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Adaptive Co-Channel Speech
Separation and Recognition

Kuan-Chieh Yen and Yunxin Zhao,Senior Member, IEEE

Abstract—An improved technique of co-channel speech sepa-
ration, S-AADF/LMS, and its integration with automatic speech
recognition is presented. The S-AADF/LMS technique is based
on the algorithms of accelerated adaptive decorrelation filtering
(AADF) and LMS noise cancellation, where a switching between
the two algorithms is made depending upon the active/inactive
status of the co-channel signal sources. The AADF improves the
previous adaptive decorrelation algorithm in terms of system
stability and estimation efficiency, and leads to better estimation
of time-varying and reverberant channels. The S-AADF/LMS
further improves the estimation accuracy when only one source
signal remains active during certain periods of time. A coherence-
function based source signal detection algorithm is also presented,
which is successfully used in the switching between AADF and
LMS and in extracting speech signals from leakage-corrupted
background. Experiments were conducted under a simulated en-
vironment based on the measurements made of certain real room-
acoustic conditions, and the results demonstrated the effectiveness
of the proposed technique for co-channel speech separation and
recognition.

Index Terms—Acoustic channel estimation, active source sig-
nal detection, adaptive decorrelation filtering, automatic speech
recognition, co-channel speech separation.

I. INTRODUCTION

T HE state-of-the-art speech recognition technology is still
vulnerable to the presence of interfering signals [1].

Many research efforts have focused on the stationary and
broadband noise sources [2]–[4]. These studies either assume
that the noise statistics are knowna priori, or that they can
be estimated from certain inactive period of speech. In active
environments where interfering signals are inherently time-
varying, such as the co-channel interference from a competing
talker, the noise characteristics estimated at one instant might
not be applicable at a later time. Furthermore, a single micro-
phone is normally used for speech acquisition, which limits
the effectiveness of the techniques intended for handling time-
varying interference [5], [6]. While this is usually the result
of system constraints (speech acquired on the telephone line,
for example), in other applications where multimicrophone
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acquisition is feasible (such as teleconferencing or speech
controlled devices), the additional information makes more
effective processing possible.

Several techniques based on multimicrophone processing,
such as speech enhancement based on subband adaptive pro-
cessing [7]–[9] and blind separation in multipath environment
[10], have been explored in the recent years. Among the tech-
niques using two-microphone speech acquisition, Widrow’s
LMS noise cancellation algorithm [11] has been widely used.
This algorithm focuses on restoring only the primary signal,
and has difficulties when the primary signal is also picked
up by the reference microphone. In recent literature, a few
researchers proposed algorithms for signal separation via the
adaptive decorrelation filtering (ADF) between two simultane-
ously acquired co-channel signals [12], [13]. These algorithms
are shown to be capable of reducing the cross-channel inter-
ference and are more general than Widrow’s LMS algorithm.

In the current work, we propose several improvements
to the ADF algorithm in the aspects of estimation stability
and efficiency and describe an integrated co-channel
speech separation and recognition system [14], [15]. In this
system, two co-existent and independent speech sources are
considered, and their convolutive mixtures are acquired via
two microphones. The acquired signals are first processed
to separate out the co-channel speech signals, and the
separated signals are then analyzed by a coherence-function
based source detection algorithm to determine the active
regions of each source. The separated speech signals in their
respective active regions are recognized by a hidden Markov
model (HMM) based speaker-independent continuous speech
recognition (SICSR) system [16].

This paper is organized into eight sections. In Section II, the
background of the co-channel system and the adaptive decor-
relation filtering algorithm are briefly described. In Section III,
several improvements to the ADF algorithm are discussed, in-
cluding a blockwise implementation, an upper bound of adap-
tation gain for stability, a power normalization on the adapta-
tion gain, and an accelerated version of ADF. In Section IV, a
source detection algorithm based on the cross-spectral coher-
ence function of the processed signals is developed in order to
determine the active and inactive regions of each signal source.
In Section V, a strategy for switching between the ADF or
AADF algorithm and the traditional LMS algorithm is devised
based on the active/inactive regions of the source signals.
The specifications of the automatic speech recognition (ASR)
system and experimental results are given in Section VI, and
a conclusion is made in Section VII.
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Fig. 1. Block diagram of the co-channel system.

