Data Mining Final Report (NTU, Fall 2014)

Yi-Hsiu Liao', Hsiang-Hung Lu?, Sheng-Syun Shen?

Project 3: Adoption Prediction
'R03921048, 2R03942039, *R03942071

Abstract

The goal of this project is given social graph, idea adoption
records(logs) and idea initiators(test set initial adopters), find
subsequent adopters. We explore many models, such as Hottest
Recommendation, Matrix Factorization(MF), Singular Value
Decomposition, Neural Network, Neural Network with Auto
Encoder, and Local Community Detection. Evaluate our meth-
ods based on retrieval F-Score.

1. Introduction

The essence of the social influence is a subtle problem com-
bining the human behavior in the social network. When people
communicate with each other, they share not only feelings but
also value. Today, social network has become indispensable to
this generation. Collecting the interaction logs, one can ana-
lyze user behavior among social net, and make a profit such as
potential advertisement.

In this project, we explore many methods trying to ap-
proximate real-life idea influence. We go through TA base-
line, Hottest Recommendation comes from statistic analysis,
Matrix Factorization and Singular Value Decomposition which
is commonly used in recommendation system, Neural Network
inspired from Deep Neural Network, and Local Community De-
tection combines community detection and influence graph.

The organization of this report is as following: Section 2
briefly describes the problem itself and analysis, Section 3 to
Section 9 introduces the methods we used, Section 10 reports
experiment results.

2. Problem Description
2.1. Definition

Given an directed social graph G = {V, E'}, idea adoption
logs L(training data), which comprise of tuples in the form of
(user, idea, timestamp, degree), and a set of initial adopters
Q(testing data), we want to predict the subsequent adopters A.

V = {v} is the set of users in social network, £ =
{(u,v)|u € V,v € V} is a set of friendship links in the so-
cial network. A record means the user adopts the idea in the
timestamp with the degree. The degree range from O to 1, rep-
resenting the acceptance of the user toward the idea. Degree 0.5
is neutral.

2.2. Dataset

We only use the data provided by the course. The graph con-
tains 29053 users with 207759 links. The logs contain 1118671
records with 1000 ideas. There are 3 test cases, each with 10
queries.

Testcase Total Initiators Total Adopters

1 3156 7376
2 6073 9118
3 5845 5856

Table 1: 3 test sets

3. Baseline

TA provides a method only based on the graph structure. Sim-
ply count the number of friends in the initiators as score, then
return the top 100 nodes in the set of users which are no more
than 2 step from the initiators. That is, we calculate the score as
such:

q € Q,v € Step2Neighbors(Q) — Q

score(v,Q) = |{(v,q) € E}|

It is obviously weak because the procedure don’t use any
training data to predict answer.

4. Hottest Recommendation

A song in top list is preferred by almost all people. Inspire by
this, a person who is most likely to get influenced is more likely
to get influenced again in test set.

We return top 100 users who will easily adopt ideas in the
training records exclusive of the initiators. That is, we rank the
user score as such:

score(v,Q) = {(v,4,t,d) € L} ,v ¢ Q (1

Scan through the records, we find a set of hottest users, who
are easier to adopt an idea. At first sight, it should be the base-
line because the procedure is naive and intuitive. But the result
is powerful, highly comparable, and will be discussed further.

5. Matrix Factorization (MF)

5.1. Introduction

Advanced music recommendation system uses Matrix Factor-
ization (MF) to find the latent topics inside the user-music pref-
erence. The simple way is to construct an U x I matrix M,
where the m;; is the preference of user ¢ toward item j. The
preference can be either implicit(e.g. clicks) or explicit(e.g. rat-
ing). Figure 1 shows the mathematical structure.

The procedure cluster user based on item preference sim-
ilarity by the latent topics. Thus, for a new user with limited
music preference records, one can model the potential prefer-
ence probability by matrix multiplication.

5.2. Training and prediction

In this model, time information is not used. We construct the
matrix by assigning m;; = degree of user ¢ toward idea j.

10 Queries + 1000 Training ideas K

LA

M =W

29053 users

Figure 1: Matrix Factorization.

For m;; not in the training records, we use default value 0.
For m;; in test data, we set the initiators 1 and others blank(¢),
which will be ignored in the training process.

