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Abstract 
Chinese language has quite different characteristic structures 

from those of English. There are at least word, character, 
syllable, Initial-Final levels in Chinese, each carrying different 
levels of information with complicated correlations among 
them. In this paper, we investigate the dependency of 
pronunciation variation in conversational Mandarin speech on 
these different levels under various contextual conditions 
considering the structural features of the language. The 
influence of speaking rate and word frequency on such 
pronunciation variation is also analyzed. Different pruning 
methods, for including pronunciation variation in speech 
recognition were also evaluated, and the experimental results 
showed that improved accuracy is obtainable if the 
characteristics of the pronunciation variation found in the 
analysis can be properly taken into account. All discussions 
here are based on tests with the LDC Mandarin Call Home 
corpus. 

1. Introduction 
It has been well known that pronunciation variation very 

often seriously deteriorates the performance of ASR systems if 
not handled appropriately [1]. Since considerable 
pronunciation variation is usually present in conversational 
speech , in-depth analysis of such phenomenon becomes very 
important. In English and quite several other western 
languages, pronunciation variation in word, syllable or phone 
levels has been extensively studied. However, Chinese 
language has quite different monosyllabic structure and is a 
tonal language. There are at least Initial-Final, syllable, 
character, and word levels of linguistic units, each carrying 
different levels of information with complicated correlations 
among them. However, not too much analysis of Mandarin 
speech pronunciation variation with respect to the structural 
features of Chinese language has ever been reported in the 
literature. This is therefore the subject of this paper. Also, it 
has been pointed out that pronunciation variation is related to 
speaking rate and word frequency in English. Such a 
relationship is also investigated for Mandarin Chinese here. 
All results reported here are based on tests with the LDC 
Mandarin Call Home corpus. 

In the following section 2 the framework of analysis and 
experiments reported in this paper is described. In section 3, the 
dependency of pronunciation variation for various linguistic 
levels is analyzed under different contextual conditions. The 
influence of speaking rate and word frequency on the 
pronunciation variation is then presented in section 4, and  

some recognition experiments examined in section 5. The 
conclusion is finally given in section 6. 

2. Framework of analysis and experiments 
The preliminary experiments were performed with the HTK 

tools on a part of the Mandarin Call Home corpus of about 6.7 
hours of data of Putonghua accent, including 3.31 hours for 
male and 3.39 hours for female. Detailed statistics of the 
corpus is shown in Table 1. This corpus was used to train the 
gender-dependent acoustic models consisting of 58 three-state 
Initials and 22 four-state Finals regardless of the tone. All 
Initial/Final models are context independent. More 
explanations about the Initial/Final linguistic units will be 
given below. There are 24 Gaussian mixtures per state. The 
acoustic features are 13 MFCCs, 13 delta MFCCs and 13 
acceleration MFCCs. The trained acoustic models are used 
both to acquire surface form and to perform recognition 
experiments as well.  

The main steps to acquire the pronunciation confusion table 
are as follows: 

1. Acquiring the canonic transcriptions in each level for 
the 6.7 hours of data 

2. Using the unconstrained Initial-Final recognizer to 
acquire the surface form for the 6.7 hours of data 

3. Aligning the canonic and surface forms with the 
dynamic programming algorithm 

4. Generating the confusion table and obtaining the 
statistics for each level and each contextual condition 

The pronunciation variation metrics used in this paper are 
the entropy (Hi and H are defined below), and the probabilities 
of model deletion and substitution (Pdel and Psub). Entropy has 
been widely used for pronunciation learning systems and 
found to be a good measure for the spread of pronunciations in 
a training set [2]. For the pronunciation set of a linguistic unit 
(Initial-final, syllable, character, word) i with probability 
distribution estimates pi,r for different pronunciations r, the 
entropy Hi is defined as 

ri
r

rii ppH ,10, log∑−=    ,          (1) 

and the average entropy for a specific linguistic unit 
(Initial-Final, syllable, character or word) is then 

i
i

i HpH ∑=    ,               (2) 

where pi is the probability of observing the linguistic unit i.  

After various analysis of the pronunciation variation on the 
6.7 hours of Mandarin Call Home corpus as will be presented 
in the sections below, another set of about 30 minutes of data 
with the same accent from the Mandarin Call Home corpus 
was tested in recognition experiments with bigram language 
model based on a lexicon of roughly 8K words. The baseline 



 

experiment was based on a static lexicon with only one 
canonic pronunciation per word. Because simply adding all the 
pronunciation alternatives to the lexicon may result in 
degradation of recognition performance, appropriate pruning is 
therefore crucial. Both the probability-based and count-based 
pruning methods were investigated. Afterwards, the same 30 
minutes of data was tested again on the retrained acoustic 
models. 