II. CO-CHANNEL SYSTEM AND SIGNAL SEPARATION

A. Co-Channel Speech Acquisition System

In a co-channel speech acquisition system, each microphone
acquires not only its target signal, but also the interfering
signals from the other sources. For simplicity, our discussion is
limited to the two-source two-microphone case. Let and

be the signals generated by sources 1 and 2, respectively,
which are assumed to be independent of each other. The signal
acquired by the microphone that targets the source 1 is denoted
by and that acquired by the microphone that targets the
source 2 is denoted by Using the linear filters and to
model the channel coupling effects and assuming no distortion
between each microphone and its target source, the co-channel
system can be described in the frequency domain as

(1)

This co-channel system is illustrated in Fig. 1.

B. Signal Separation by Adaptive Decorrelation Filtering

Let and be the estimates of the channel filters
and respectively. Define the filter
and define the Fourier transforms of the signals and
as

(2)

It is easy to verify that if and
then

Therefore, if the filters and are known, the signals from
the sources 1 and 2 can be separated from the acquired signals
by (2). Furthermore, if is invertible, the source signals
can be perfectly reconstructed by

(3)

The (2) and (3) provide the basis for separating the source
signals and from the acquired signals and

and a block diagram of such a separation system is
illustrated by Fig. 2.

Since in most applications the coupling channels are time-
varying and unknown, the filters and need to be adaptively
estimated. It was shown in [12] that if the source signals
are zero-mean and uncorrelated, and if the filtersand

are finite impulse response (FIR) filters represented by
and where

the superscript denotes vector transpose, then the filter

Fig. 2. Block diagram of the source separation system.

coefficients can be estimated recursively by the following
equations:

(4)

where and denote the estimates of and at time
and and denote the values of signals

and calculated according to and

(5)

The vectors and are defined as

The adaptation gain will be discussed in the next section.

III. M ODIFICATION AND ENHANCEMENT

ON ADAPTIVE DECORRELATION FILTERING

In [12], it is recommended to useor as the adaptation
gain where is a constant. However, if is
used, has to be very small in order to avoid instability,
which limits the efficiency of the system. On the other hand,
if is used, the adaptation gain will diminish toward
zero as increases, and hence is not suitable for time-varying
environments. Therefore, a blockwise implementation based
on is chosen. Furthermore, an upper bound for
is first derived for ensuring system stability, and then, a method
of choosing based on power normalization is developed
accordingly. An accelerated adaptation gain sequence is further
proposed to replace for enhanced efficiency, which
is very important for the estimation of time-varying coupling
channels.

A. Blockwise Implementation

In the blockwise implementation, the co-channel speech sig-
nals acquired simultaneously by two microphones are blocked
into two sequences of frames, where the frames are synchro-
nized between the two channels. Each frame hassamples,
and the shift between successive frames issamples. Here

is usually a multiple of The frames are labeled by
and the acquired signal sample in the framefrom
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the channel is denoted as
i.e.,

The processing in each frame involves the following four steps,
where the subscript denotes the frame index:

Step 1: Initialize and by and

since the estimates ofand from the previous
frame are usually good initial values for the current frame. For

simply set and

Step 2: Adapt and from to
according to (4), with

Step 3: Use and as the
estimates of and for frame and compute
and according to (5).

Step 4: Compute the restored signals, and
recursively from to according

to [12, eqs. (37) and (38)]:

where

By using the blockwise method, the signals can be processed
within time intervals of several frames, i.e., long before the
end of the utterances, hence, processing delay can be re-
duced, which is especially important for real-time processing.
Note that there are overlaps between successive frames when

In this case, the multiple values corresponding to the
same signal sample in different frames are averaged to produce
the restored sample. In general, allowing more overlaps yields
better restoration with the cost of increased computation.

