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IntroductionIntroduction
背景介紹背景介紹
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Motivation

u A huge number of online courses are available
u On Massive Open Online Courses (MOOCs) platform
u Coursera, edX, etc.
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Motivation

u Not sure about which part of the slide is the 
lecturer talking about.
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Structuring Lectures Within A Course



Motivation

u Not knowing which lecture to choose among 
many similar courses.
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Motivation

u Not knowing the details about lectures.
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Motivation

u Wondering whether machines could really 
understand the content of lectures.
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Understanding Lecture Contents
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Structuring LecturesStructuring Lectures
WITHIN A COURSEWITHIN A COURSE
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Within A Course

u Target :
Align utterance cluster → Slide section
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System Overview
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Reliability-Propagated Word-
based Matching

u Word-based matching
u Calculate lexical similarity based on tf-idf vectors.

u Reliable alignment
u 𝑆𝑖𝑚 𝑐*, 𝑠*, much larger than 𝑆𝑖𝑚 𝑐*, 𝑠- for other s/

u Reliability-Propagated
u Neighbors of reliable alignment should increase their scores.
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Structured SVM

u Consider the global alignment for a slide as a 
whole.
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Structured SVM

u Target
u The alignment set 𝐴 of every slide

u “A” is a structure
u Model design

u 𝑣 𝐴 ：Feature vector of the alignment
u 𝑤：To be learned
u 𝐹 𝐴 = 𝑤 ; 𝑣 𝐴 ：Evaluation Function

u Training goal
u Maximize 𝑤 with SVM for maximum margin.
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Feature Selection

u Local feature examples
u Summation of lexical similarity
u Neighbors of alignment link also align to same section.
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Feature Selection

u Global feature examples
u Number of crossed alignment

u Longer section should be explained with more 
utterance clusters.
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Experimental
Results

u The propagation of reliability makes the performance better.
u Score Integration makes better results.
u Without using the real answers as training target, we could still 

have high accuracies.
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Structuring LecturesStructuring Lectures
BETWEEN COURSESBETWEEN COURSES
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Between Courses
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Linking Lectures with Similar Content

u Individual pair similarity
u Calculate cosine similarity for lectures
u Feature vector examples

u Tf-idf for all words / key terms only

u topic vectors by latent topic analysis

u Global structure considerations
u Crossover may imply

something wrong
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Linking Lectures with Similar Content

u Maximize the objective function

𝐹 𝐿 = C 𝑆 𝑥*,𝑦* − λ#𝐶
FG,HG ∈J

𝐿 − λ$ 𝐿

𝐿: set of link relationships
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Crossover constraint
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Prerequisite Prediction

u SVM classification
u Difference vector：𝑎*- = 𝑀 ; 𝑢* − 𝑢-
u Cross-term Matrix：𝑎*- = 𝑢*M𝑀𝑢-
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Prerequisite Prediction

u Feature vector representation
u Bag-of-word (BOW)： 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  𝑡𝑓 𝑤Z , 𝑘 = 1,2,… , 𝑛

u Word embedding：#
`
∑ 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  𝑡𝑓 𝑤Z 𝑣Z

𝑊 = 𝑤#,𝑤$,⋯ , 𝑤4 ,   𝑣*：Mikolov’s 𝑤𝑜𝑟𝑑2𝑣𝑒𝑐

u Semantic weights for keywords
u WordNet semantic depth：Deeper words in WordNet are 

more specific
u Vehicle 4, bicycle 5
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Experimental Results
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Linking Lectures Precision Recall F-measure

In
di

vi
du

al

Audio Transcripts

(a) Tfidf - all 13.8 24.6 17.3

(b) Tfidf – key 33.8 26.5 28.8

(c) Topics 48.9 30.2 37.2
(a)+(b)+(c)+Lecture Title Features 42.9 52.7 47.2

(a)+(b)+(c) + Title Features + Global 53.6 54.6 54.1

u Assembling all the individual features could make better 
performance than just considering one feature.

u Considering global structure is necessary.



Experimental Results
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Prerequisite Prediction NLP Chemistry

Differ
(a) Bag-of-word (BOW) 68.1 61.4

(b) Weighted BOW 70.0 63.3

(c) Word Embedding 73.3 65.2

Cross (d) Word Embedding 76.1 67.0

u Semantic weights make better representation.
u Word embedding is a better way for word representation 

comparing to traditional bag-of-word vectors.
u Cross-term Matrix is a better SVM weight matrix.

Difference vector：𝑎*- = 𝑀 ; 𝑢* − 𝑢-
Cross-term Matrix：𝑎*- = 𝑢*M𝑀𝑢-
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Classifying Lectures
32
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Proposed Model
33
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Normalization Methods for 
Attention Mechanism

u Attention mechanism score list 𝑒 = (𝑒#, 𝑒$, … , 𝑒M)
𝑒* = 	
  𝑂M ⊙ 𝑉*

u Sharpening normalization

𝛼* = 	
  
exp	
  (𝑒*)

∑ exp	
  (𝑒*)M
*n#

u Smoothing normalization

𝛼* = 	
  
σ	
  (𝑒*)

∑ σ	
  (𝑒*)M
*n#
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Experimental Setup

u 290,000 Stack Overflow articles
u 250,000 for training
u 40,000 for testing

u 2~6 labeled keywords for each article
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Experimental Results
36

Model MAP(%) P@R(%)

(a) Tf-idf Sorting 9.9 8.9

(b) Multiple Layer Perceptron 33.1 29.7

(c) Long Short-term Memory 43.1 40.2

Proposed Model
(d) Sharpening 39.3 36.2

(e) Smoothing 50.5 46.4

u LSTM > MLP > TF-IDF
u Sharpening normalization eliminates too many information, 

so it perform worse.



Analysis
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Understanding LecturesUnderstanding Lectures
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39



Understanding Lectures

u Our previous works, e.g., structuring lectures and 
classifying lectures, rely on the understanding of 
lecture contents. 

u Do machines really understand lecture contents？
u Initial goal

u Listening comprehension test in TOEFL
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Task Definition
41

Question: Why does the professor meet with the student？

Story: …… I just wanted to take a few minutes to meet with everyone to
make sure your class presentations for next week are all in order and
coming along well. And as you know, you’re supposed to report on
some areas of recent research on genetics, something, you know,
original. …… (manual transcription)

Choices:
A. To determine if the student has selected an appropriate topic for his 

class project
B. To find out if the student is interested in taking part in a genetics 

project
C. To discuss the student’s experiment on taste perception
D. To explain what the student should focus on for his class presentation

We can’t just answering this question by finding matched sentence in 
the story. In contrast, we need to understand the whole contents.



System Overview
42
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System Detail
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Sentence 2Sentence 1
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Experimental Results
44

Model Manual ASR

(a) Random Guess 25%
(b) Memory Network 39.17% 39.17%

(c) Proposed Model
word 49.16% 48.33%

sentence 51.67% 46.67%

u The proposed model gain much better performance than 
the state-of-the-art model.

u Word-level attention mechanism has higher tolerance while 
errors occur.
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ConclusionConclusion
結論結論
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Conclusion

u We propose three kinds of techniques for 
helping user learn more efficiently on MOOCs.
u Structuring lectures
u Classifying lectures 
u Understanding lectures

u Structured SVM is capable of handling structure 
information in the case of alignment prediction.

u Semantic weights from WordNet provide more 
information for words.

u Attention-based RNN works better than RNN.
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Thanks for your attention.Thanks for your attention.
謝謝各位口試委員的聆聽謝謝各位口試委員的聆聽
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