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Abstract

Eigen-MLLR coe�cients are proposed as new feature pa-

rameters for speaker-identi�cation in this paper. By per-

forming principle component analysis on MLLR parame-

ters among training speakers, the eigen-MLLR coe�cients
(EMCs) are derived as the coe�cients for the eigenvec-

tors. The discriminating function of the new EMC fea-

tures based on the Fisher criterion is found to be ten

times larger than that of mel-frequency cepstral coe�-

cient (MFCC) features, for distinguishing speakers. The

speaker-identi�cation accuracy using the EMC features

are shown to be signi�cantly better than that using MFCC

features, especially when the quantity of enrollment data

is limited. It is also shown that properly combining MFCC

and EMC features can achieve a signi�cant error rate re-

duction on the order of 50%-60% as compared to using

MFCC features alone.

1. Introduction

Speech recognition and speaker recognition are two com-

plementary problems in speech signal processing. In speech

recognition, the objective is to decode the linguistic mes-

sage or phonemic information carried by the speech sig-

nals, and hence the variations caused by di�erent speakers

are considered harmful and should be removed or avoided

as much as possible. Contrarily, speaker recognition aims

to distinguish one speaker from the others, regardless of

what they said, and hence the di�erences of voice char-

acteristics among speakers must be exploited, while the

phonemic di�erences for the speech signals are better ig-

nored. Intuitively, speech recognition and speaker recog-

nition should better use di�erent signal traits as inputs.

However, the most widespread feature parameters used to

date in these two tasks are usually very similar, primarily

based on spectrum-derived parameters, in particular the

mel-frequency cepstral coe�cients (MFCCs) [1]. As a re-

sult, in order to obtain the desired information { either

speech content or the speaker identity, both tasks rely

heavily on statistical models trained using large quanti-

ties of data. Such systems are therefore vulnerable and

may be failure when the available speech data is limited.

It is certainly desirable to extract only those acoustic

properties for phonemic di�erences for the task of speech

recognition, and extract only those acoustic properties for

speaker variation for speaker recognition, if at all possible.

In speech recognition, a prevalent way to deal with the

problem of speaker variation is speaker adaptation. It

aims to reduce the acoustic mismatch between the train-

ing conditions and testing conditions by adapting the spea-

ker-independent phonetic-acoustic models to a new speaker

based on not too much data produced by the new speaker.

Maximum Likelihood Linear Regression (MLLR) and eigen-

voice are two important approaches in speaker adapta-

tion. Both of them provide some approaches to handle

the speaker variations, especially when only very limited

quantities of enrollment data are available. In this pa-

per, the aim is to explore new feature parameters carry-

ing better information on speaker variation for speaker

recognition. The well adopted Gaussian Mixture Model-

ing (GMM) technique [1] for speaker-identi�cation tasks

were used in the following experiments. Eigenvoice ap-

proach has been used in speaker recognition before [2], but

in fast training of speaker-speci�c GMMs from a speaker-

independent GMM via eigenvoice adaptation, which is

quite di�erent from what is presented below in this paper.

2. Eigen-MLLR coe�cients

2.1. Maximum Likelihood Linear Regression

MLLR adaptation approach [3] is a well-accepted approach

for speaker adaptation, which reduces the mismatch be-

tween the speaker-independent phonetic-acoustic models

and the speaker-speci�c characteristics of the individual

speakers by performing one or several a�ned matrix trans-

formations on all mean vectors of the phonetic-acoustic

models to approximate the speaker-speci�c characteris-

tics. Apparently the coe�cients in these MLLR matri-

ces do carry the information of the speaker-speci�c char-

acteristics, which might be used as features in speaker

recognition. However, the number of free parameters in

MLLR a�ned transformation matrices may be too large

to be used for speaker recognition with limited quantities

of training data. This problem may be handled by reduc-

ing the degree of freedom in MLLR parameters based on

eigenvoice analysis as discussed below.
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2.2. Eigenvoice analysis on MLLR matrix coe�-

cients (eigen-MLLR)

The eigenvoice analysis [4] can be applied on the MLLR

parameters [5][6], so as to preserve the advantage of e�-

cient speaker characteristics of MLLR, but utilize the di-

mension reduction functions and variation maximization

nature of eigenvoice. This concept is summarized below

and referred to as eigen-MLLR here in this paper.

