Natural Language Processing Midterm Project :
Emoticon Prediction using Recurrent Neural Networks

Yu-Hsuan Wang', Sheng-syun Shen?, and Chia-hsing Hsu®

!Graduate Institute of Computer Science and Information Engineering
2Graduate Institute of Communication Engineering

Team Name: 7% KFfRE

I. INTRODUCTION

When people write articles on the Internet, they might
possess some emotions. For example, some people will
write down the things that make them happy. In the case,
their emotions during writing are likely to be happy, since
they are thinking about the events which make them happy
in order to write it down. Thus, the words they use would
tend to be positive, like “excited”, “cool”, etc. In other
words, humans’ usages of words might depend on their
emotion during writing and possess some sort of features.
As a result, readers could predict authors’ emotion when
they read the authors’ sentence. To be more specific, when
there is a sentence “John scolded me this morning... Today
sucks!”, we are very confident that the author must be in a
bad mood when he/she is writing down the sentence.

The project is about predicting authors’ emotion accord-
ing to the sentences they wrote. Each sentence contains
text and an emoticon. Emoticon is a feature introduced by
Yahoo! that allows user to express their emotion through
a small icon in addition to text. Thus, emoticons can be
viewed as authors’ emotion when they wrote the sentence.

In recent years, deep learning has achieved great perfor-
mance in a variety of tasks, including speech processing,
machine translation, etc. In the project, deep learning is
utilized to handle the emotion prediction problem. We
encode sentences into a sequence of vectors and formulate
the project as a multi-class classification problem.

II. PROPOSED APPROACHES
A. System Overview

First, we tokenize the input sentence into meaningful
tokens. After tokenization, we pre-process the tokens with
different pre-processing techniques. Lastly, we encode each
pre-processed token into a one-hot vector and send it into
our deep learning models.

In the respect of deep learning models, we try three types
of recurrent neural networks, including simple recurrent
neural network (RNN), long short-term memory (LSTM)
and gated recurrent units (GRU). In addition to recurrent
neural networks, we also try to add attention mechanism
on the models and see if the mechanism helps our models
achieve better performance.

B. Pre-processing

We observe that some of the given sentences contain
some meaningless tokens, such as punctuation marks,
which might not be helpful for emotion prediction. In
addition, the tokens increase the sentences’ length and thus

increase the computation costs during our training. What’s
worse, the tokens might be noisy and thus worsen our
emotion prediction performance. Therefore, we believe that
pre-processing is needed before we train our deep learning
model.

We pre-process our data based on two assumptions: 1.
An emoticon is determined by the text before it. 2. If an
emoticon is the first token of a sentence, then it must
be determined by the text after it. Our first assumption
is based on our own experience of using emoticons. We
use emoticons when we finish a sentence and we want to
express our emotion to others clearly. Thus, emoticons can
be viewed as indicators of our emotion about the text we
wrote before it. The second assumption trivially holds true.
If there is no text before emoticons, the emoticons must be
determined by the text after it.

To be more specific, our pre-processing methods involve
with three different aspects: meaning of token itself, term
frequency and scopes. For each aspect, we introduce a pre-
processing method. In other words, there are three pre-
processing methods in total.

For meaning of token itself, we observed that there
are four kinds of tokens in corpus: Chinese characters,
English letters, punctuation marks and others. We only
accept Chinese characters, English letters and two kinds
of punctuation marks, and ignore the rest. We believe that
Chinese character is the most important element to identify
emoticons since the authors of the sentences are all native
Madarin speakers. However, we have also observed that
there are sentences containing only English, such as the
one with rid 2858.("’'m so happy EMOTICON .hahaha”)
In addition to this example, there are also sentences that
Chinese characters are useless while English letters contain
important information during emotion prediction, such as
the one with rid 4064.(¢&......... happy 77Mi ! ! EMOTI-
CON) As a result, we consider English letters as well. Last
but not least, although most of punctuation marks serve only
as grammar purpose, some punctuation marks also provide
clear emotion information about authors’ emotion whereas
Chinese characters seem ambiguous, such as the one with
rid 5076.(/E? ? ? ? EMOTICON) Therefore, we regard
exclamation mark and question mark as such punctuation
marks, and take them into our consideration during our
emotion prediction.

In the respect of term frequency, we accept only the
most frequent 60000 terms. (Except for function words)
The pre-processing method assumes that the importance
of a token is based on its term frequency. If a token’s

term frequency is low, its importance is also low since
it does not appear in other sentences and thus we cannot
use it to predict emoticon. In the view of information
retrieval, according to Zipf’s law, the most important terms
are those having high-level term frequency. (However, the
most frequent terms are not important since they are very
likely to be function words) In addition, by considering only
high frequency terms, we can significantly decrease the size
of our vocabulary to reduce the memory usage during our
training.