B. Choice of Adaptation Gain

It can be shown that the following bound can be used for
to maintain stability (see Appendix A for derivation):

(6)

Since the variances of and and
can be evaluated in each frame, the corresponding

can be calculated for each frame as in (6). Therefore, the
adaptation gain in a frame is chosen as

(7)

where is a positive constant chosen according to the expected
time variation rate of the acoustic environment. As such,

is normalized by the power of the incoming signals
in each frame and satisfies the condition stated in (6). This
method reduces the dependency of system stability on the

power of the incoming signals, and hence makes the system
more efficient.

The following two examples demonstrate the influence of
the adaptation gain on the system stability and the effective-
ness of the derived upper bound forIn each example, source
signals chosen from TIMIT database were mixed by a pair of
fixed channel filters to generate the co-channel signals. The
major delay caused by the channel filters was approximately
2 ms, and the attenuation was approximately 8 dB.

Example 1: In this experiment, a set of co-channel signals
were processed with Three methods of
choosing adaptation gains were used:

The stability of the system was examined after each iteration
of adaptation (i.e., every sample). Once the system became
unstable, the filter coefficients were reset to zeros and the
process continued until all the signal samples were processed.
In more than 40 million iterations, the system was reset 23
times when using three times when using and
zero times when using This example shows that the
bound works well for the ADF algorithm in most situations.

Example 2: In this experiment, the co-channel signals were
processed using and

as the adaptation gain, respectively. To evaluate the
performance of ADF, the squared estimation error, was
defined as

(8)

where denotes the true filter coefficients. The relation
between and the number of processed frames is plotted in
Fig. 3 for the three choices of the adaptation gains. Since the
filter coefficients were all initialized as zeros, the beginning
part of each curve represents the system behavior for a fast-
changing channel, and the ending part represents the system
behavior for time-invariant channel. It is shown in Fig. 3(b)
that was reduced faster at the beginning with
but was more stable at the end with Also as shown
in Fig. 3(a), the system quickly became unstable with
which has

C. Accelerated ADF (AADF)

In the adaptive estimation of the co-channel system, it is
desirable to apply a larger adaptation gain when the pre-
vious filter estimates differ from the current channel filters
significantly; on the other hand, a smaller adaptation gain
is desirable when the previous filter estimates are close to
the current channel filters. A good way of implementing
such an adaptation strategy is to use Kesten’s procedure of
accelerating convergence for stochastic approximation [17],
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(a)

(b)

Fig. 3. Squared estimation error versus the number of frames using three
different adaptation gains: (a)�1(t) = 5�=t; (b) dashed curve:�2(t) = �=t;
solid curve: �3(t) = 0:2�=t; where � is the derived upper-bound of
adaptation gain constant
 for system stability.

where, instead of using the adaptation gain for all
filter coefficients, the ADF estimation equations are modified
as

(9)

where is the filter index, and

if
if

if
if

and

As defined above, the signs (positive, negative) of the
consecutive correlation terms control the adjustment of the
adaptation gain for each filter coefficient, and the gain de-
creases only when the sign changes. In fact, the two extreme
cases of (9) are equivalent to using and using

respectively. This modified algorithm is referred
to as accelerated ADF (AADF) in the following discussion.

The following example gives a performance comparison
between the ADF and the AADF algorithms. The co-channel
signals in the examples of Section III-B was processed using
the following three schemes, with .

1) the ADF;
2) the ADF;
3) the AADF;

Similarly, the estimated filter coefficients were initialized as
zeros. The relation between the squared estimation error

Fig. 4. Squared estimation error versus the number of processed frames:
dotted curve: ADF with� = 1; dashed curve: ADF with� = 0:5; solid
curve: AADF with � = 0:5:

and the number of processed frames is plotted in Fig. 4 for
all three cases. The results illustrate that the AADF with

could track the channel variation almost as fast as
the ADF with and the AADF was almost as stable as
the ADF with when the channel became steady. As
such, the accelerated algorithm enhances the system ability to
accommodate a wider range of channel variations.

