justify the loss in SIRevaluation results without using acoustic normalization are
Therefore, the linear filtering in (3) is not performed in thgummarized in Table 1l for comparison. The word recognition
system. error rates (L00%WRA) are also included in the two tables

inside the parentheses for reference. In both tables, the case of
“extracted signals before processing” corresponds to extracting

E. System Performance the mixed co-channel signalg, (t) and y»(t), within the

To evaluate the effectiveness of the co-channel signal sefaspective active regions of the source signa$t) andas(t),
ration system, 156 sentence pairs were chosen from the TIMPr the purpose of comparison with the extracted signals after
database as the source signals, and the filleend B were Pprocessing. The following can be observed from Tables I and
used in generating the co-channel signals. The magnituded!of
these sentences were scaled so that the SIR of the co-chann&) Even a weak interference can deteriorate the recognition
signals could be controlled. Three sets of co-channel signals accuracy seriously.

D. Linear Distortion and Signal-to-Interference Ratio



148 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 7, NO. 2, MARCH 1999

2) In all cases, both SIR’s and WRA's were improvedgnoring the quadratic terms ef and &:
significantly after processing. B v v B

3) The importance of the source signal detection can be w® =+ 7 O -+ R(tyw ™V a7)
shown by comparing the WRA'’s of the original and
extracted signals, especially when the acoustic norm¥fhere

ization technique is used. @ _ [a®

4) The acoustic normalization used in the SICSR system W= o
can effectively handle the distortion introduced by the :u (B (1)
signal separation processing, and hence further improved h(t) = ZQ(t);;Q(t)}
recognition accuracy on the extracted signals after sep- =1 o (T O (4
aration. On the other hand, the estimation of cepstral R(t) = g2( )Q2( ) 1 ()CL( H
bias in acoustic normalization appears to be sensitive to Ly2()Ca(t)  y, (By, (B)
the cross-channel interference, which led to decreasgfih
recognition accuracy on the unprocessed or unextracted
speegtl:h data. Y P Cu(t) =y, (), -y, (t = N+ )"

5) In Table |, except for the cases where the target source Ca(t) =y, (&), -+ y,(t — N + n*.
was 10 dB weaker than the interfering source, the ] ) )
WRA's of the extracted signals are all above 80%. Assuming thatR(¢) andh(t) are stationary and independent

of w®, and definingl = E{R(t)} andy = E{h(t)}, from
(17), we have

VII. CONCLUSION Efw®} = Bl D+ Ty + T vEtDY.  @18)
In this paper, an improved technique of co-channel speech t t

separation based on the algorithm switching between AADE E{w(Y} — w* ast — oo, then
and LMS is presented and is used as a front-end module . R v .
for robust co-channel speech recognition. The S-AADF/LMS w =w + ¥ Y- n Y
technique has been proven to be capable of reducing the
cross-talk between simultaneously acquired co-channel speech
signals. The AADF algorithm developed in the current worBubstitutingw® by Aw(t) +w*, (18) can be rewritten as
is based on the adaptive decorrelation filtering algorithm of
Weinsteinet al. and it improves the ADF in both aspects of E{Aw(t)} +w" = E{Aw(t—1)} +w" + % P
system stability and efficiency. Specifically, an upper bound of v v .
adaptation gain has been derived for system stability; power T VE{Aw(t - 1)} - N Yw
normalization on the adaptation gain is developed to reduce
the dependency of system stability on the input power Ievé‘l?"
a flattening sequence of adaptation gain has been used for E{Aw(t)} = (_,_ y \I,) E{Aw(t - 1)}. (19)
accelerated convergence; and a filter order building-up scheme o t -
has been devised for the estimation of long FIR filters. fefining o(t) = E{Aw(t)}, (19) can then be rewritten as
coherence-function based source signal detection algorithm -
has also been developed and is shown effective in determining (t) = (I _7 \p) o(t — 1).
the active/inactive regions of each signal source. The source t -
detection algorithm is successfully used in the switchinGinceV is positive semidefinite, it can be decomposed as
between the AADF and LMS algorithms which yielded better
channel estimation performance than AADF alone, and in U =UMAU
the extraction of speech from leakage-corrupted backgroun
which resulted in much higher word recognition accuracy %I}a
speech signals.

ere I/ is unitary, the superscripf{ denotes Hermitian
nspose, and

In order to handle more complicate acoustic environments, A 0 - 0
more effective channel estimation algorithms are needed and 0 A
are critical to the improvement of both the SIR and the A= .
accuracy of automatic speech recognition. The interaction : N 0
between the ASR system and the co-channel speech separation 0 - 0 Antn,
front-end should also be further studied. with Az > 0 for k = 1,2,---, N, + N,. Therefore

o(t) =U" (1 - % A) Up(t—1).