The training of MF is to minimize the L2-regularized L2-
reconstruction error:

M~WH"
K
. 2 2 2
min (mij — Zwikh]‘k) +pzw¢k +qzhik
mi;Ep k=1 i,k J.k

@)
When prediction, the score of user ¢ toward idea j is calcu-
lated by matrix reconstruction:

M =wHT

K
’
m;; = E Wikhjk
k=1

score(i, Q) = myj,i & Q;
Then we return the top 100 score exclusive of initiators.
However, We find that the degree of the adoption may not
influence the prevalence of the idea, so we simply view all ap-
pearing degrees as 1. This heuristic would lead to better perfor-
mance, which we will discuss further in the Section 10.

6. Singular Value Decomposition
6.1. Introduction

Similar to Matrix Factorization, Singular Value Decomposition
is a factorization of a real or complex matrix as well. For an
m x n matrix M, the factorization form should be ULV T,
where the size of U is m X m, the size of V is n X n, and
3l is an m X n rectangular diagonal matrix with non-negative
real numbers on the diagonal. The diagonal entries of 3 are
named as ’singular values,” and the remain entries are zero. The
mathematical structure is shown in Figure 2. Suggest that the
matrix has r singular values, we can reduce the memory during
calculation by transforming the SVD structure from the upper
of Figure 2 to the bottom.

Unlike Matrix Factorization, we don’t need to acquire the
value of matrix U, ¥ and V through training procedure. The
columns of U are eigenvectors of MM7T, V’s equal to MT M,
and singular values are the square roots of eigenvalues of both
M"M and MM™".

6.2. Prediction

As the same set in the previous section, the entries of M, m;;
are the preference of user ¢ toward j. We filled the training

(10 Queries + 1000 Training ideas)

M |= U > \al

(29053 Users)

n nr n

(10 Queries + 1000 Training ideas) r

n

(29053 Users)

Figure 2: Singular Value Decomposition.

records and testing queries into the corresponding entry m;.
For some entries m;; which are not shown in training and test-
ing data, we consider them neutral and apply 0.5 degree to each
one. To the initial adopter in testing queries, we set them 0.8 as
well.

After applying Singular Value Decomposition algorithm,
we then reconstruct the matrix M and return the top 100
adopters to make prediction:

M =UusvT

7. Neural Network
7.1. Observation

Information passing among social nets is just like neurons pass-
ing messages in Neural Nets. One would get the information
most likely from one’s friends. In Neural Net, the output of a
neuron purely depends on it’s former layer neurons.(See Figure
3) Inspired by this idea, we can take each neurons as a person
in social net, and train the net by the following method.(Figure
4)

Y=0(EX;W,+bias)

Figure 3: Node Y is affected by Y’s 5 friends, X to X5 with
each friend has different affecting weight W;. There’s also a
bias in Node Y.

7.2. Architecture

For this Neural Net, the number of neurons in input layer and
output layer is equivalent to the number of people in social
nets(N in Figure 4), which means the input output neuron repre-
senting one person. There’s no hidden layer between input layer

Figure 4: A redraw of Figure 3 to a neural network. In this
figure, node 2’s friends are node 1, 4 and N. Hence node 2’s
output only depends on sum of 3 person’s weighted degree and
bias.

and output layer. Input and output layer are not fully connected.
The elements of weight matrix connecting input neuron and out-
put neuron are nonzero if they are friends In Equation 3, y; is
output neuron representing node i in social nets, z; representing
node j in social nets is input neuron with value equaling to it’s
degree, wj; is non-zero if node j is a friend of node i. For each
node i, it has it’s own bias term bias;. After summation over
all weighted degrees of one’s friends and bias, take sigmoid(o,
Equation 4) forcing the output range from 0 to 1 which is the
degree of this node.

For input layer, we use binary information to model degree. De-
fault degree is 0, if one’s degree is specified, set it’s degree to 1
rather than the original value. Because the degree information is
noisy, if we simply use binary format, the performance is better.

Yi = o’(Z Wy 4 + biaSi) (3)

3,(1,5)€E

1

@)= e

“

7.3. Training and Prediction

During training, the weight is updated only when the connecting
user u gets influence from previous adopters. That is, we use de-
gree of friends of u to predict u’s degree. Use back-propagation
to train the weight matrix.

Prediction is simple, just set the initial adopters to 1, others zero
as input vector to Neural Net. Choose top 100 output neurons
as answer.

8. Neural Network Auto Encoder
8.1. Motivation

Similar to Matrix Factorization and Singular Value Decompo-
sition, the main idea is to reduce the original large dimension
into a small dimension, use this small dimension data to recon-
struct the original large dimension. It’s called auto-encoding in
Neural Networks.