 

Table 1. Detailed statistics of the 6.7 hours of data of 
Putonghua accent used in training. 

3. Pronunciation variation at various levels of 
linguistic units and under different 
contextual dependency conditions 

Because the pronunciation variation apparently has to do 
with the characteristic structures of the different levels of 
linguistic units (Initial-Final, syllable, character, word). Such 
characteristic structures of Mandarin Chinese are first 
summarized here. Analysis of pronunciation variation with 
respect to these characteristic structures will then follow. 

Chinese is a monosyllabic-structure language. Most 
morphemes (i.e., the smallest meaningful units [3]) are  
represented by single syllables. The basic graphic unit, or the 
character, on the other hand, is always pronounced as a 
monosyllable. As a result, the overwhelming majority of 
characters represent single morphemes in Chinese. A Chinese 
word is then composed of one to several characters. Most 
characters can also be a mono-character word. In the Chinese 
writing system, the words (and characters) are connected 
together one after another in a sentence without any word 
boundaries (such as the blanks serving as word boundaries in 
western languages); the reader supplies necessary boundaries 
as he reading along [4]. In addition, almost every character has 
its own meaning and can play quite independent role 
linguistically (since it is a morpheme and can be a 
mono-character word). As a result, although it seems easy to 
identify words by native speakers of Chinese, it is in fact 
difficult to define the words rigorously, even if in principle a 
word is defined as a unit “which has specific meaning and can 
be used freely” [4]. For example, there doesn’t exist a 
commonly accepted lexicon including all the commonly 
accepted words in Chinese, and the segmentation of a sentence 
into words may be different for different readers. In general, 
there are more than ninety thousand frequently used words in 
Chinese and the number of frequently used characters is at 
least ten thousand. However, there are only about 418 
base-syllables (disregarding the tones) or 1360 tonal syllables 
(including the differences in tones) in Chinese. Consequently, 
very often several, if not many, different characters share the 
same syllable, the so-called homophones. There are also many 
cases of the reverse of homophones, i.e., the homographs, 
which is the same character but with several pronunciations, 
for which a character may have different meanings with 
different pronunciations. Traditional Chinese phonology 
decomposed the syllable into an Initial and a Final. The Initial 
is the way a syllable begins, usually with a consonant. A small 
number of syllables do not begin with a consonant. They are 
said to begin with the zero Initial. The Final of a syllable is the 

syllable minus the Initial. The longest form of a Final consists 
of three parts: an optional medial, or semivowel; a main vowel, 
or head vowel; and an optional ending [3]. There are about 21 
Initials and 36 Finals in Mandarin. Generally speaking, from 
Initial-Final, syllable, character to word level, the level is 
shifted from phonological to semantic significance.  
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Fig. 1. Average entropy for different levels of linguistic units 

under different conditions of contextual dependency. 
 
In order to analyze the pronunciation variation with respect 

to the different levels of linguistic units and contextual 
conditions, we plotted the average entropy H in equation (2) 
for each level of linguistic unites with respect to each case of 
contextual conditions in Fig. 1. Quite many interesting 
observations can be made in Fig. 1. For example, since each 
word, character, or syllable is a combination of Initial(s) and 
Final(s), the average entropy for the Initial-Final level is the 
lowest compared to those for other levels, under the condition 
of contextual independency. However, by specifying more 
contextual dependency conditions, the average entropy is 
reduced enormously in all other levels except only slightly in 
Initial-Final level. From an information-theoretic perspective, 
the reduction of average entropy may arise from the reduction 
of possible pronunciation variation, which is reasonable when 
more contextual dependency is specified in each level. In other 
words, the pronunciation distribution becomes more focused 
with additional contextual conditions. The reason for the 
exception for the Initial-Final case, on the other hand, is 
probably that the pronunciation of most Initials or Finals is not 
dependent on their neighboring Initial or Final only, but very 
often cross the character or word boundaries. That may be why 
the phenomenon is not significant for the Initial-Final case. It 
is interesting that for the both left and right contextual 
dependency condition on the right of Fig. 1, the average 
entropy of the syllable level is very close to that of the 
character level. This implies that the information (or entropy) 
carried by a syllable is approached to that of a character if 
enough contextual information is specified. This is in good 
agreement with the experiences of processing Mandarin 
Chinese. For example, even if each syllable is often shared by 
many homophone characters, the native speakers know exactly 
which character is referred to by listening to the syllable due to 
the contextual information. This is also the reason that 
character-based N-gram language models are able to clarify 
the ambiguity caused by homophone characters. In Table 2, 
the syllable shi may corresponding with several characters. 
However, by specifying both left and right neighboring 
syllables, the syllable shi is then constrained to a specific 
character. In addition, the average entropies of character and 
word are comparable in contextual-independent case. This may 
be due to the fact that many frequently used mono-characters 

