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ABSTRACT 
In this paper, we proposed an algorithm used to improve 
the performance of the metric-based segmentation 
techniques, by which the segmentation points are found 
at maxima of a distance measured between two 
contiguous windows shifted along the stream of speech 
features. In our proposed method, the PCA processes are 
first performed on the speech features to obtain more 
robust features, and then the above metric-based 
segmentation was applied on the PCA-derived features 
to decide the segmentation points. Experiment results 
show that our proposed method can efficiently improve 
the detection rates of the segmentation points up to 7% 
while the false alarm rates remain unchanged. 
 

I. Introduction 
 
Accurate segmentation of audio signal streams is a key 
process to improve the performance for recognition, 
transcription and retrieval of audio signals. Various 
schemes have been proposed to perform the speech 
segmentation automatically. According to [1], these 
approaches were roughly divided into three classes. : 
decoder-based splitting, model-based splitting and 
metric-based splitting. The metric-based splitting method 
has been found very useful [1,2] and very flexible, since 
no or little information about the speech signal is needed 
a priori to decide the segmentation points. In this kind of 
method, an acoustic distance measure is defined to 
evaluate the similarity between two contiguous windows 
shifted along the speech signal. The locations of distance 
peaks in the audio signal are detected as the candidates 
for the segmentation points. The final segmentation 
points are then chosen by some heuristic thresholds and 
criterions.  
 
As we know, the performance of the metric-based 
segmentation approach depends not only on the distance 
measures used, but also on the feature representation of 
the audio signals. More discriminative or robust features 
are helpful, especially when the speech signal is 

corrupted by channel distortion or additive noise. The 
Principal Component Analysis (PCA) [3] has been 
widely used in various problems to obtain more effective 
representation of features. In this approach, the 
eigenvectors of the covariance matrix for the original 
features corresponding to the largest k eigenvalues are 
taken as the basis of the eigenspace. The original 
features are then mapped onto this eigenspace to obtain 
the PCA-derived features. In this paper, an improved 
metric-based segmentation approach using principal 
component analysis is presented, and significant 
improvements were obtained in segmenting the 
broadcast news. 
The remainder of the paper is organized into 5 sections. 
In section 2, the Principal Component Analysis (PCA) is 
briefly reviewed. Then section 3 introduces the 
metric-based segmentation and several popular used 
distance measures. In section 4, we describe our 
proposed segmentation algorithm. Section 5 then 
presents some preliminary experimental results using the 
proposed approach. Finally, a short conclusion is given 
in section 6. 
 

II. Principal Component Analysis (PCA) 
  
It is well known that Principal Component Analysis 
(PCA) is widely applied for the data analysis and 
dimensionality reduction. Briefly speaking, for a 
zero-mean random vector of dimension N, PCA tries to 
find k (k≤N) orthonormal vectors so that when the inner 
product (a random variable) of the random vector and 
the individual orthonormal vector will have largest 
variance. The k (k≤N) orthonormal vectors are in fact the 
eigenvectors of the covariance matrix for the random 
vector corresponding to the largest k eigenvalues. Let's 
show it briefly as follows. 
 
Let x∈RN and E(x)=0, at first we wish to find e1∈RN and 
|e1|

2 =1, such that Var(e1
Tx)=e1

TE(xxT)e1 is maximum. 
Using the method of Lagrange multipliers, we wish to 
maximize  
 



J(e1)=e1
TE(xxT) e1-λ1 (|e1|

2 -1),               (1) 
 
where λ1 is a Lagrange multiplier. After differentiating 
J(e1) w.r.t e1 and set it to zero, we obtain E(xxT) e1=λ1 e1 , 
so λ1 is the eigenvalue of E(xxT) and e1 is the 
corresponding eigenvector. Furthermore, since 
Var(e1

Tx)= λ1 is to be maximized, λ1 is chosen as the 
largest eigenvalue of E(xxT) and e1 is the corresponding 
eigenvector. 
 
Secondly, we wish to find e2∈RN and |e2|

2 =1, such that 
Var(e1

Tx)=e1
TE(xxT)e1 is maximum and e2

Te1=0. Again 
using the method of Lagrange multipliers, we wish to 
maximize 
 
J(e2)=e2

TE(xxT) e2-λ2 (|e2|
2 -1)-p(e2

Te1 -0),       (2)  
 
where λ2 and p are Lagrange multipliers. After 
differentiating J(e2) w.r.t e2 and set it to zero, again we 
obtain E(xxT) e2=λ2 e2 , so λ2 is the eigenvalue of E(xxT) 
and e2 is the corresponding eigenvector. Furthermore, 
since Var(e2

Tx)= λ2 is to be maximized and e2
Te1=0, λ2 is 

chosen as the second largest eigenvalue of E(xxT) and e2 

is the corresponding eigenvector. 

