
STATISTICAL ESTIMATION OF UNRELIABLE FEATURES FOR ROBUST SPEECH
RECOGNITION

Philippe Renevey and Andrzej Drygajlo

Signal Processing Laboratory,
Swiss Federal Institute of Technology, Lausanne

[Philippe.Renevey,Andrzej.Drygajlo]@epfl.ch

ABSTRACT

This paper addresses the problem of robust speech recognition
in noisy conditions in the framework of hidden Markov models
(HMMs) and missing feature techniques. It presents a new sta-
tistical approach to detection and estimation of unreliable features
based on a probabilistic measure and Gaussian mixture model
(GMM). In the estimation process, the GMM is compensated
using parameters of the statistical model of additive background
noise. The GMM means are used to replace the unreliable features.
The GMM based technique is less complex than the correspon-
ding HMM based estimation and gives similar improvement in the
recognition performance. Once unreliable features are replaced by
the estimated clean speech features, the entire set of spectral fea-
tures can be transformed to the other feature domain characterized
by higher baseline recognition rate (e.g MFCCs) for final recogni-
tion using continuous density hidden Markov models (CDHMMs)
with diagonal covariance matrices.

1. INTRODUCTION

Recent works have shown that the application of the missing fea-
ture approach in speech and speaker recognition under noisy con-
ditions improves the recognition rates [1–6]. In this approach the
time-frequency representation of the noisy speech signal is parti-
tioned into reliable (present) and unreliable (missing) regions ac-
cording to noise masking criteria. In the framework of this ap-
proach two main techniques in the classification process have been
implemented: marginalisation - when unreliable data are ignored,
data imputation - when unreliable data are estimated.

Our previous works have demonstrated that the missing fea-
ture modelling succeeds in speech and speaker recognition when
using spectral subtraction techniques not only for speech enhance-
ment but also for missing feature detection purposes [4, 5, 7, 8].

In this paper, we propose a new statistical method for detec-
tion and estimation of unreliable features. It is based on a prob-
abilistic measure that signal-to-noise ratio (SNR) is greater than
0 dB and Gaussian mixture model compensation. Noise signals
are represented by probability density functions. Features detec-
ted as unreliable are enhanced using a statistical spectral subtrac-
tion and the unreliable features are replaced by a weighted sum of
the GMM means. The advantage of this approach is that the de-
tection and estimation processes can be followed by any automatic
speech recognition system with transformed spectral features (e.g.
cepstral coefficients).

2. DETECTION OF UNRELIABLE FEATURES

Several spectral-subtraction type criteria have been proposed for
unreliable feature detection [4,6,9]. In this paper only two of them,
negative energy criterion and SNR criterion are presented and used
for comparison purposes.

The negative energy criterion

jx̂(!)j2 = jx(!) + n(!)j2 � jn̂(!)j2 < 0 (1)

where x̂(!) is the estimate of the clean signal, results from the
power spectral subtraction algorithm. In this case, features corres-
ponding to negative energy are declared unreliable.

When using SNR criterion, features are declared unreliable if
the estimated SNR is smaller than 0 dB.

It means that

log

� jx̂(!)j2
jn̂(!)j2

�
< 0 or jx̂(!)j2 < jn̂(!)j2 (2)

By adding jx̂(!)j2 in both sides of Eq. 2 and using the Cauchy-
Schwartz inequality, we obtain

jx̂(!)j2 < 1

2
jx(!) + n(!)j2 = 1

2
jy(!)j2 (3)

If we replace x̂(!) by y(!)� n̂(!) under the assumption that
y(!)� n̂(!) > 0, the following relation is obtained

jy(!)j <
p
2p

2� 1
jn̂(!)j = 3:41jn̂(!)j (4)

which is equivalent to the criterion based on the general spec-
tral subtraction with subtraction factor � = 3:41:

jx̂(!)j = jx(!) + n(!)j � �jn̂(!)j (5)

This solution was presented in [5] and the experimental search
for optimal over-subtraction factor gave a value for � close to 3.

