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A huge number of online courses are available
On Massive Open Online Courses (MOOCs) platform
Coursera, edX, etc.

oursera

education for everyone
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Not sure about which part of the slide is the

lecturer talking about.

Lecturer Utterances

Structurdng lectures Within A Course

Perplexity

¢ Perplexity of A Language Source S

H(S)=-Zp(x,)log[p(x))]
PP(S)=2""
— size of a “virtual vocabulary” in which all words (or units) are equally
probable .
*€.2. 1024 wordseach with probability Ty I(x,) =10 bits (of information)
. H(S) =10 bits (of information), PP&S) =1024
— branching factor estimate for the language
°* A Language Model
— assigning a probability P(wj|c;) for the next possible word w; given a
condition c; .
e.g. P(W=w,,Wy,W3,Wy.... Wy)=P(W)P(Wy|wy) MP(WiW;p,W; )
3 Cos

® A Test Corpus D of N sentences, with the i-th sentence W; has n;
words and total words Ny

D= Wy W Wodh Wi, W5 i%

ND=Z‘ni
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Not knowing which lecture to choose among
many similar courses.  Query : Maiine Learning

Course A Course B Course C Course D Course E Course F Course G
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Not knowing the details about lectures.
Query : Iv\ctine Learning

Course A Course B Course C Course D Course E Course F Course G

9

? e Suppor@ Vec‘ror

Recurr%n’r Neurol

Clossn‘ymg Lectures Accordmg to Con’ren’rs
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Wondering whether machines could really
understand the content of lectures.

Understanding Lecture Contents
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Within A Course

Target :
Align utterance cluster — Slide section

tterance Cluster Set

* Perplexity of A Language Source S

H($)=-%p(x )log[p(x)]
PP(S)=2""
— size of a “virtual vocabulary” in which all words (or units) are equally
probable 1
*€.2. 1024 wordseach with probabilityloj ,1(x,) =10 bits (of information)

_ H(S)=10bits (of information), PP&S)=1024 S 1
— branching factor estimate for the language
* A Language Model
— assigning a probability P(wj|c;) for the next possible word w; given a
condition ¢; .
e.8. P(W=w,wy,w3,Wy....wp)=P(w)P(Wy|w)) ﬂ‘P (Wi Wi, W) S 2
T Lz )

——

=7 ] ¢
® A Test Corpus D of N sentences, with the i-th sentence W; has n;
words and total words Ny
D=[W,Wo, s Wl Wi =Wy Wo, W3, Wy,

ND=Zlni
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Slides Structured
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Results




Reliability-Propagated Word- 15
based Matching

Word-based matching

Calculate lexical similarity based on tf-idf vectors.
Reliable alignment

Sim(c;, ;) much larger than Sim(c;, s;) for other s;
Reliability-Propagated

Neighbors of reliable alignment should increase their scores.

@ s; : argmaxSim(c;,s;)

7 J

s; : other section
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Structured SVM

Consider the global alignment for a slide as a
whole.

Cluster ¢ Section s;
Cluster ¢, Section s,

~Utterance
Cluster Set

Cluster ¢, Section s,




Structured SVM

Cluster ¢4
Cluster c,

Section s,
Secftion s,

Section s,

Tqrge’r Clus’.rer o
The alignment set A of every slide

"Is a structure
Model design

v(A) : Feature vector of the alignment

w : To be learned

F(A) =w-v(4) : Evaluation Function
Training goall

Maximize w with SVM for maximum margin.

17

F(4)

Best
Alignment:
F(A")

Other
Alignments:

F(A))- _
F(Az)- -

F(A3)--
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Feature Selection

Local feature examples
Summation of lexical similarity

Neighbors of alignment link also align to same section.
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Feature Selection

Global feature examples
Number of crossed alignment

Longer section should be explained with more
utterance clusters.




System Overview -

Reliability-propagated
Utterance Word-based Matching

Clustering
Score

Integration

Slides Structured
SVM
7 Alignment

Results
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Results

\ Approaches | AcCcuracy !
Word-based Without Propagated 58.43%

Matching With Propagated 69.50%

Structured SVM 70.28%
Score Integration 72.86%
Structured SVM 71.26%

Unsupervised

Supervised

Score Integration 73.15%

The propagation of reliability makes the performance better.
“Ir ,T: '--.',[
Ty

Score Integration makes better results.

Without using the real answers as training target, we cou
have high accuracies.
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Between Courses

ry -.

Course A Course B Course C Course D Course E Course F Course G

Reconstruct

the learning

QU

¢




Linking Lectures with Similar Content

Individual pair similarity
Calculate cosine similarity for lectures
Feature vector examples
Tf-idf for all words / key terms only

topic vectors by latent topic analysis

Global structure considerations
: X Y X
Crossover may imply ° ° o

something wrong

24
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Linking Lectures with Similar Content

Maximize the objective function

F)= ) SGuy) —MC (@)= AglL
(xi,yi)EL
L: set of link relationships




26

Prerequisite Prediction
SVM classification

Difference vector : a;; = M - (ui - uj)