IV. SOURCE SIGNAL DETECTION

Although the ADF and AADF algorithms can significantly
attenuate the interfering signals in each channel, the residual
interfering signals, referred to as leakage signals, still pose
problems for automatic speech recognition: in regions where
the target speech source is inactive (silent) for an extended
period of time, even a weak leakage signal could cause
recognition errors (mainly insertions) and hence deteriorate the
recognition accuracy. If the active regions of each source can
be identified so that the ASR is constrained to be performed
within the active regions of each target signal, the recognition
accuracy may be improved. For such a purpose, a source
detection algorithm is developed based on the coherence
function of the restored signals to determine the active and
inactive regions for each source.

A. The Use of Coherence Function for Source Detection

From (1)–(3), the relationship between the restored sig-
nals and the source signals in the frequency domain can be
represented by

(10)

where the first term in the right hand side of each equation
is the linearly distorted source signal, and the second term is
the leakage signal. Assuming that the filter estimatesand
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are very close to the true filters, i.e., and
then the linear distortion is ignorable and (10)

can be simplified as

(11)

From (11), each restored signal is approximately the sum of
its source signal and a small leakage from the other source.
Using a short-time discrete Fourier transform (DFT) of length

(11) can be written as

The coherence function for each frequency bin is
defined as

Since and are both zero-mean and independent
of each other, and are also zero-mean and
independent in each frequency bin. Define the short-time
energy of the source signalin the frequency bin as

and it follows that

It can be shown that if i.e., the short-time ener-
gies of the two sources are comparable in theth frequency
bin, then the coherence function of this bin will be close to
zero, i.e., On the other hand, if or

i.e., the short-time energy of one source signal is
much greater than that of the other signal in theth frequency
bin, then the coherence function of this bin will be close to
unity, i.e., A source signal is very likely to be
inactive if its short-time energy is much weaker than that of
the other source for an extended period of time. Define the
decision variables as

Source is active
Source is inactive

and define

Then by choosing a threshold valuefor the variable an
active/inactive decision on each source can be made according
to the following rule:

Case 1: If both sources are active; set
Case 2: If and source 1 is active and

source 2 is inactive; set and
Case 3: If and source 1 is inactive and

source 2 is active; set and

B. Implementation of the Source Detection Algorithm

To determine the presence/absence of each source signal at
time the coherence function at time denoted as
needs to be evaluated. The short-time DFT coefficients of the
restored signals at time is defined as

which can be computed efficiently by the recursion:

(12)

Since the second-order statistics of the DFT coefficients are
not available, they can be approximated by

(13)

where is the size of the averaging window. Based on (13),
and are computed, and the decision scores

and are determined. The decision scores are further
smoothed and thresholded to avoid the fragmentation of the
speech utterances to facilitate automatic speech recognition.

A good value for the threshold depends on the acoustic
environment, and is chosen experimentally for the studied
environment in the current work. When the noise level is
small or ignorable, the values of differ significantly in
the region where both sources are active and in the region
where only one source is active. In this case,can be
chosen from a wider range of values while still resulting in
similar performance. However, the difference of in the
two types of regions decreases as the noise level rises, and
hence the choice of becomes more critical. In this case, a
longer averaging window can help reducing noise effect, and
therefore improve the detection accuracy.

C. Performance

The following example illustrates the performance of the
source detection algorithm. The two source signals from the
TIMIT database were made to have different and yet partially
overlapping active regions. The source signals, the acquired
co-channel signals, and the AADF-restored signals in both
channels are shown in Figs. 5–7, respectively. The signal-
to-interference ratio (SIR) is about 10 dB in both channels
before processing, and is about 22 dB after processing. After
computing the length-32 DFT coefficients of the restored sig-
nals according to (12), two different sized averaging windows
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Fig. 5. Source signals—an example: the unit oft is in sample(s), and the
sampling rate is 10.67 kHz.

Fig. 6. Co-channel convolutive mixture of the two source signals in Fig. 5.

and 3000) were used in (13) to calculate
which are plotted in Fig. 8 for both cases.

As can be observed from Fig. 8, both curves dropped
toward zero shortly before the source signal 2 became active,
and then rose back again shortly after the source signal 1
became inactive. There were certain excess regions before and
after the true active regions being detected as active regions.
These excess regions were ignorable for the shorter window,
but were not ignorable for the longer window which introduced
too much temporal smoothing. On the other hand, the
curve of the shorter window was noisier than that of the longer
window where the latter reduced randomness in estimating
the second order statistics of the short-time DFT coefficients.
Therefore, the size of the averaging window needs to be chosen
based on the trade-off between the temporal resolution of the
detection boundary and the reliability of the estimate of the
coherence function.