8.2. Architecture

Again, the input layer is degree of each node in social nets,
the output ,however, should be exactly the same (see Figure 5).
The number of neurons(K) in hidden layer controls the model
complexity. Equation 5 is the formula for this Neural Net.

h; = O'(Z leimj =+ biasli)
J
Yi = O'(Z W2jihj + bias?i)

J

%)

W1 wa2

h=o(W1 x + biasl)

Y=a(W2 h + bias2)

Figure 5: Auto-encoder. x is input vector, y is output vector,
h is hidden layer vector. W1’s dimension is K x N, W2’s
dimensionis N x K.

x; is the degree of user j, h; is a neuron in hidden layer,
y; is the degree of user i. W1 and W2 are matrix, biasl and
bias2 are vectors, these four components are model parameters,
which are required to be trained.

8.3. Training and Prediction

Training data is all the ideas regardless temporal information.
Each idea is an input to the auto-encoder filled with degrees
of all user in the social net, the target output is also the same
vector. Default degree is 0, and we use binary information of
degree. (If degree is specified, set the degree to 1; otherwise,
0.)

When predicting, initial adopters are turned on (set to 1) others
0. Use this vector as input vector to auto-encoder, sorts the
output vector and choose top 100 adopters as answer.

9. Local Community Detection(L.CD)
9.1. Introduction

Community structure in social graph can be used to capture
some information among users, such as attributes[1]. Tradi-
tional community detection technique tries to maximize the ra-
tio between intra-community edges and inter-community edges
by expanding the initiators into a bigger set. The procedure
would test by adding user one-by-one, only considering the
graph structure.

We think there are some community based structure in
the graph, but within an influence graph instead of social one
only. So we utilize the records to form a influence graph
G = (v, E, W,), a directed weighted graph to capture the
adoption influence. E' = {(u,v)|u € V,v € V} and W is
a function that maps the edge (u,v) onto a non-negative real
numbers, indicating the influence from w to v.

For all adopters in the training records in same idea, we sort
them according to their timestamp (from old to new). Define
context window that a node can receive influence, we add this
degree to all edge from predecessors in the window to the node.
The adoption degree in the records can be discarded(e.g. set to
1) or not. Figure 6 better illustrate the idea on how to do it. The
window will slide along time until all the users toward the same
idea are seen.

degree(4) degree(5)

Figure 6: Illustration on how to add the weights onto edges
with context window length = 4. Node 1 to Node 5 all
adopt some idea sequentially, then we increase edge weights
(1,5)(2,5)(3,5)(4,5) by degree of node 5. Any node before node
1 is assumed no influence on node 5.

We repeat the procedure through all the training ideas (1000
ideas). Thus an influence graph can be created.

9.2. Prediction

When prediction, we start the set of initiators as current adopters
and find the neighbors, e.g. there is some node in the current
adopters has non-negative influence to the node. For each node
in the neighbors, we find the node which has most flow-in influ-
ence from the current adopters. Then we add the node into the
current adopters 1 by 1:

1. current adopters = idea initiators.

2. Find the neighbors, e.g. there is some node in the current
adopters has non-negative influence to the node.

3. Find the node among the neighbors which has most flow-
in influence summation from the current adopters.

4. Add the node into the current adopters and repeat the
step 2 until 100 adopters added.

5. Return the newly added adopters.

We also provide another prediction method, that will pre-
dict all the subsequent adopters in one pass:

1. current adopters = idea initiators.

2. Find the neighbors, e.g. there is some node in the current
adopters has non-negative influence to the node.

3. Return the top 100 nodes among the neighbors which
have most flow-in influence summation from the current
adopters.

10. Experiments
10.1. Evaluation

For each method, we report the average recall, precision and
f-score on 3 testsets, each with 10 queries. We predict 100
adopters per query.

10.2. Results

We first compare the Baseline, Hottest Recommendation, Neu-
ral Network and Singular Value Decomposition in Table 2, and
Table 3 shows the Auto-Encoder method using different number
of neurons in hidden layer. In Figure 7, we implemented Matrix
Factorization in different parameters. The parameters we com-
pared are reduction dimension(k), training iteration(t), value of
p and q in equation (2).

We then performed Local Community Detection in the sub-
sequent tables, Table 4, Table 5, and Table 6. We predicted LCD
algorithm with and without degree information in the first two
tables. Each table also show the scores using different contexts.
We found that the more contexts we used, the higher score we
acquired, and using binary degree information also beat original
degree. Therefore we implemented the LCD in full context, and
without degree information in Table 6.

After fine-tuning in every algorithms we used, we shows
the best result of each algorithm in Table 7.