Cross-term Matrix : a;; = uj Mu;

o




Prerequisite Prediction -

Feature vector representation
Weighted Bag-of-word (BOW) : {s(w,)tf(wg), k = 1,2, ..., n}
Weighted Word embedding %Z s(wy) tf (wg) vy
W = {wq,wy, -, w,}, v; . Mikolov's word2vec
Semantic weights for keywords

WordNet semantic depth : Deeperwords in WordNet are
more specific

Venhicle 4, bicycle 5
article

artifact bicycle |
instrumentality vehicle h T InEsL ﬂ

motor



Experimental Results -

Linking Lectures ‘ Precision ‘ Recall F-measure
| = (Q) Tfidf - all 13.8 24.6
33 Audio Transcripts (b) Tfidf —key 33.8 26.5
>
‘2 (c) Topics 48.9 30.2
- a)+(b)+(c)+Lecture Title Features 429 52.7
(a)+(b)+(c) + Title Features + Global 53.6 54 .6 541

Assembling all the individual features could make better
performance than just considering one feature.

Considering global structure is necessary.




Experimental Results -

Prerequisite Prediction | NLP | Chemistry ’

(a) Bag-of-word (BOW) 68.1 61.4
Differ (b) Weighted BOW /0.0 63.3
(c) Word Embedding /3.3 65.2

Cross (d) Word Embedding /6.1 67.0

Difference vector: a;; = M - (ui n uj)

Cross-term Matrix : a;; = uj Mu;

Semantic weights make better representation.

Word embedding is a better way for word representation
comparing to traditional bag-of-word vectors.

Cross-term Matrix is a better SVM weight matrix.
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Classitying Lectures

Query : Machine Learning

4

Course A Course B Course C Course D Course E Course F Course G

Q Supporf Vector
~ ~ . e
&

eural
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Proposed Model

<

Keyword Set
8 SVM, Regression, Python,
DNN, Fourier Transform,

Speech Processing,
LSTM, Bubble Sort, etc.

Embedding Layer
| | | | |
Lecture 1 - X1 Xo SN O Hidden Layer

Embedding Layer




Normalization Methods for 34
Attention Mechanism

Attention mechanism score list e = (eq, ey, ..., e7)
e;= 0r OV,
Sharpening normalization

il exp(e;) =)
i=1€xp(€;) I I TI1TE

Smoothing normalization
_ o(e)

a; = T
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Experimental Setup

290,000 Stack Overflow articles
250,000 for training
40,000 for testing

2~6 labeled keywords for each article




Experimental Results -

‘ Model ‘ MAP (%) ‘ P@R(%) |

(a) Tf-idf Sorting

(b) Multiple Layer Percepitron

(c) Long Short-term Memory
(d) Sharpening

Proposed Model .
(e) Smoothing

LSTM > MLP > TF-IDF

Sharpening normalization eliminates too many information,
SO it perform worse.
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Analysis

Sharpening Normalization Smoothing Normalization

(A) Ground truth : python, numpy, matrix (B) Ground truth : python, numpy, matrix
5-best predict : python, numpy, python-2.7, pandas, python-3.x 5-best predict : python, numpy, arrays, matrix, indexing

I have a huge matrix that I saved with savetxt with|I have a huge matrix that I saved with savetxt with
numpy library. Now I want to read a single cell numpy library. Now I want to read a single cell

from that matrix, e.g., from that matrix, e.g.,
cell = getCell (i, j), print cell cell = getCell (i, j), print cell

return the value 10 for example. return the value 10 for example.

I tried this: I tried this:
X = np. loadtxt( "fname. m", dtype="int", usecols=_[i])) X = np. loadtxt( "fname .m", dtype = "int", usecols=([i]))
cell=x[7] cell=x[7]

but it is really slow because I loop over many but it is really slow because I loop over many

index. Is there a way to do that without reading index. Is there a way to do that without reading
useless lines ? useless lines ?

11T | T
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Understanding Lectures -

Qur previous works, e.g., sfructuring lectures and
classifying lectures, rely on the understanding of
lecture contents.

Do machines really understand lecture contents ?
Initial goal

Listening comprehension test in TOEFL



Task Definition -

We can’f just answering this question by finding matched senfence in
the story. In contrast, we need to understand the whole contents.

LC



System Overview -

| 0 9 g‘
L ; ©¢ >§
VA VB V'C VD
Choice A Choice B Choice C Choice D
hop 1 hop 2

+ —

VecRep Vo, +
VS
Question ﬁ
T




System Detall -

SeWermnt:ieslel el
Attention
VecRep Att s Vi
Y- X-X-X-X-
Ve o———t—d—3

Yo(l) Y¢(T) +_

\ 4

W W W
Question

Sentence 1

Story




Experimental Results -

Model Manual ASR
(a) Random Guess 25%

(b) Memory Network 39.17% 39.17%

word 49.16% 48.33%
(c) Proposed Model
sentence 51.67% 46.67%

The proposed model gain much better performance than
the state-of-the-art model.

Word-level attention mechanism has higher tolerance while
errors OCCur.
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Conclusion

We propose three kinds of techniques for
helping user learn more efficiently on MOQOC:s.

Structuring lectures
Classifying lectures

Understanding lectures

Structured SVM is capable of handling structure
information in the case of alignment prediction.

Semantic weights from WordNet provide more
iInformation for words.

Attention-based RNN works better than RNN.
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