To begin with, the MLLR matrix coe�cients for a speci�c

speaker i are augmented and aligned as a long 'supervec-
tor' wi. This vector wi is considered as a sample of a ran-

dom vector w of speaker characteristics. When enough

number of such samples are collected for a large number

of speakers, say i = 1; 2; :::K, principle component analy-

sis (PCA) [7] can be performed on the covariance matrix

Cw of w,

Cw = Ew�wE
T
w
; (1)

where �w and Ew are the eigenvalue and eigenspace ma-

trix, respectively.

The eigenvectors obtained here represent the principle

components of the deviations among speakers from the

speaker-meanMLLR supervector due to the speaker-speci�c

characteristics. Each eigenvalue in �w represents the mag-

nitude of the variance along the direction of the corre-

sponding eigenvector among the many speakers. Conse-

quently, if we pick up properly top n eigenvectors fvj ; j =
1; 2; :::; ng with relatively large eigenvalues, we may form

an optimal subspace of the MLLR supervector space for

speaker adaptation (as well as identi�cation). The selec-

tion of the subspace is illustrated as a mask matrix Qn in

the following approximation formula 2.

Cw �=
�
EwQn

�
�w

�
EwQn

�T
(2)

where Qn is a mask matrix with 1 in the top n diagonal

elements and 0 elsewhere.

2.3. Eigen-MLLR coe�cients (EMCs) extracted

by projection method

In view of the fact that the eigen-MLLR approach has

been shown to be e�cient in speaker adaptation [5][6], it is

expectable that the coe�cients in the eigen-MLLR space

apparently carry good information for speaker variation.

It is therefore proposed in this paper to use these pa-

rameters for speaker recognition. These parameters may

contain much less irrelevant phonemic information than

the MFCC features do. The projection method can be

used here to compute one set of eigen-MLLR coe�cients

(EMCs) for each speech signal frame,

(cj)s =
�
o(t)� �Ws �sr

�T�
(Vj)s �sr

�
(3)

where (cj)s, j = 1::n, are the EMCs to be estimated for

class s, o(t) the observed MFCC feature at time t, �Ws the

D�(D+1) MLLR matrix for the speaker-mean for class s,

�sr the extended mean vector of mixture density sr in the

speaker-independent phonetic-acoustic model where the

mixture density sr belonging to the class s in the MLLR

adaptation, and (Vj)s a D� (D+1) matrix for class s of

the following form:

(Vj)s = [(vj)s]D�(D+1): (4)

where (vj)s is the j-th eigenvector for class s.

This frame-based projection method allows us to compare

di�erent size of training and test data sets exibly, as will

be clear in section 3. These coe�cients de�nitely carry

very e�cient speaker-speci�c characteristics, because they

represent the components of a vector for a speci�c speaker

along the directions of eigenvectors of the eigen-MLLR

space. This will be veri�ed by the experiments below.

3. Experimental results

3.1. Experimental setup

The experiments were conducted on a PC dictation database

of Mandarin Chinese recorded in Taiwan. Abundant speech

data set (A) from 241 training speakers was used to train a

set of speaker-independent phonetic-acoustic models, and

to construct 240 eigenvectors based on the 241 MLLR ma-

trices, where single-class MLLR is used. Up to ten sec-

onds of GMM-training speech set (B1) produced by each

of another 60 test speakers (30 female and 30 male) was

then used in GMM training. The speaker-identi�cation

test was performed with another set (B2) of about 78 sec-
onds of speech data in average produced by each of these

60 test speakers. In the tests, each decision was made by

5 seconds of observation window, with window shift of 4

seconds in test set. Table 1 summarizes the corpus.

data set A B1 B2

usage SI model & speaker-identi�cation
eigen-MLLR GMM training GMM test

#speakers 241 60 (30 female, 30 male)

size 72.5 hr. 10 sec. � 60 78 sec. � 60

Table 1: Corpus description

3.2. System con�guration

The system consisted of a front-end speech signal pre-

processor that converts speech utterance from its digi-

tal waveform representation into a stream of feature vec-

tors, followed by a back-end speaker identi�er that per-

forms stochastic matching as well as decision making. A

speaker-independent speech recognizer [8] was used at the

front to generate the best state and mixture density se-

quence f srg for the speech signal in order to compute

EMCs via Equation 3. During training, a group of L

(L = 60) speakers S = S1; S2; : : : ; SL was represented by

GMMs �1; �2; : : : ; �L using feature vectors, in terms of ei-

ther MFCCs or EMCs, extracted from the training data.