Finally, our last pre-processing techique is the considera-
tion of scopes. The method is based on an assumption that
authors used emoticons depend only on the text near the
emoticons, instead of the whole sentences. For example,
the sentence with rid 2955 is long and contains different
emotions in different parts of the sentence. However, the
emoticon is determined by the tokens just right before it.
(!'%R.....) If we consider the whole sentence, our prediction
would be ambiguous. On the other hand, if we consider
only the three tokens before the emoticon, we can clearly
predict the correct answer. As a result, we should limit the
scope of our consideration when we predict emotion.

C. Recurrent Neural Networks

In this section, we will give a simple introduction of
different RNN architectures we implemented in this project.

1) Simple Recurrent Neural Network: Recurrent Neural
Networks (RNN) have gained attention in NLP field. A
RNN consists of an input layer, a hidden layer with a
recurrent connection and an output layer. The recurrent con-
nection allows the propagation through time of information
about the state of the hidden layer. Given a sequence of
tokens, a RNN takes as input the one-hot encoding x; of the
current token and predicts the probability y; of emoticon.
Between the current token representation and the prediction,
there is a hidden layer with m units which store additional
information about the previous tokens seen in the sequence.
More precisely, at each time ¢, the state of the hidden
layer h;is updated based on its previous state h;_; and the
encoding z; of the current token, according to the following
equation:

ht = O'(A.’Et + Rhtfl), (l)

where o(x) = 1/(1 + exp(zx)) is the sigmodi function
applied coordinate wise, A is the d x m token embedding
matrix and R is the m X m matrix of recurrent weights.
Given the state of these hidden units, the network then out-
puts the probability vector y; of the next token, according
to the following equation:

ye = f(Uhy), 2)

where f is the softmax function and U is the m x d output
matrix.

The model is trained by using stochastic gradient de-
scent method with back-propagation through time. We use
gradient re-normalization to avoid gradient explosion. In
practice, this strategy is equivalent to gradient clipping since
gradient explosions happen very rarely when reasonable
hyper-parameters are used. The details of the implemen-
tation are given in the experiment section.

2) Long Short-Term Memory: The simple RNN has the
ability to capture sentence information. However, the length
of reachable sentence is often limited. The gradient tends
to vanish or blow up during the back propatagion(Bengio
et al.,, 1994; Pascanu et al., 2013). An effective solu-
tion for these problems is the Long Short-Term Memory
(LSTM) architecture(Hochreiter and Schmidhuber, 1997;
Gers,2001). Such architecture consists of a set of recur-
rently connected subnets, known as memory blocks. Each
block contains one or more self-connected memory cells
and the input, output and forget gates. Once an error
signal arrives Constant Error Carousel (CEC), it remains
constant, neither growing nor decaying unless the forget
gate squashes it. In this way, it solves the vanishing gradient
problem and learns more appropriate parameters during
training.

Moreover, based on this structure, the input, output and
stored information can be partial adjusted by the gates,
which enhances the flexibility of the model. The activation
of hidden layer rely on the current/previous state, previous
hidden activation and current input. These activation inter-
act to make up the final hidden outputs through not only ad-
ditive but also element-wise multiplicative functions. Such
structures are more capable to learn a complex composition
of word vector than simple RNNs.

The LSTM networks are described by the following
composition function:

iy = o(Waize + Whihs 1 + Weice—1 + by), 3)
fi = o(Waswe + Wighe—1 + Wepcr—1 + byg), 4)
¢t = fr ©ci—1 + i © tanh(Waexy + Wichi—1 + be),
Q)]
ot = c(Waors + Whohi—1 + Weocs + o), (6)
hy = o © tanh(cy), @)

where o is the logistic sigmoid function. 7, f, o and c are
respectively for the input gate, forget gate, output gate, and
memory cell activation vectors, all of which have the same
size as the hidden vector h. The symbol ©® denoted the
element-wise product of the vectors. The weight matrices
from the cell to gate vectors are diagonal, so element m in
each gate vector only receives input from element m of the
cell vector. The weight matrices from input, hidden, and
outputs are not diagonal.

3) Gated Recurrent Units: A gated recurrent unit (GRU)
was proposed by Cho et al. to make each recurrent unit to
adaptively capture dependencies of different time scales.
Similarity to the LSTM unit, the GRU has gating units that
modulate the flow of information inside the unit, however,
without having a separate memory cells.