APPENDIX A "
efine
The following equation is derived for updating the filter
coefficients by expanding (4), replacingt) by ~/¢, and E(t) = Uep(t)
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then and

L-1
= > IDw®)P
k=0

ie.,
~ L—1
u(t) = (1 -2 )\k) Gt —1), k=1,2,-- Ny + N, Ly, = > Ly ()
For convergence, it is necessary that
D= | D(k)|?
||£(t)|| — 0 t — oo. Z
. . . o . L—-1
Since U is unitary, it is equivalent to
Dy =>_ IDg,

||§(t)|| — 0 as t— oo

L. Lg =Y Ly, (M)
&(t) — 0 as t— oo

equations (21) and (22) can be rewritten as
for k =1,2,---, N, + N,. Hence

by
—~
I
~—
Il

1- 2 n <1 Dy, (k)X1(k) + Ly, (k) X2(k)
‘ s k‘ < Xl(k)=DXl(k)X1(k)+LX1(/§)X2(/€)

= 0< - )\k <2
t and the SIR’s ofvi(¢) and 2, (¢) are

2t
= 0<’y<)\—k. (20) L-1
. . | Dva (k)21 X1 (F)[?
Since (20) should be satisfied for &lland all¢, the bounds s
of v can be set as SRy, = 7-7
0<7y<2/A | Ly, (k)| Xa(k)[?
max k=0
where and
Amax = - Qma;\g N Ak L—1
e 1D, (B)?| X (R)[?
Because trace(E{R(t)}) = N, var{y2(t)} + SIR. — k=0
Ny var{y1()} > Amax, (6) can be used fory to avoid X1 Lot ’
the calculation of the eigenvalues. |L g, (R)P1X2(R)?
k=0
APPENDIX B respectively. Sincer; (¢) and z2(¢) are independent of the
Following (1), (2), and (3),Vi(k) and X;(k) can be channel filters and assuming. (k) and X»(k) are approx-
decomposed as imately flat, the good indicators for the SIR’s of(¢) and

Vi) = [1 — ABMRIXL(R) + [AG) — Ay o PecomePvi/hm andDi, Jlug,  respectvely. Define

(21) dy, (k) = M
. 1—A(k)B(k) A(k) — A(k) ‘ Dy,
Atk =17 A(k)B(k) . A(k)B(k X2(B) G
(22) LhQ
Defining the following notations: d(k) = |D(D)|
Dy, (k) =1— A(k)B(k) with
Ly, (k) = A(k) — A(k) -1 -1
D(k) =1— A(k)B(k) > dy, (k Z (k) =>" d(k)=1.
1~ A(k)B(k) _ Dy,(h) . -
Dy, (k) = 1 —A(k)é(k) - D(k) It can be shown that
Ly (k)= Alk) — A(k) _ Ly (k) Dy, _Dw Gp
ML A(R)B(R)  D(k) Ly Ly, G
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where
L—-1
dy, (k)
Gp = 1
= dk)
o — 5 k)
= d(k) -
k=0
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The solution is

1
d0)=d(l)=---=d(L-1)= I
From the above derivation, we see that
a0 Ry FO = BOLY o oyeaym

Given fixed A(k) and B(k), since d(k) only depends on ie

A(k) and B(k), the expected values fd& and G, can be
expressed as
L—-1

Blep) =y, S
k=0
L—1

Blay =y, Sl {fl‘(’;ﬂ()k)}.
k=0

If A(k) = A(k) and B(k) ~ B(k),
E{dy, (k)} =d(k)
Furthermore, since the filter estimation errot¢k) — A(k)
is white and independent oi(k) and B(k), ly, (k)'s can be
assumed i.i.d. Therefore
E{ly, (0)} = E{, (1)} = -

IL—1

1 1
L2 a

= B{lu (L -1} =

SIS

= E{GL} =

1 1
— (k)
1= d(k)

k=1

In order to find the minimum value oE{G}, we take the
derivatives of E{G.} w.r.t. d(k)’s:

1
L

OE{Gr} 1 1 1
ad(k)y ~ L -1 2 2(k)
1= d()
=1
and solve for the equations
OB{GL} _9B{Gi} _  OBE{G.} _|
ad(1) 9d(2) dd(L — 1)
which yields
L—-1
dk)=1- i, k=1,--- L—1
=1

The following linear equations can be derived from the above

relation and must be satisfied laj%):
2 1 -1 d(1) 1
1 2 : d(2) 1

1 -1 2] lae-1 1

E{GL} > L ~ E{Gp}.

As such, the gain on the leakage part is usually larger than the
gain on the signal part, hence the SIRigft) is usually lower
than the SIR ofv,(¢). The same relation holds between the
SIR’s of w2 (t) and#,(t) and it can be derived in the same way.
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