Model Test1 Test2 Test3
Precision 0.074 0.054 0.067
Baseline Recall 0.014 0.015 0.014

F-Score 0.019 0.018 0.022

Precision 0.388 0.424 0.466
Recall 0.140 0.114 0.119
F-Score 0.174 0.145 0.176

Hottest
Recommendation

Precision 0.163 0.162 0.132
Neural Network Recall 0.048 0.043 0.031
F-Score 0.062 0.054 0.048

Precision 0.095 0.133 0.139
Recall 0.0413 0.015 0.024
F-Score 0.023 0.026 0.041

Singular Value
Decomposition

Table 2: Baseline, Hottest Recommendation, Neural Network
and Singular Value Decomposition.

10.3. Discussion

Neural Network is not as good as we expected. The F-Score of
Neural Network is worse than Hottest Recommendation. Ac-
tually, any model should do better than Hottest Recommenda-
tion, since Hottest Recommendation simply gives statistic re-
sult. The reason may be over-trust graph information, and small
training data.

Singular Value Decomposition also shows poor perfor-
mance, and it is only slightly better than the Baseline. We con-
clude that the assumption of neutral adopters leads to the poor
evaluation score. In the SVD architecture, we assumed the en-
tries that is not mentioned in testing queries to be 0.5, which
might affects the predicting result. Unlike SVD algorithm, we
can assume these unseen adopters to be missing values in Ma-
trix Factorization so that we could learn these values during
training procedure without adding noises.

In Neural Network Auto-Encoder (Table 3), the result is
quite interesting. First, the F-score is higher than Hottest Rec-

0.16

—
0.15
A 0.14

0.13 - L
0.12

2 4 8 16 32 64 128 256 512 1,024
0.21
0.2
0.19
0.18
B 0.17
0.16
0.15
0.14
0.13
0.12

5 10 20 40 80 160 320

0.16

0.18
017 \
0.16

D/ =« Eii vt

0.13

0.12
0.001 0.003 0.009 0.027 0.081

a2 —al —a3

Figure 7: Matrix Factorization using different parameters in F-
measure score. (A) k from 2 to 1024 with t=8, p=0.05, q=0.05
(B) t from 5 to 320 with k=32, p=0.009, q=0.001 (C) p from
0.001 to 0.081 with k=32, t=40, q=0.027 (D) q from 0.001 to
0.081 with k=32, t=40, p=0.027

Model Test1 Test2 Test3
Precision 0.386 0.425 0.466

K=50 Recall 0.140 0.114 0.119
F-Score 0.174 0.145 0.176

Precision 0.413 0.501 0.503

K=100 Recall 0.144 0.118 0.124
F-Score 0.179 0.152 0.185

Precision 0.419 0474 0.543

K=200 Recall 0.146 0.116 0.128
F-Score 0.182 0.147 0.192

Precision 0.414 0483 0.542

K=300 Recall 0.146 0.116 0.127
F-Score 0.181 0.148 0.191

Precision 0.410 0481 0.528

K=400 Recall 0.144 0.118 0.126
F-Score 0.179 0.150 0.189

Table 3: Auto-Encoder with number of neurons(K) in hidden
layer changing.

ommendation, which means the model learns more than statis-
tic analysis. Second, as K(number of neurons in hidden layer)
decrease to about 50, the scores are close to Hottest Recom-
mendation. If K equals to 0, the result is exactly Hottest Rec-
ommendation, since the output layer is only depends on the bias
term in the output layer. Third, as K increases, the computation

Model Test1 Test2 Test3
Precision 0.349 0.355 0.297

Context = 1 Recall 0.121 0.095 0.079
F-Score 0.152 0.119 0.117

Precision 0.362 0.356 0.324

Context =5 Recall 0.126 0.096 0.087
F-Score 0.158 0.122 0.129

Precision 0.360 0.352 0.322

Context = 10 Recall 0.125 0.095 0.087
F-Score 0.156 0.121 0.129

Precision 0.370 0430 0.452

Context = 50 Recall 0.139 0.109 0.114
F-Score 0.165 0.141 0.169

Precision 0.374 0449 0471

Context = 100 Recall 0.125 0.114 0.117
F-Score 0.159 0.147 0.175

Table 4: Local Community Detection based on influence graph
with degree and 1-by-1 prediction.