accent
Syl/sec hour Syl/sec hour Syl/sec hour

max=13.45 max=13.19 max=13.45
min=0.53 min=0.6 min=0.53
avg=5.29 6.76.76.76.7 avg=5.57 3.313.313.313.31 agv=5.12 3.393.393.393.39

Call  Home Training data
Total Male Female

PutonghuaPutonghuaPutonghuaPutonghua



 

appear much more frequently than other multi-character words 
and therefore the former actually dominates in word level 
entropy under the contextual independency condition. 

 
ㄕ ㄐㄧㄡ-ㄕ+ㄕㄨㄛ ㄉㄜ-ㄕ+ㄏㄡ 

LogUnigram  1.36 

Entropy : 1.94  

canonic : S Y 

S Y  0.24 

S   0.08 

  0.07 

Y  0.03 

Z Y  0.02 

logUnigram -2.59 

Entropy : 1.49   

canonic : S Y   

    0.28 

S   0.10 

S Y  0.08 

Y  0.07 

E  0.02 

logUnigram -3.03

Entropy : 1.29 

canonic : S Y 

S Y  0.23 

S   0.16 

  0.15 

Y  0.03 

R Y  0.02 

Table 2. Examples of pruned pronunciation variation in 
syllable level with contextual independency condition 
(left column) and both left and right contextual 
dependency condition (middle and right columns). 

4.  Pronunciation variation for different 
speaking rates and different word frequencies 

In order to analyze the pronunciation variation with respect 
to the speaking rates, the speaking rate used here is determined 
by dividing the time length between transcribed silences by the 
corresponding number of syllables in the transcriptions. In 
addition, for analysis purposes we divide the speech data into 
four groups based on four different ranges of speaking rates, 
i.e., less than 4.65 syllables/sec, above 6.15 syllables/sec, etc. 
The ranges for speaking rates are determined in such a way 
that almost equal number of syllables are included in each 
group. The average entropy for different levels of linguistic 
units at different ranges of speaking rates is plotted in Fig. 2. 
From Fig. 2, it is obvious that the entropy is higher at higher 
speaking rates, which is natural because more pronunciation 
variation occurs at higher speaking rates. However, for the 
group with the slowest speaking rate (<4.65 syllables/sec), the 
entropy is comparable to those with middle speaking rates. We 
found that most hesitating words and utterances for the Call 
Home conversation are in this group. The pronunciation of 
these hesitating words and utterances is more uncertain due to 
their inherent characteristics and the inconsistent transcriptions. 
This situation is more evident in character and word levels, as 
can be found in Fig. 2. In addition, it is interesting to note that 
the average entropy for all the data (not dividing into four 
groups) as dots at the left of Fig. 2 is higher than those of any 
of the four groups of speaking rates at either the syllable, 
character or word levels. In other words, simply merging the 
four different groups with different statistical properties into 
one group will result in higher entropy, which is reasonable. 
The difference becomes limited for the Initial-final level, since 
in this case the four different groups behave quite similarly.  

In Fig. 3, the probabilities of model substitution or deletion 
(Psub and Pdel) are plotted for the four groups of different 
speaking rates. It can be found that both Psub and Pdel increase 
as the speaking rate increases, which is also intuitively 
reasonable. The tendency is more significant for Pdel, which 
again agrees with the fact that fast speaking rates tend to 
coincide with significant phonological reduction [2]. 

Furthermore, Linguists have recognized that word frequency 
affects the perception and production of phones. From an 
information-theoretic perspective, speakers would tend to 
preserve the most information in speech by limiting the 
pronunciation variation in the least informative words – that is, 