V. ALGORITHM SWITCHING FOR

IMPROVED FILTER ESTIMATION

From experiments, we observed that the ADF and AADF
algorithms worked well when the source signals in both

Fig. 7. AADF-restored signals of the mixed signals in Fig. 6.

Fig. 8. P (t) curves of the restored signals in Fig. 7. In the first curve, an
averaging window ofD = 1000 was used and in the second curve, a window
of D = 3000 was used. The vertical dotted lines indicate the true boundaries
between the active and inactive regions.

channels were active; however, the algorithms encountered
problems when either of the source signals became inactive.
From the co-channel model of (1), if the source 2 is inactive,
i.e., for an extended period of time, the system
becomes

(14)

Since there is no information of filter in and
the adaptive estimation based on the decorrelation of and

may result in large estimation error of filter while the
estimate of filter continues to converge. Therefore, when the
source 2 is detected as inactive, which can be accomplished
by the source detection algorithm discussed in Section IV, it
is desired to stop the adaptive estimation of filterand to
continue the estimation of filter In such a case, an obvious
choice for the adaptive estimation of filter is the LMS
algorithm of Widrowet al. [11].
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Fig. 9. Filter estimation model when one of the source signals is inactive.
In this case, the Widrow’s LMS algorithm can be applied.

A. The LMS Algorithm

Assume the source 2 as inactive and denote the filterand
its estimate at time by and respectively. From (14),
the relationship between and can be written as

Define the error function as

The filter coefficients can be estimated by minimizing
According to the LMS algorithm of Widrowet al.

[11], can be estimated iteratively by

(15)

The block diagram of the LMS algorithm is illustrated in
Fig. 9.

Similarly, if the source 1 is inactive, can be estimated
iteratively by

(16)

where

B. Implementation and Performance

From the above discussion, depending on the outcome of
source detection, the adaptive estimation algorithm is switched
between the ADF or AADF and the LMS by the following
rule:

Case 1: If both sources are active, update the filter coeffi-
cients according to (4) (for ADF) or (9) (for AADF).

Case 2: If the source 1 is active and the source 2 is inactive,
update only the filter coefficients of according to (15).

Case 3: If the source 2 is active and the source 1 is inactive,
update only the filter coefficients of according to (16).

Below is an example which shows the different behaviors,
in terms of filter estimation error, of the AADF algorithm in
two types of regions: both sources are active vs. only one
source is active. In both types of regions, the estimation errors
without and with the algorithm switching are compared. A
pair of co-channel signals generated from the TIMIT database
were processed using AADF with
and The SIR is about 10 dB in both channels.
The normalized estimation errors (NEE) for both filters were

Fig. 10. Normalized estimation error, witha(0) = 0 and b
(0)

= 0: The
source 2 is inactive in the time region 2, and the source 1 is inactive in the
time region 4. The dashed curve is without algorithm switching and the solid
curve is with algorithm switching.

Fig. 11. The normalized estimation error, witha(0) � a
� and b

(0)
� b

�
:

The source 2 is inactive in the time region 2, and the source 1 is inactive in
the time region 4. The dashed curve is without algorithm switching and the
solid curve is with algorithm switching.

defined as

and were measured after each frame of signals was processed.
Two different initial conditions were tested. In the first condi-
tion, the filter coefficients were initialized as zeros to simulate
the significant difference between the current filter estimates
and the true filter coefficients. In the second condition, the
filter coefficients were initialized to be close to the true
filter coefficients. The NEE’s for the two cases are plotted
in Figs. 10 and 11, respectively, where the dashed curves
represent the case of without algorithm switching, and the
solid curves represent the case of with algorithm switching.
According to the presence or absence of one of the source
signals, the time axis of each plot is divided into four regions:
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Fig. 12. Room-acoustic environment of House Ear Institute, Los Angeles,
which was used for measuring the cross-channel acoustic paths.