Model Test1 Test2 Test3
Precision 0.375 0422 0.448

Context = 1 Recall 0.131 0.112 0.113
F-Score 0.165 0.143 0.169

Precision 0.386 0.429 0.467

Context =5 Recall 0.138 0.112 0.119
F-Score 0.172 0.144 0.177

Precision 0.389 0.428 0.470

Context = 10 Recall 0.140 0.113 0.119
F-Score 0.175 0.145 0.177

Precision 0.396 0.443 0.482

Context = 50 Recall 0.141 0.117 0.121
F-Score 0.176 0.149 0.181

Precision 0.389 0.460 0.496

Context = 100 Recall 0.133 0.120 0.126
F-Score 0.168 0.153 0.187

Table 5: Local Community Detection based on influence graph
without degree(e.g. whenever a adopter occurs, add the influ-
ence edge by 1) and 1-by-1 prediction.

Model Test1 Test2 Test3

Precision 0.387 0.469 0.569
1-by-1 Prediction Recall 0.105 0.090 0.127
F-Score 0.139 0.124 0.192

Precision 0.442 0.530 0.580
One Pass Prediction Recall 0.140 0.177 0.136
F-Score 0.177 0.163 0.204

Precision 0.299 0.277 0.363
Recall 0.103 0.082 0.104
F-Score 0.128 0.103 0.151

One Pass Prediction
Time Decay = 0.99

Table 6: Some comparison about Local Community Detection
based on influence graph in full context without degree.

time does increase linear to K, and the scores do not monotoni-
cally increase. The Highest score is around K = 200 due to the
training data size and the problem complexity.

While examining Matrix Factorization techniques, we com-
pared the F-measure score using different parameters. The re-
sults shown in Figure 7 can be discussed separately. In Figure
7-(A), we discover that the value of dimension shares low corre-

Model Test1 Test2 Test3
Precision 0.074 0.054 0.067
Baseline Recall 0.014 0.015 0.014

F-Score 0.019 0.018 0.022

Precision 0.388 0.424 0.466
Recall 0.140 0.114 0.119
F-Score 0.174 0.145 0.176

Hottest
Recommendation

Precision 0476 0438 0.568
Matrix Factorization Recall 0.139 0.108 0.137
F-Score 0.178 0.139 0.206

Precision 0.095 0.133 0.139
Recall 0.0413 0.015 0.024
F-Score 0.023 0.026 0.041

Singular Value
Decomposition

Precision 0.163 0.162 0.132
Neural Network Recall 0.048 0.043 0.031
F-Score 0.062 0.054 0.048

Precision 0.419 0474 0.543
Auto-Encoder Recall 0.146 0.116 0.128
F-Score 0.182 0.147 0.192

Precision 0.442 0.530 0.580
Recall 0.140 0.177 0.136
F-Score 0.177 0.163 0.204

Local Community
Detection

Table 7: Evaluation after fine-tuning in every algorithm.

lation with the performance, and Figure 7-(B) shows the highest
score if we train the model for 80 iterations. We then find that
the higher value of p we chose, the higher score will we get.
However, parameter g shows the opposite potential.

In Local Community Detection, the last method we pro-
posed, we first set an experiment about using the degree infor-
mation or not. The results shown in Table 4 and Table 5 are ob-
viously that the LCD algorithm will perform better if dropping
out degree information. Besides, if we consider more context,
the accuracy will also increase. Therefore, we perform LCD
considering the full context in Table 6 using different variables.
In the first two rows, we find out that “One Pass Prediction”
method beats the ”1-by1l Prediction”. We also tried to set the
influence with temporal decay, which means the longer distance
between two adopters, the lower influence they get.

After fine-tuning parameters in every algorithm, we select
the highest scores and make comparison. The result are shown
in Table 7. Local Community Detection algorithm outperform
other methods.

11. Conclusion

Different models perform well in different cases. It is proved
that the LCD can better catch the temporal information with
full context, and influence graph can predict the subsequent
adopters very well. However, we do neglect the degree in the
training logs to achieve better results, because the prevalence of
an idea adoption should not depend on the degree of the adop-
tion. We initialize the influence graph with actual social graph
structure, but the significance is a bit slight. After the explo-
ration on various models, we propose the LCD as our final rec-
ommendation.

12. References

[1] You are who you know: Inferring user profiles in Online So-
cial Networks. Alan Mislove, Bimal Viswanath, Krishna P.
Gummadi, and Peter Druschel In Proceedings of the 3rd
ACM International Conference of Web Search and Data
Mining (WSDM’10), New York, NY, February 2010.

[2] Y. Zhuang, W.-S. Chin, Y.-C. Juan, and C.-J. Lin. ”A Fast
Parallel Stochastic Gradient Method for Matrix Factoriza-
tion in Shared Memory Systems.” Technical report 2014.

[3] ImageNet http://www.image—-net.org/