In this paper we propose a new type of detector based on sta-
tistical distribution of the noise. The noise is considered as be-
ing normally distributed and this distributions is estimated during
speech pauses. The probability that the SNR is greater than zero
is:

P (SNR > 0) =

Z
y(!)=2

�1
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dx (6)
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Figure 1: Accuracy for the three detection methods obtained for
Lynx helicopter noise from the Noisex’92 database, estimated on
20 digits sequence of the TIDIGITS database.

where �̂n(!) and �̂n(!)
2 are the estimated mean and vari-

ance of the noise for frequency band !. A feature is considered as
unreliable if

P (SNR > 0) < � (7)

where � 2 [0; 1] is a threshold value.
In order to compare the role of the detection threshold �, we

define a measure for comparing a reference mask (the unreliable
data have a SNR lower than 0 dB) with the masks resulting from
the negative energy, SNR and probabilistic criteria:

%Corr =

P
t2T

P
w2


R(t; !jtest)R(t; !jref)P
t2T

P
w2


R(t; !jref) 100% (8)

The percentage of unreliable data labeled as reliable by the
detector is subtracted from the percentage of correct detection. An
accuracy measure, similar to the one defined for speech recognizer
is obtained:

%Acc = %Corr �
P

t2T

P
w2


R(t; !jtest)U(t; !jref)P
t2T

P
w2


R(t; !jref) 100%

(9)

where T and ! are time and frequency intervals of the time-
frequency decomposition of the signal. R(t; !j:) = 1 if the feature
for (t; !) is declared reliable and zero otherwise. U(t; !j:), simi-
larly defined, is equal to one for unreliable features. test and ref
refer to the test and the reference detectors.

Fig. 1 presents the accuracy of the three detection methods.
We can observe for SNRs greater than -5 dB that the statistical
detector outperforms the two other detectors and influence of the
threshold value � on the detection accuracy is not important. The
value of � determines the tradeoff between correctly detected and
misclassified reliable and unreliable features.

Fig. 2 shows the differences between the three investigated
masks. The detector based on negative energy criterion introduces
many misclassified regions. The detector based on the SNR criteri-
on underestimates the reliable features. The probabilistic criterion
proposed in this paper yields the closest approximation to the re-
ference mask.
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Figure 2: Representation of the masks for the three detectors for
factory noise at SNR 10 dB.

3. USING MARGINAL DENSITIES FOR IGNORING
UNRELIABLE FEATURES

In HMMs, each state is defined by emission and transition proba-
bilities. For a single state model �, the probability to emit vector
X = [x(1); :::; x(!); :::; x(
)]

T is expressed as

Prob (Xj�) =
MX
i=1

pi


Y
!=1

�
�
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2
�i(!)

�
(10)

where pi is the weight for ith Gaussian pdf, X is a vector con-
taining the log-spectrum components of critical bands and ��i(!),
�
2
�i(!)

are the mean and variance for ith Gaussian pdf in frequency
band !.

The components of X can be divided into reliable and unreli-
able features. In Eq.10 the contribution of the reliable and unreli-
able components can be expressed as follows

Prob (Xj�) =
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In the previous work [7], only the reliable components were used
for the recognition task. In this case, the marginal pdfs are used to
compute the emission probabilities.

Prob (Xj�) =
MX
i=1

pi
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(12)

4. ESTIMATION OF UNRELIABLE FEATURES

The data imputation technique gives an estimate of the unreliable
parameters. This approach offers the advantage that other than



filter bank features can be used, e.g. Mel frequency cepstral coef-
ficients (MFCCs) which generally give better baseline recognition
results.

A HMMs based data imputation method has been proposed
in [10,11]. The recognized state sequence obtained using only the
reliable data is used to impute the unreliable data. The unreliable
data are replaced by a weighted sum of the means of the distribu-
tions of the recognized state sequence.

When using time-dependent statistical models such as HMMs,
the state sequence needed for the estimation of the unreliable da-
ta is hidden . If an error in the decoding sequence occurs, it can
influence the recognition in the second feature domain. Therefore
the method for the estimation of the unreliable data proposed in
this paper, is based on time-independent Gaussian mixture mo-
dels (GMMs) instead of HMMs. It models roughly the distribu-
tion of the clean speech data. This is clearly a suboptimal mo-
delization, but sufficient and computationally efficient for data im-
putation. The GMM likelihood for a vector of parameters X =
[x(1); :::; x(!); :::; x(
)]T is defined as:

p(Xj�) =
MX
i=1

P (i)
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where M represents the number of Gaussian distributions, P (i),
�(!; i) and �2(!; i) are, respectively, the weighting factor , mean
and variance for Gaussian i.

The means and variances of the GMM are compensated to
cope with the additive noise, as in parallel model combination
(PMC).