Region 1: frames 1 through 75, both sources were active.
Region 2: frames 76 through 150, only the source 1 was

active.
Region 3: frames 151 through 225, both sources were ac-

tive.
Region 4: frames 226 through 300, only the source 2 was

active.

As can be observed in Figs. 10 and 11, without the algo-
rithm switching, the NEE of filter in Region 2 and the
NEE of filter in Region 4 both increased, as compared to
the NEE’s with algorithm switching. The results demonstrate
the effectiveness of the algorithm switching in preventing the
filter estimates from drifting away from the true filters. The
combined AADF and LMS based on the algorithm switching
is referred to as the switched AADF/LMS (S-AADF/LMS).

VI. EXPERIMENTS AND SYSTEM PERFORMANCE

In the experiments, the co-channel signal separation tech-
niques discussed in the previous sections were integrated
with an ASR system and were evaluated under a simulated
environment based on measurements made of a real room-
acoustic condition. In this section, the acoustic environment
is first described. Next, a strategy of accelerating estimation
convergence for high-order finite impulse response (FIR) filters
is discussed. The ASR system used in the experiment is then
briefly described. Furthermore, the linear distortion removing
part of the signal separation algorithm [specified by (3)] is not
performed in the system, and the reason is discussed. Finally,
the experimental results are summarized in terms of the SIR,
the word recognition accuracy (WRA), and the word error rate
before and after the adaptive co-channel processing.

A. Simulation of Acoustic Environment

The cross-channel acoustic paths were measured in the room
environment described in Fig. 12 at the House Ear Institute,
Los Angeles, and were represented by FIR filtersand of
order 200, where

Filter A: the acoustic path from talker 2 to microphone 1;
Filter B: the acoustic path from talker 1 to microphone 2.
In order to simplify the estimation problem, the channel

distortions from talker 1 to microphone 1 and from talker 2
to microphone 2 were assumed negligible. This distortion will
be addressed in the future work. The impulse responses of

Fig. 13. Impulse responses of the cross-channel acoustic paths measured in
Fig. 12: the filterA corresponds to the acoustic path from the talker 2 to
the microphone 1, and the filterB corresponds to the acoustic path from the
talker 1 to the microphone 2. The sample rate is 10.67 kHz.

the two filters are plotted in Fig. 13, where the length of the
filters were both 200 samples, that correspond to 18.7 ms at
a sampling rate of 10 667 Hz. The frequency responses of the
filters are also plotted in Fig. 14. The average attenuations
introduced by the filters and are 10.34 dB and 11.23 dB,
respectively. The filters and were used to generate the
co-channel signals from the source signals according to (1).

B. Estimation of Reverberant Channels

From Fig. 13, most energy in each impulse response con-
centrates in a small number of samples with a short delay,
which corresponds to the direct acoustic path. However, due
to reverberation, the impulse response lasts for an extended
period of time and hence requires much longer FIR filters in
adaptive estimation. Long FIR filters not only require more
computation, but also slow down the convergence of the filter
estimates, and therefore deteriorate the system performance.
Since the energy of an impulse response concentrates in the
first 50 some samples, we experimented with a filter-order
building-up scheme that starts the estimation with a low-order
filter and then switch to a high-order filter when the low-order
estimation was about to converge. This method significantly
shortened the convergence time required for long filters and
hence improved the system performance.

The following example shows the difference in the speed of
convergence between using a low estimation order and a high
estimation order. A set of co-channel signals were generated
using the filters and as described in the above section,
with the source signals chosen from the TIMIT database. The
filter coefficients were initialized as zeros. The co-channel
signals were processed using AADF with two choices of the
filter orders and the first choice was
and the second choice was The NEE’s
for both cases are plotted in Fig. 15. The results show that
although using achieved lower NEE’s
eventually, using the NEE’s decreased much
faster at the beginning stage of estimation even though half of
the filter coefficients were not estimated.
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TABLE I
SIGNAL-TO-INTERFERENCERATIO, WORD RECOGNITION ACCURACY, AND WORD ERROR RATE

BEFORE AND AFTER PROCESSING, WHEN ACOUSTIC NORMALIZATION WAS USED IN THE SICSR SYSTEM

Fig. 14. Frequency responses of the cross-channel acoustic paths measured
in Fig. 12.