Parameters of the GMMs were estimated via expectation-

maximization algorithm [9]. In the testing phase, the

system took as input the feature vectors extracted from

the test utterance, and produced as output the likelihood

score for each of the speaker models. According to the

maximum likelihood decision rule, the identi�er decided

in favor of a speaker satisfying

Ŝ = argmax
1�i�L

p(Oj�i): (5)

where O is the sequence of feature vectors o(t).

3.3. Baseline system | MFCC-based GMM

For performance comparison, a baseline system built upon

MFCC-based features was evaluated �rst. A 22-dimension



Training #Gaussian
data size 8 16 32 64

10 sec. 12.46 6.27 5.05 7.08

7 sec. 18.24 12.87 11.97 16.37

5 sec. 24.92 20.93 25.00 37.54

3 sec. 40.80 41.94 57.25 80.78

Table 2: Speaker identi�cation error rate (%) for MFCC-
based GMM

feature vector consisted of 12 MFCCs plus 10 delta-MFCCs

was extracted for every 25-ms of Hamming-windowed frame

with 10-ms frame shifts. The speaker-identi�cation per-

formance with respect to the number of mixture com-

ponents used in each speaker model are summarized in

Table 2. As expected, the performance of MFCC-based

GMMs depended highly on the quantity of the enroll-

ment data. With less than 10 seconds of speech for each

speaker, the performance dropped down rapidly.

3.4. EMC-based GMM

A series of preliminary experiments was �rst performed to

choose the dimension n of the eigen-MLLR space, or the

number of eigenvectors. These are speaker-identi�cation

tests using four-mixtured GMMs with 5 seconds of en-

rollment data for each speaker. From the results sum-

marized in Table 3, we chose n = 50, or 50 eigenvectors,

for the rest of experiments in the paper. After select-

ing the �fty dimensions for EMC features, the perfor-

mance of speaker-identi�cation tests for di�erent number

of mixture-components of GMM are shown partly in Ta-

ble 4. The degradation of performance with enrollment

data less than 10 seconds is apparently slower than that

of MFCC-based GMM, and the performance is signi�-

cantly better. The best performances of EMC features

were all obtained with two mixture-components only, as

compared to MFCCs' obtained with much higher mixture-

components from 8 to 32.

n 22 30 50 70 100

error rate (%) 19.38 17.10 12.14 12.13 53.26

Table 3: Selection of the dimension n of the eigen-MLLR
space by speaker-identi�cation tests with 4 mixtures of
GMM and 5 seconds of enrollment data

Training #Gaussian
data size 1 2 3

10 sec. 9.77 5.54 6.84

7 sec. 12.62 8.22 10.67

5 sec. 15.72 10.91 13.03

3 sec. 24.76 19.30 23.53

Table 4: Speaker identi�cation error rate (%) for EMC-
based GMM

3.5. MFCC/EMC-based joint GMM

The conventional MFCC features and the EMC features

have quite di�erent properties. It was observed in the ex-

periments that these two types of features in fact perform

di�erently for di�erent speakers. A speci�c speaker might

obtain very low accuracy with MFCC features while per-

formed very well with EMC features, and vice versa. It

is therefore possible to enhance the identi�cation perfor-

mance by properly combining these two di�erent types of

features together in the test. In such an MFCC/EMC-

based joint GMM test, the probability evaluated for each

frame of speech is simply

P
�
o1(t); o2(t)

�
(6)

= P
(1��)

1

�
o1(t)

�
� P�

2

�
o2(t)

�

where o1(t) and o2(t) are the MFCC and EMC feature

vectors respectively, P1() and P2() are the MFCC-based

and EMC-based GMM probabilities respectively, and � is

a weighting factor, 0 � � � 1. The results in Table 3 show

signi�cant improvements of 50%-60% error rate reduction

by this MFCC/EMC-based joint GMMs as compared to

the conventional MFCC-based GMMs, regardless of the

size of the training data being 3, 5, 7 or 10 seconds. In

each case the achieved error rate is signi�cantly lower than

using either MFCC alone or EMC alone. The two types of

feature parameters are apparently highly additive, which

means the EMC features do bring extra speaker-speci�c

information which are not present in MFCC features.