The means and the variances of each Gaussian distribution are
transformed into the magnitude spectral domain using an inverse
log-normal approximation:

�lin(!; i) = exp
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�(!; i) +

�
2(!; i)

2

�
(14)
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2
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These means and variances are modified to include the distor-
tion introduced by the additive noise. Means and variances of the
noise are estimated during speech pauses.

~�lin(!; i) = �lin(!; i) + �n(!) (16)

~�
2
lin(!; i) = �

2
lin:(!; i) + �

2
n(!) (17)

The means and variances of the GMM are transformed back
into the log-spectral domain:

~�(!; i) = log
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Using this noisy GMM, the weighting factor associated with
each distribution is computed as follows:

(ijY; ~�) = P (i)
Q


!=1
�
�
y(!); ~�(!; i); ~�2(!; i)

�
p(Y j~�) (20)

Finally, the reliable data are enhanced using a spectral subtrac-
tion and the unreliable features are replaced by a weighted sum of
the GMM means:

x̂r(!) = log (exp (yr(!))� �n(!))

x̂u(!) =

MX
i=1

(ijY; ~�):�(!; i) (21)
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Figure 3: Clean signal, noisy signal and enhanced signal

Fig. 3 presents the features spectra obtained as a result of the
speech enhancement based on the proposed method for Lynx heli-
copter noise from the Noisex’92 database (digit sequence “75679-
79”).

5. EXPERIMENTS AND RESULTS

The recognition system was developed using Hidden Markov Tool-
kit (HTK). The time-frequency representation of the signal is pro-
vided by the 17 bands Bark filter bank analysis. Digits models
have been trained on TIDIGITS database down-sampled to a fre-
quency of 8kHz. TIDIGITS database was used for the digits recog-
nition experiments using 224 utterances from 152 speakers ex-
tracted randomly from the database. Noises from the NOISEX
database have been added to obtain test utterances.

Recognition experiments have been performed using the Bark
filter bank features and Mel frequency cepstral coefficients (MFCCs)
with energy and first and second derivatives. The MFCCs are cal-
culated from the filter bank features.

The HMM based recognition system with three detectors based
on negative energy, SNR and probabilistic criteria was tested using:

� marginal densities for ignoring unreliable features (Table 1),

� estimation of unreliable features in the filter bank domain
(Table 2),

� estimation of unreliable features in the filter bank domain
and their transformation into Mel frequency cepstral coeffi-
cients (MFCC) domain (Table 3).

The results obtained for data imputation were compared with
baseline recognition performance and recognition results when us-
ing the general spectral subtraction pre-processing.



All the results show that the recognition with statistical de-
tection and estimation of unreliable features outperforms the two
other techniques for all three experiments. The results are given
for the optimized values of �.

Marginal Densities

Method! Neg. En. SNR Stat. Det. Stat. Det.
(� = 0:7) (� = 0:2)

SNR# % Acc. % Acc. % Acc. % Acc.

-5 -7.21 13.46 16.07 13.07
0 14.73 22.70 28.44 22.64
5 40.94 38.07 40.88 44.90

10 62.37 47.07 53.89 58.93
15 69.26 58.55 64.48 70.85
20 78.32 69.77 72.32 78.06
25 80.36 74.23 73.47 83.61

Table 1: Recognition results for Lynx helicopter noise using only
the reliable features.

Bark Filter Bank Parameters
Method! Base GSS Neg. En. SNR Stat. Det.

(� = 0:7)
SNR# % Acc.% Acc. % Acc. % Acc. % Acc.

-5 8.67 13.97 4.08 6.70 7.65
0 6.38 24.68 21.68 24.49 27.23
5 14.67 37.95 42.86 43.24 45.34
10 34.18 48.87 59.50 62.12 64.16
15 52.17 62.44 68.75 72.00 75.89
20 68.24 71.94 74.11 78.89 81.89
25 78.12 80.55 78.12 82.82 85.50

Table 2: Recognition results for Lynx helicopter noise using esti-
mation of unreliable features in the filter bank domain.

6. CONCLUSION

In this paper, a new statistical method for detection and GMM
based estimation of unreliable features in noisy speech is proposed.
The assessment results show a significant increase in performance
of the HMM based recognition system when using a probabilistic
criterion for unreliable feature detection in comparison with im-
plementation of the negative energy and SNR criteria. The data
imputation technique presented in this paper also opens the pos-
sibility of extension of the missing feature techniques to recogni-
tion systems with other than spectral domain features, for example
MFCCs.
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