C. Automatic Speech Recognition

A speaker-independent continuous-speech recognition sys-
tem was used to recognize the speech signals. The SICSR
system is based on the HMM’s of phone units: each phone-
unit HMM has three tied-states; each state is modeled by
a Gaussian mixture density. For each mixture density, the
basis Gaussian densities are context-independent; the mix-
ture weights are triphone context-dependent; the mixture size
and the Gaussian density parameters were determined via
a bottom-up merging algorithm. The phone models were
trained from a subset of 717 sentences in the TIMIT database,

Fig. 15. Normalized estimation errors, witha(0) = 0 and b(0) = 0: The
dashed curve corresponds toNa = Nb = 200 and the solid curve corresponds
to Na = Nb = 100:

with a total of 62 units as defined in the TIMIT (excluding
“h#”) [18]. The average mixture size per mixture density is
approximately 19, and the total number of triphone contexts
is about 4500. The TIMIT speech data were downsampled
from 16 to 10.67 kHz. The cepstrum coefficients of the
PLP analysis (eighth-order) and log energy were taken as
instantaneous features, and their first-order 50-ms temporal
regression coefficients as dynamic features. The recognition
task has a vocabulary size of 853 and a grammar perplexity of
105. Further details of the background materials can be found
in [16]. The recognition system allows an optional acoustic
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TABLE II
SIGNAL-TO-INTERFERENCERATIO, WORD RECOGNITION ACCURACY, AND WORD ERROR RATE BEFORE

AND AFTER PROCESSING, WHEN ACOUSTIC NORMALIZATION WAS NOT USED IN THE SICSR SYSTEM

normalization on the cepstral features of test speech, where the
acoustic normalization was based on cepstral bias estimation
which was bootstrapped by cepstral mean estimation, and
details can be found in [19].

D. Linear Distortion and Signal-to-Interference Ratio

In Section II, it is shown that the linear filter serves
to transform and into and by removing
the linear distortion Similar to the treatment of ’s in
(10), the ’s can also be decomposed into the source parts
and the leakage parts. It can be shown that the linear filter

usually introduces larger gains on the leakage parts
than on the source parts (see Appendix B for explanation),
and therefore the improvement in removing distortion usually
comes at the cost of reducing the SIR. Due to the built-in
adaptation to channel distortion and the fact that the channel
filters and do not have a strong distortion effect, the gain
in removing distortion usually does not justify the loss in SIR.
Therefore, the linear filtering in (3) is not performed in the
system.

E. System Performance

To evaluate the effectiveness of the co-channel signal sepa-
ration system, 156 sentence pairs were chosen from the TIMIT
database as the source signals, and the filtersand were
used in generating the co-channel signals. The magnitudes of
these sentences were scaled so that the SIR of the co-channel
signals could be controlled. Three sets of co-channel signals

were generated, with the relative source energy levels defined
as the following:

Set 1: Both sources have the same energy;
Set 2: Source 1 is 10 dB stronger than source 2;
Set 3: Source 2 is 10 dB stronger than source 1.

The S-AADF/LMS with and
was used in the channel estimation. The source detection
algorithm was performed using length-32 DFT, with

and Six sentence pairs were first processed
with and Using the
estimation results as the initial estimates, adaptive processing
was made with the filter orders set to
on each set of co-channel signals. The separated signals
within the detected active regions were then extracted and
recognized by the SICSR system discussed in Section IV-C.
The average SIR’s and the WRA’s for the three sets of co-
channel signals before and after processing are summarized
in Table I for the case of using acoustic normalization. The
evaluation results without using acoustic normalization are
summarized in Table II for comparison. The word recognition
error rates (100%WRA) are also included in the two tables
inside the parentheses for reference. In both tables, the case of
“extracted signals before processing” corresponds to extracting
the mixed co-channel signals, and within the
respective active regions of the source signals, and
for the purpose of comparison with the extracted signals after
processing. The following can be observed from Tables I and
II.