 
Following the above steps, k orthonormal vectors e1, 
e2, … … , ek can be obtained by choosing the k 
eigenvectors corresponding to the largest k eigenvalues 
of E(xxT), which is the covariance matrix of x since 
E(x)=0. The k orthonormal vectors e1, e2, … … , ek form a 
basis of a subspace of RN , and when x is projected to 
this subspace, it can be proven that the resulted random 
vector y is "closest" to x (the mean square error of y-x is 
minimum) over the projection of x upon any other 
subspace of RN spanned by k orthnormal vectors. The 
PCA-derived random vector z ∈Rk from x RN is referred 
to as the vectors of k projection coefficients of x upon 
the k eigenvectors e1, e2, … … , ek . That is, z=[ e1 e2 … …  
ek]

Tx. The PCA-derived vector is often called the most 
"expressive" features since its components are of largest 
variances, which amounts to extracting the most parts of 
randomness of the original random vector. 
 

III. Metric-based Segmentation 
 
For the metric-based segmentation approaches, the 
speech signal is first encoded in terms of acoustic feature 
vectors. Then a dissimilarity (or called distance) value is 
measured between two consecutive parts (called window) 
of the acoustic features. Since it's complicated to directly 
measure the dissimilarity between two collections of 
vectors, both windows of features are often individually 
first modeled parametrically such as single or multiple 
Gaussian distributions, and then there are many distance 
measures between two parametric statistical models can 
be applied here. We list several distance measures [4] d12 

between two multivariate Gaussian distributions, N(µ1, 
Σ1) and N(µ2, Σ2), as follows, which we will used in our 
later experiments.  
 
Kullback-Leibler distance: 
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Mahalanobis distance: 
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Bhattacharyya distance: 
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Obviously a high distance value indicates a possible 
acoustic change, whereas a low value show that two 
portions of signal correspond to the same acoustic 
environment. Such distance measure is continually 
computed between two contiguous windows shifted 
along the speech features stream to form a distance curve. 
This distance curve is often low-pass filtered and then 
the local peaks of the filtered distance curve are then 
detected as the candidates for the segmentation points. 
Based on these candidates, different criterions and 
heuristics are applied to decide the final segmentation 
points. The overall procedure of metric-based 
segmentation is depicted in the following Figure 1. 

data stream 
modeling 

Distance calculation 

Distance curve 

Contiguous windows 

Figure 1. The procedures of 
metric-based segmentation 



IV. Proposed Algorithm 
 
From the previous statements, the performance of the 
metric-based segmentation is mainly influenced by 
several factors, and they are the feature representation of 
speech signal, the used distance measure, and the 
criterion to decide the final splitting points. Other factors, 
such as the size of window chosen, the filter applied for 
the distance curve and so on, also more or less affect its 
performance. In this paper we will pay attention to the 
used feature representation of speech signal to be 
segmented. It's well known that the current widely used 
speech features, such as MFCC or LPC, are easily 
corrupted by additive noise or channel distortion, and 
thus more discriminative or expressive presentations of 
speech to be segmented become necessary. In this paper, 
we suggested that the PCA processes are performed on 
the original speech feature vectors, and then the 
PCA-derived feature vectors are used for metric-based 
segmentation. 
 
As stated in section III, the metric-based segmentation 
continuously computes the distance of two contiguous 
windows shifted along the speech features. In this paper 
we proposed two approaches for extracting the 
PCA-derived features for the metric-based 
segmentation..  
 
In the first approach, two eigenspaces for the two 
contiguous windows of original speech features of 
dimension N are constructed separately. Then the 
original speech features of each window are mapped 
respectively onto the corresponding eigenspaces to form 
the PCA-derived features. Stated mathematically, 
consider the two windows of feature vectors 
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of Rx

Σ . Then the PCA-derived features of the two 
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i xy VVY , respectively. After the 

PCA-derived features of the two windows are obtained, 
they are modeled and the distance between the two 
models is computed as the normal processes of the 
metric-based segmentation.  
 

In the second approach, a single common eigenspace is 
derived using all the speech features of the two 
contiguous windows, and the speech features of the two 
contiguous windows are then mapped onto the common 
eigenspace to form the PCA-derived features. Stated 
mathematically, consider the two windows of feature 
vectors { } ni

L
,......,1== L

ixX , and { } ni
R

,......,1== R
ixX . Assume 

all XL and XR are the samples of a zero mean random 
vector x, then the covariance matrix of x can be 
approximated as ( ) ( ) 
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features of the two windows are obtained, they are 
modeled and the distance between the two models is 
computed as the normal processes of the metric-based 
segmentation. 
 