The activation h] of the GRU at time ¢ is a linear
interpolation between the previous activation h]_, and
candidate activation h?:

hi = (1= 2)hi_y + Z{hi, ®)
where an update gate zf decides how much the unit updates
its activation, or content. The update gate is computed by

2 = o(Way + Uhy—1)’ 9)

This procedure of taking a linear sum between the
existing state and the newly computed state is similar to

Target

Fully-connected Layer

pLATA
vV, V, V; V, '
O—©O—©0—© ®
a A A O e [
Fig. 1. Architecture of the proposed Neural Attention Model.

the LSTM unit. The GRU, however, does not have any
mechanism to control the degree to which its state is
exposed, but exposes the whole state each time.

The candidate activation h] is computed similarly to that
of the traditional recurrent unit,

bl = tanh(Wa, + U(ry © hy—1))’ (10)

where 7; is a set of reset gate and ® is an element-wise
multiplication.

D. Attention Mechanism

Recently, attention-mechanism has been incorporated
with recurrent neural networks, and has shown significant
improvement on a great variety of tasks. It’s able to
take care about the position of input elements, and some
previous analysis also shows the potential of attenuating
the unimportant parts and detecting the points in the entire
input data. We thus explore the use of attention mechanism
for solving the emoticon prediction task. We duplicated
a recently proposed model which is suitable for every
sequence classification problems, and the details are shown
in this paper'.

In the upper part of Figure 1, we demonstrate the
encoding procedure to transform input sequences into
fixed-length vector representation Op. The set = =
(x1,22,...,x7) denotes the input sequence, where T is
the sequence length. Each element in = represents a fixed-
length feature vector. In order to reduce the model com-
plexity, we set an embedding layer, a linear transformation
matrix, to turn the inputs into low dimensional dense
vectors V' = (V1,Va,...,Vr), and then they will be sent
to the recurrent encoder. In each time step, the recurrent
network takes one element V; from feature vector set, and
after processing the last element, it then generates an output
vector O, which can be regarded as the summaries of the
preceding feature vectors.

When input sequence x is long, the summaries vector Op
is likely to contain noisy information from many irrelevant
feature vectors V;, we thus apply attention mechanism to
select only relevant frames among the entire sequence. The
procedures are shown in the lower part of Figure 1. There
is also an embedding layer to transform input sequences

"https://arxiv.org/pdf/1604.00077v1.pdf

into dense vectors, and all the parameters in the embedding
layer are shared with the previous one. We then calculate
the cosine similarity between the sequence vector Or and
word embedding set V:

e; =010V, Y

where © denotes cosine similarity between two vectors.
As a result, we have a list of score ¢ = (e, es,...,e7).
The attention weights @ = (aq, @s,...,ar) come from
the normalized score list e. The normalization function is

shown below:
== (12)
>iz10(e)
where o denotes the sigmoid activation function. We
weighted sum all the feature vectors as > a;V;, and sending
it to a fully connected layer. Therefore, we can predict our

target.

II1. EXPERIMENTS and DISCUSSIONS
A. Experimental Setup

We are given a corpus of Yahoo Blog containing 300,000
sentences, and every sentence are labeled with one emoti-
con label. There are 40 emoticon classes in total. We use
the famous tokenization toolkit, jieba, for tokenizing the
corpus. The first part of our deep learning model is an
embedding layer which encodes a one-hot vector, whose
dimension is the same as the size of vocabulary, into a
vector with dimension = 256. Then the embedded sequence
of vectors is passed into a recurrent layer with dimension
= 128. In the end, the output of the recurrent layer is
passed into an 40-dim softmax activation layer to classify
the input sentence. We use a famous deep learning toolkit,
Keras, to implement our deep learning models. We split our
original training set to our training set and development set,
according to ratio 9:1.

Due to our limit of computation capability, we limit
the sentence length to 1,500. In other words, if the input
sentence consists more than 1,500 tokens, we will only
consider the first 1,500 tokens and ignore the rest.

When we use our third pre-processing method, we set our
scope to 50. That is to say, we only consider the nearest
50 tokens during our predictions.

Top 60000

Raw Chinese+ Chinese Frequency
Data English+!? | (Scope=50) Terms
RNN 0.18460 0.26156 0.26216 0.25519
LSTM 0.29144 0.28756 0.28786 0.28254
GRU 0.29315 0.29312 0.29375 0.29122
Attention LSTM | 0.28689 0.28206 0.28317 0.28441
Attention GRU | 0.28631 0.28276 0.28616 0.28318

TABLE I

EXPERIMENT RESULTS

B. Discussion: Pre-processing

From Table 1, we can see that the most useful pre-
processing method is limiting the scope of consideration.
However, some models’ best performances are achieved by
using raw corpus without any pre-processing methods.

