1

More Efficient Learning by Structuring, Classifying and Understanding Lectures in Online Courses

藉助線上課程之自動結構化、分類與理解 以提升學習效率

SPEAKER:沈昇勳(SHENG-SYUN SHEN) ADVISOR:李琳山(LIN-SHAN LEE)

Outline

- ▶ Structuring Lectures (課程內容結構化)
 - Within A Course
 - Between Courses
- Classifying Lectures (對課程小段做內容精確分類)
- ▶ Understanding Lectures (機器對課程小段內容做了解)
- Conclusion

Outline

- ▶ Structuring Lectures (課程內容結構化)
 - Within A Course
 - Between Courses
- Classifying Learners (對記程小段做內容精確分類)
- ▶ Understanding Lectures () 《器對課程小段內容做了解
- Conclusion

A huge number of online courses are available
 On Massive Open Online Courses (MOOCs) platform
 Coursera, edX, etc.

Not sure about which part of the slide is the lecturer talking about.

Wondering whether machines could really understand the content of lectures.

Understanding Lecture Contents

Outline

- ▶ Structuring Lectures(課程內容結構化)
 - Within A Course
 - Between Courses
- > Classifying Leagures (對副程小段做內容精確分類)
- ▶ Understanding Lectures (小後器)
- Conclusion

11

Structuring Lectures 課程內容結構化

12

Structuring Lectures WITHIN A COURSE

Within A Course

Target :

Align utterance cluster \rightarrow Slide section

System Overview

Reliability-Propagated Wordbased Matching

Word-based matching
 Calculate lexical similarity based on tf-idf vectors.
 Reliable alignment

 Sim(c_i, ŝ_i) much larger than Sim(c_i, s_j) for other s_j

 Reliability-Propagated

 Neighbors of reliable alignment should increase their scores.

Structured SVM

Consider the global alignment for a slide as a whole.

Structured SVM

Feature Selection

Local feature examples

- Summation of lexical similarity
- Neighbors of alignment link also align to same section.

Feature Selection

- Global feature examples
 - Number of crossed alignment
 - Longer section should be explained with more utterance clusters.

System Overview

20

Experimental Results

A	Accuracy	
Word-based Matching	Without Propagated	58.43%
	With Propagated	69.50%
Unsupervised	Structured SVM	70.28%
	Score Integration	72.86%
Supervised	Structured SVM	71.26%
	Score Integration	73.15%

The propagation of reliability makes the performance better.

- Score Integration makes better results.
- Without using the real answers as training target, we could still have high accuracies.

22

Structuring Lectures BETWEEN COURSES

Between Courses

Linking Lectures with Similar Content

X_i

Xi

Individual pair similarity
 Calculate cosine similarity for lectures
 Feature vector examples
 Tf-idf for all words / key terms only
 topic vectors by latent topic analysis
 Global structure considerations
 Crossover may imply something wrong

Linking Lectures with Similar Content

Maximize the objective function

$$F(L) = \sum_{(x_i, y_i) \in L} S(x_i, y_i) - \lambda_1 C(L) - \lambda_2 |L|$$

L: set of link relationships Not including

25

Prerequisite Prediction

- SVM classification
 - ▶ Difference vector : $a_{ij} = M \cdot (u_i u_j)$
 - Cross-term Matrix : $a_{ij} = u_i^T M u_j$

$$egin{aligned} u_i &
ightarrow u_j \ a_{ij} &> +1 \ & a_{ij} &< -1 \ & u_i &\leftarrow u_j \end{aligned}$$

Prerequisite Prediction

Experimental Results

	Linking Le	ctures	Precision	Recall	F-measure
Audio Tra		(a) Tfidf - all	13.8	24.6	17.3
	Audio Transcripts	(b) Tfidf – key	33.8	26.5	28.8
		(c) Topics	48.9	30.2	37.2
(a)+(b)+(c)+Lecture Title Features		42.9	52.7	47.2	
(a)+(b)+(c) + Title Features + Global		53.6	54.6	54.1	

Assembling all the individual features could make better performance than just considering one feature.

Considering global structure is necessary.

Experimental Results

Prerequisite Prediction		NLP	Chemistry
Differ	(a) Bag-of-word (BOW)	68.1	61.4
	(b) Weighted BOW	70.0	63.3
	(c) Word Embedding	73.3	65.2
Cross	(d) Word Embedding	76.1	67.0

Difference vector : $a_{ij} = M \cdot (u_i - u_j)$ Cross-term Matrix : $a_{ij} = u_i^T M u_j$

- Semantic weights make better representation.
- Word embedding is a better way for word representation comparing to traditional bag-of-word vectors.
- Cross-term Matrix is a better SVM weight matrix.