4. Further discussions

4.1. Analyses of discriminating functions for

MFCC and EMC features

To analyze the discriminating functions of the two types

of features, we evaluate the ratio of inter-speaker to intra-

speaker variances for each feature dimension d, or the F-

ratio Fd, according to the Fisher criterion function [10],

based on the tested database of the 60 test speakers.

Fd =
variance of speaker means

average intra-speaker variance
: (7)

The F-ratios Fd of MFCCs are in the range of 0.006 to

0.028 for the instantaneous MFCC components, at dimen-

sions 1-12, while nearly 0 for the delta-MFCCs at dimen-

sions 13-22, with an average of 0.0084, as shown in Fig-

ure 1 as a function of the 22 dimensions. The F-ratios of

EMCs, on the other hand, are in the range of 0.03 to 0.25

at dimensions 1-50, with an average of 0.0784, roughly

10-times larger compared to that of MFCCs, as shown in

Figure 2 as a function of the 50 dimensions of eigenspace.

The general trend of smaller Fd ratio for higher dimen-

sions is also clear in Figure 2.

4.2. Computation complexity analysis

It is worthwhile to compare the computation complex-

ity required for using the proposed EMC features to that

using the MFCC features. Consider �rst the memory re-

quirement. A GMM with diagonal covariance matrices

contains (2D + 1)M free parameters, where D is the di-

mension of the features, and M is the number of mixture

components. Therefore, with the above example system,

we should store at least (22�2+1)�32 = 1440 parameters

when MFCC features are used, but (50� 2+1)� 2 = 202

parameters when the proposed EMC features are used.

Next consider the computational cost, we assume that

multiplication, division, exponentiation, and logarithm

all take a single multiply-add time, then a GMM-based

system requires around 3DMTL multiply-add operations



EMC-based GMM MFCC/EMC-based joint GMM MFCC-based GMM
Training error rate #Gaussian error rate � error rate reduction error rate #Gaussian
data size (%) (%) v.s. MFCC (%)

10 sec. 5.54 2 2.52 0.5 50% 5.05 32

7 sec. 8.22 2 5.46 0.7 54% 11.97 32

5 sec. 10.91 2 8.39 0.6 60% 20.93 16

3 sec. 19.30 2 16.61 0.7 59% 40.80 8

Table 3: Speaker identi�cation error rate (%) for MFCC/EMC-based joint GMM
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Figure 1: F-ratio Fd of MFCCs over 60 speakers for the
22 dimensions
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Figure 2: F-ratio Fd of EMCs over 60 speakers for the
50 dimensions of eigenspce

during the testing phase, where T is the utterance length

and L is the number of speakers. Therefore, the number of

multiply-add operations involving MFCC and EMC fea-

tures for the present system are 3� 22� 32TL = 2112TL

for MFCCs and 3 � 50 � 2TL = 300TL for EMCs, re-

spectively. The extra computation required for the EMC

extraction in Equation 3 is very limited. If the application

system includes a speech recognizer, the additional cost in

state and mixture density alignment is also limited. It is

thus clear that the proposed EMC-based GMMs require

much less memory and computational cost, compared to

the MFCC-based GMMs.

5. Conclusions

Eigen-MLLR Coe�cient (EMC) features are proposed for

speaker identi�cation in this paper. The F-ratios of EMC

features were shown in average about 10-times larger than

those of MFCC features. EMC features outperformed

MFCC features signi�cantly, especially with limited train-

ing data. Using both MFCC and EMC features in a joint

GMM can achieve error rate reduction of 50%-60% as

compared to using only MFCC features. It is worth not-

ing that the proposed method can create an advantageous

scenario that integrating speech and speaker recognition

to facilitate the goal of human-machine communication.
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