the “words” most predictable from context [2]. However, 
different from English, as mentioned previously the “words” in 
Chinese are not clearly identifiable. Conventionally, the word 
predictability is determined by the N-gram parameters for the 
words. We therefore divide all the data into seven categories 
according to the log unigram probabilities for each level of 
linguistic units, and plot the entropy for pronunciation 
variation for word, character, syllable and Initial-Final for 
these seven categories in Fig. 4. It can be found from Fig. 4 
that more frequently spoken Initials, Finals, syllables and 
characters are more uncertain relatively, which is in good 
parallel with the principles mentioned above. As for the word 
level, there is a similar trend when the log unigram is 
below –1.75. Whereas, as can be seen in Fig. 4, the entropy 
decreases contrariwise in the category of the most frequently 
spoken words. A possible explanation for this phenomenon is 
given below. Generally speaking, speakers tend to preserve the 
most information by limiting the pronunciation variation in the 
least informative units, which are most predictable from the 
context. However, in the word level, a character(syllable) in 
multiple-character(syllable) words is more predictable by 
referring to its neighboring characters(syllables) in the same 
words. Consequently, in the word level, more frequently 
spoken multiple-character words may tend to suffer more 
pronunciation variation. However, in Chinese conversation the 
category of most frequently used words include quite many 
mono-character words, while many of the frequently spoken 
multiple-character words are in the second most frequently 
used category of Fig. 4, i.e., with log unigram probabilities 
from –2.25 to –1.75. This may be why the entropy decreases 
contrariwise in the category of most frequently spoken words 
in Fig. 4. In this regard Chinese language is again different 
from English [2].  
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Fig 2. Average entropy for the different levels of linguistic 

units ( Initial-Final, syllable, character and word) for all the 
data (the most left dots) and four different speaking rates 
under the contextual independency condition. 
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Fig 3. Probabilities of model substitution and deletion (Psub 

and Pdel ) for four different speaking rates and for all data (the 
most left dots) under the contextual independency condition. 
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Fig 4. Average entropy for different levels of linguistic units 

(Initial-Final, syllable, character and word) for all data (the 
most left dots) and seven categories of different linguistic unit 
frequency (or log unigram probability) under contextual 
independency condition. 

5. Applications with improved recognition accuracy 

Here we performed the recognition tests with the other 30 
minutes of data from LDC Mandarin Call Home corpus with 
the same accent as in the 6.7 hours of training data. The 
canonic word lexicon used in the baseline consisting of 7619 
words, most of which were present in the 6.7 hours of training 
data. In this canonic lexicon each word has only one 
pronunciation. In order to compare the performance between 
two different pruning methods, the average numbers of 
pronunciation per word are tuned to be comparable in the two 
methods. In the count-based pruning method, the number of 
pronunciations for each word to be added into the lexicon was 
0.75 (this number had been tuned empirically) times of the log 
Unigram of each word. In probability-based pruning method, 
on the other hand, for each word the pronunciations with priori 
probabilities less than 0.5 (this number had been tuned 
empirically) times of Pmax , the probability for the most 
probable pronunciation, were not be added into the lexicon. 
The results are listed in Table 3. 

 

  
Average number 
of pronunciation 

per word 

character 
accuracy 

Baseline 1 24.2 
Count-based pruning 1.009 24.87 

probability-based 
pruning 1.007 25.81 

probability-based 
pruning plus     

retrained acoustic 
models 

1.007 26.27 

Table 3. Character accuracy for various recognition 
tests considering pronunciation variation 

 As can be observed in Table 3, the count-based pruning did 
not perform as good as the probability-based method. This is 
in fact in good agreement with the results in Fig. 4, i.e., unlike 
in English, to determine the allowed pronunciation variation 
for a word simply by its frequency (or log unigram) may not 
be appropriate, because the entropy for word does not always 
increase with the log unigram. Finally, the augmented lexicon 
with pronunciation variation selected by the probability-based 

pruning method was used to align the 6.7 hours of training data, 
and the acoustic models are retrained on this new transcription. 
Afterwards, the same 30 minutes of evaluation data was again 
tested on the retrained acoustic models with the same 
augmented lexicon. The results in the last row of Table 3 show 
improved recognition accuracy when the pronunciation 
variation was handled in this way.  

6. Conclusion 
This paper presents pronunciation variation analysis with 

respect to various linguistic units and contextual conditions for 
Mandarin Chinese. There are at least word, character, syllable, 
Initial-Final levels of linguistic units in Chinese, each carrying 
different levels of information with complicated correlations 
among them. It was found that by specifying more contextual 
conditions the average entropy for pronunciation variation is 
reduced enormously almost in each level of linguistic units. It 
is also found that higher entropy of pronunciation variation is 
in accordance with higher speaking rate, except for the most 
hesitation words which are spoken with relatively slow speed. 
Also, more frequently spoken units usually appear with more 
pronunciation variation, but this is not always the case for 
frequently used words. This is different from English. The 
recognition tests indicated reasonable improvements in 
accuracy if the pronunciation variation was properly handled, 
especially when the various characteristics for Mandarin 
Chinese were well considered. 
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