Outline

- ▶ Structuring Lectures (課程內容結構化)
 - Within A Course
 - Between Courses
- Classifying Lectures (對課程小段做內容精確分類)
- ▶ Understanding Lectures (◎器對課程小段內容做了解)
- Conclusioi

31

Classifying Lectures 對課程小段做內容精確分類

Proposed Model

34 Normalization Methods for Attention Mechanism Attention mechanism score list $e = (e_1, e_2, \dots, e_T)$ $e_i = O_T \odot V_i$ Sharpening normalization $\alpha_i = \frac{\exp(e_i)}{\sum_{i=1}^T \exp(e_i)}$ Smoothing normalization $\alpha_i = \frac{\sigma(e_i)}{\sum_{i=1}^T \sigma(e_i)}$

Experimental Setup

290,000 Stack Overflow articles

- 250,000 for training
- 40,000 for testing

2~6 labeled keywords for each article

Experimental Results

Model		MAP(%)	P@R(%)
(a) Tf-idf Sorting		9.9	8.9
(b) Multiple Layer Perceptron		33.1	29.7
(c) Long Short-term Memory		43.1	40.2
Proposed Model	(d) Sharpening	39.3	36.2
	(e) Smoothing	50.5	46.4

LSTM > MLP > TF-IDF

Sharpening normalization eliminates too many information, so it perform worse.

Analysis

Sharpening Normalization	Smoothing Normalization
(A) Ground truth : python, numpy, matrix 5-best predict : python, numpy, python-2.7, pandas, python-3.x	(B) Ground truth : python, numpy, matrix 5-best predict : python, numpy, arrays, matrix, indexing
I have a huge matrix that I saved with savetxt with numpy library. Now I want to read a single cell	I have a <mark>huge matrix that I saved with savetxt with numpy library. Now I want to read a single cell</mark>
from that matrix, e.g.,	from that matrix, e.g.,
cell = getCell (i, j); print cell	<pre>cell = getCell (i, j); print cell</pre>
return the value 10 for example.	return the value 10 for example.
I tried this:	I <mark>tried</mark> this:
<pre>x = np. loadtxt("fname. m", dtype = "int", usecols = ([i]))</pre>	<pre>x = np. loadtxt("fname .m", dtype = "int", usecols = ([i]))</pre>
cell = x [j]	<mark>cell</mark> = x [j]
but it is really slow because I loop over many	but it is really <mark>slow because</mark> I <mark>loop </mark> over many
index. Is there a way to do that without reading	index. Is there a way to do that without reading
useless lines ?	useless lines ?

Outline

- ▶ Structuring Lectures(課程內容結構化)
 - Within A Course
 - Between Courses
- ► Classifying Leasures (對記程小段做內容精確分類)
- ▶ Understanding Lectures (機器對課程小段內容做了解)
- Conclusion

39

Understanding Lectures 機器對課程小段內容做了解

Understanding Lectures

- Our previous works, e.g., structuring lectures and classifying lectures, rely on the understanding of lecture contents.
- Do machines really understand lecture contents ?
- Initial goal
 - Listening comprehension test in TOEFL

Task Definition

<u>Story:</u> I just wanted to take a few minutes to meet with everyone to make sure your class presentations for next week are all in order and coming along well. And as you know, you're supposed to report on some areas of recent research on genetics, something, you know, original...... (manual transcription)

Question: Why does the professor meet with the student ? We can't just answering this question by finding matched sentence in Cthestory. In contrast, we need to understand the whole contents.

- A. To determine if the student has selected an appropriate topic for his class project
- B. To find out if the student is interested in taking part in a genetics project
- C. To discuss the student's experiment on taste perception
- D. To explain what the student should focus on for his class presentation

System Overview

Experimental Results

Model		Manual	ASR
(a) Random Guess		25%	
(b) Memory Network		39.17%	39.17%
(c) Proposed Model	word	49.16%	48.33%
	sentence	51.67%	46.67%

The proposed model gain much better performance than the state-of-the-art model.

Word-level attention mechanism has higher tolerance while errors occur.

Outline

- ▶ Structuring Lectures (課程內容結構化)
 - Within A Course
 - Between Courses
- > Classifying Localores (對副程小段做內容精確分類)
- Conclusion

46

Conclusion

結論

Conclusion

We propose three kinds of techniques for helping user learn more efficiently on MOOCs.

- Structuring lectures
- Classifying lectures
- Understanding lectures
- Structured SVM is capable of handling structure information in the case of alignment prediction.
- Semantic weights from WordNet provide more information for words.
- Attention-based RNN works better than RNN.

Thanks for your attention. 謝謝各位口試委員的聆聽