The potential explanation for raw corpus is powerful
is our computation limitation. We limit the scope of our

consideration to 1,500 in order to train our model in
practical time. (Except for the one with scope = 50, of
course) Therefore, one of the raw corpus major defects is
eliminated since we would not see too many noisy tokens.
(The sentence length of raw corpus can be as long as 4,937
tokens...)

Of course, there are other reasons that could explain
such differences. Some tokens which are not considered by
our pre-processing methods are useful during prediction,
such as ”@ @.” On the other hand, there are some useless
tokens which have been taken into consideration by our
pre-processing methods such as URL. Since the raw corpus
takes everything into consideration, it has full information
and thus balances the effects of considering noisy tokens
such as URL, and thus outperforms our pre-processing
methods. In the respect of top 60,000 frequency term pre-
processing method, although it reduce the vocabulary size
from 129,690 to 60,000, the method might ignore too many
tokens. Some of the ignored tokens might be crucial during
emotion prediction.

Nonetheless, we can view the performances of raw
corpus and our pre-processing methods in a different angle.
Although our pre-processing methods’ performances are
inferior to the performance of raw corpus, they are only
slightly lower. As a result, we can claim that the pre-
processed corpus is the core element of the original corpus,
or the performances of our pre-processing methods will
be significantly inferior to the one of raw corpus. The
contribution of our pre-processing methods is reducing
the size of corpus, thus reduce computation costs during
training, while keeping comparable prediction performance,
not to mention in some cases our pre-processing methods
even outperform the raw corpus.

C. Discussion: Different Deep Learning Models

Based on different pre-processing methods, we also com-
pare the results using different deep learning techniques. We
can discover that while speaking of the original recurrent
neural network models, simple RNN performs worst. It’s
not surprising cause the gradient vanishing problem always
degrades the performance of simple RNN. We also found
that the performance of GRU networks is slightly better
than the LSTM networks. This may results from the average
length of the input sequences. LSTMs are known for
handling very long sequences. However, in this task, the
average length is about 20 words for each input. Therefore,
LSTMs might not dominant in experiments.

While incorporating attention mechanism with recur-
rent neural networks, the hybrid model didn’t achieve
any improvement in experiments. Attention mechanism are
capable of handling extremely long sequences, which is
well known for solving question answering tasks, but the
complexity of emoticon prediction task seems too low for
attention models. As a result, over-fitting will easily degrade
the performance of attention models in this task.

D. Discussion: Assembling

In addition to models mentioned in Section 2, we have
also tried to utilize multiple models simultaneously to see
if the combination is helpful. For a sentence s and an
emoticon prediction e, the score of the prediction is the

weighted sum of multiple models’ prediction scores (say
M models).

M
Z w;Model;(s, e)
i=1
We use LSTM and GRU with four different corpus
respectively. That is to say, we use totally eight models
for our prediction. We tune the models’ weights on our de-
velopment set, and the weights of each model are assigned
as the following table. It can be shown that the models’
weights do not necessary depend on their performance.
For example, although top 60,000 frequency terms LSTM
model’s performance is inferior to Chinese (Scope = 50)
LSTM model, its weight is heavier than the latter one.
The models should be diverse in order to gain better
interpolation performance.

13)

Raw Chinese+ Chinese Top 60000
Data | English+!? | (Scope=50) | Frequency Terms
LSTM 1 0.2 0.4 1
GRU 1 0.2 1 1
TABLE II

WEIGHTS FOR EACH MODEL IN INTERPOLATION

It is not surprising that the performance of assembling
is higher than each of the individual models. We can view
interpolation process as a voting by a group of experts.
Although each expert might make mistakes, other experts
can correct the mistake through voting. As a result, with
assembling, we achieve our best performance 0.30823.

E. Discussion: Emotional Vocabulary

To search top ten vocabulary of every emoticon, We
applied Word2vec, a word-embedding toolkit proposed
by Tomas Mikolov, and calculating cosine similarity to
compute the similarity between the emoticon and words.
From Table 3 ,we can see the top five vocabulary of every
emoticon, the details of all emoticons are given in the
appendix (emoticon_top_ten.pdf).

1 2 3 4 5
Emoticonl 23 W [OH | =W | %)
Emoticon2 | FEM 23 A < A
Emoticon3 = K | %Bh 75 HE |
Emoticon4 ? EREEEEEE R ES
TABLE III

EMOTICON TOP FIVE VOCABULARY

IV. CONCLUSIONS

In this project, we explored the use of machine learn-
ing based approaches, rather than traditional natural lan-
guage processing techniques. We also tried different pre-
processing methods for reducing the noisy problem in data
set. After assembling different models we implemented
in experiments, we had additional improvement. Our best
score is 0.30823, which is also the second-best performance
in Kaggle Leaderboard.