1) Even a weak interference can deteriorate the recognition
accuracy seriously.
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2) In all cases, both SIR’s and WRA’s were improved
significantly after processing.

3) The importance of the source signal detection can be
shown by comparing the WRA’s of the original and
extracted signals, especially when the acoustic normal-
ization technique is used.

4) The acoustic normalization used in the SICSR system
can effectively handle the distortion introduced by the
signal separation processing, and hence further improved
recognition accuracy on the extracted signals after sep-
aration. On the other hand, the estimation of cepstral
bias in acoustic normalization appears to be sensitive to
the cross-channel interference, which led to decreased
recognition accuracy on the unprocessed or unextracted
speech data.

5) In Table I, except for the cases where the target source
was 10 dB weaker than the interfering source, the
WRA’s of the extracted signals are all above 80%.

VII. CONCLUSION

In this paper, an improved technique of co-channel speech
separation based on the algorithm switching between AADF
and LMS is presented and is used as a front-end module
for robust co-channel speech recognition. The S-AADF/LMS
technique has been proven to be capable of reducing the
cross-talk between simultaneously acquired co-channel speech
signals. The AADF algorithm developed in the current work
is based on the adaptive decorrelation filtering algorithm of
Weinsteinet al. and it improves the ADF in both aspects of
system stability and efficiency. Specifically, an upper bound of
adaptation gain has been derived for system stability; power
normalization on the adaptation gain is developed to reduce
the dependency of system stability on the input power level;
a flattening sequence of adaptation gain has been used for
accelerated convergence; and a filter order building-up scheme
has been devised for the estimation of long FIR filters. A
coherence-function based source signal detection algorithm
has also been developed and is shown effective in determining
the active/inactive regions of each signal source. The source
detection algorithm is successfully used in the switching
between the AADF and LMS algorithms which yielded better
channel estimation performance than AADF alone, and in
the extraction of speech from leakage-corrupted background
which resulted in much higher word recognition accuracy of
speech signals.

In order to handle more complicate acoustic environments,
more effective channel estimation algorithms are needed and
are critical to the improvement of both the SIR and the
accuracy of automatic speech recognition. The interaction
between the ASR system and the co-channel speech separation
front-end should also be further studied.

APPENDIX A

The following equation is derived for updating the filter
coefficients by expanding (4), replacing by and

ignoring the quadratic terms of and

(17)

where

with

Assuming that and are stationary and independent
of and defining and from
(17), we have

(18)

If as then

Substituting by (18) can be rewritten as

i.e.,

(19)

Defining (19) can then be rewritten as

Since is positive semidefinite, it can be decomposed as

where is unitary, the superscript denotes Hermitian
transpose, and

...
...

...
. . .

. . .

with for Therefore

Define
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then

i.e.,

For convergence, it is necessary that

Since is unitary, it is equivalent to

i.e.,

for Hence

(20)

Since (20) should be satisfied for alland all the bounds
of can be set as

where

Because
(6) can be used for to avoid

the calculation of the eigenvalues.

APPENDIX B

Following (1), (2), and (3), and can be
decomposed as

(21)

(22)

Defining the following notations:

and

equations (21) and (22) can be rewritten as

and the SIR’s of and are

SIR

and

SIR

respectively. Since and are independent of the
channel filters and assuming and are approx-
imately flat, the good indicators for the SIR’s of and

become and respectively. Define

with

It can be shown that
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where

Given fixed and since only depends on
and the expected values for and can be

expressed as

If and

Furthermore, since the filter estimation errors
is white and independent of and ’s can be
assumed i.i.d. Therefore

In order to find the minimum value of we take the
derivatives of w.r.t. ’s:

and solve for the equations

which yields

The following linear equations can be derived from the above
relation and must be satisfied by

...
...

...
. . .

. . .
...

...

The solution is

From the above derivation, we see that

i.e.,

As such, the gain on the leakage part is usually larger than the
gain on the signal part, hence the SIR of is usually lower
than the SIR of The same relation holds between the
SIR’s of and and it can be derived in the same way.
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