V. Experimental Results 
 
Our proposed approaches were tested with the broadcast 
news reports provided by CTS (Chinese Television 
System in Taiwan). The experimental data consist of 29 
sections of news reports and is about 46 minutes long. 
The speech signals were recorded with a sampling rate 
of 8K Hz. These data were first hand-segmented 
according to the speaker changes, environmental 
changes and silence periods, and 1023 segmentation 
points were decided. A 32ms Hamming window shifted 
with 16ms steps and a pre-emphasis factor of 0.95 were 
used to evaluate 15 mel-frequency cepstral coefficients 
(MFCCs) as the original speech features. The window 
size was chosen as 2 seconds and the window shift was 
100 ms. Various distance measures listed in Section III 
between the two contiguous windows were evaluated 
while Gaussian densities were assumed for each window. 
The local maxima within an interval of 1.5 seconds were 
chosen as the candidates of segmentation points. Two 
approaches stated in Section IV are used to obtain the 
PCA-derived features based on the original MFCC 
features for segmentation. Furthermore, in our 
experiments we use different number of eigenvectors for 
the eigenspace to see its influences on the performance. 
In the following, Tables 1-3 show the detection rates of 
various approaches where different distance measures 
are applied. 



 

features 
# of 

eigenvec-
tors 

Approach 1 : 
two eigenspaces 
for two windows 

Approach 2 : 
one eigenspace 

for two windows 
1. 94.04% 90.62% 
3 91.40% 87.98% 
5 89.35% 89.44% 
7 89.54% 91.20% 
9 89.15% 90.42% 
11 89.25% 89.64% 

PCA-deri
ved 

features 
from 

MFCC 
13 88.86% 89.64% 

MFCC 88.47% 
Table 1. The detection rates of two approaches when 
Mahalanobis distance is used 
 

features 
# of 

eigenvec-
tors 

Approach 1 : 
two eigenspaces 
for two windows 

Approach 2 : 
one eigenspace 

for two windows 
1. 94.62% 90.81% 
3 92.96% 88.86% 
5 90.52% 88.17% 
7 90.52% 87.49% 
9 89.74% 88.66% 
11 89.35% 88.66% 

PCA-deri
ved 

features 
from 

MFCC 
13 87.98% 88.47% 

MFCC 87.68% 
Table 2. The detection rates of two approaches when 
Kullback-Leibler distance is used 
 

features 
# of 

eigenvec-
tors 

Approach 1 : 
two eigenspaces 
for two windows 

Approach 2 : 
one eigenspace 

for two windows 
1. 91.20% 90.52% 
3 91.98% 88.56% 
5 90.62% 88.47% 
7 89.83% 87.00% 
9 90.13% 88.66% 
11 89.15% 88.56% 

PCA-deri
ved 

features 
from 

MFCC 
13 88.17% 88.37% 

MFCC 87.88% 
Table 3. The detection rates of two approaches when 
Bhattacharyya distance is used 
 
First of all, from Tables 1-3 we see that when MFCCs 
were used as the features for segmentation, three 
different distance measures give comparable results. 
However, it is obvious that both approaches proposed in 
this paper give significant improvements in detection 
rates, especially when Mahalanobis distance or 
Kullback-Leibler distance is used. Secondly, we also see 
that in most cases the first approach, where two 
eigenspaces for the two contiguous windows are used, 
outperforms the second approach, where only a common 
eigenspace is used for the two contiguous windows. This 
can be explained briefly as follows. While two 

contiguous windows of speech features belong to two 
different acoustic environments, using only one 
eigenspace for both windows of features to project on 
will decrease the difference (distance) between them. 
However, while two contiguous windows of speech 
features belong to the same acoustic environment, using 
one common eigenspace is more suitable than using two 
difference eigenspaces, since the latter seems to increase 
the false alarm rate, which doesn’t happen in our 
experiments though. Finally, we find that in most cases 
both approaches using fewer eigenvectors for 
constructing the eigenspace give rise to better 
performance, which is expected since computation 
complexity of the eigenspace construction and the 
mapping of the features can be efficiently reduced. 
 

VI. Conclusion 
 

In this paper, we proposed two approaches to apply the 
PCA on the speech features in order to obtain more 
robust features for metric-based segmentation. 
Improvements in detection rates of segmentation points 
show the effectiveness of our proposed approaches. Such 
improvements are believed to increase the performance 
of following speech signal processing and speech 
recognition. 
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