
Hybrid-model for Handwritten Chinese Character Recognition
based on Convolutional Neural Networks

Sheng-syun Shen1, Hung-tsung Lu2, Chih-hsiang Yang1

1Graduate Institute of Communication Engineering, National Taiwan University
2Graduate Institute of Computer Science and Information Engineering, National Taiwan University

R03942071, R03922011, R03942066

Abstract

Dealing with the Chinese handwriting recognition problem, we
used support vector machine (SVM) and convolutional neural
networks (CNN) to handle this task. There are many kinds of
toolkits to implement these model recently, such as libSVM[1],
libdnn[2] and Caffe[3], and we use all of them mentioned
above on this final project work. However, because the training
data may have much noise, we did some pre-processing like
centralization, cropping, re-sizing and noise removal. To cope
with the lack of training data, we tried to increase the data
by adding virtual examples with rotation and masking. We
also tried normalize the data non-linearly, and such a method
performed well on the SVM structure. Experiments showed
that the Caffe model architecture performed the best on most of
the features we extracted. Finally, we tried the blending method
on all CNNs trained above and got a surprising improvement of
accuracy. We called such a CNN-blending model “hybrid-CNN
model.”

Index Terms: libSVM[1], libdnn[2], Caffe[3], Support Vector
Machine, Deep Neural Networks, Convolutional Neural Net-
works, Hybrid model

1. Introduction
The handwritten Chinese character recognition problem is
one of the most popular research topics in image processing
field. Several state-of-the-art approaches based on Convolu-
tional Neural Networks (CNN) have been proposed in recent
years. In this work, we also tried to start from the CNN architec-
ture and implement some methods mentioned in our Machine
Learning Techniques course, for instance, the support vector
machine, the blending techinique and training with virtual ex-
amples. We got the best recognition accuracy after combin-
ing the blending method and virtual examples training into our
Caffe CNN framework and we called this approach ”hybrid-
CNN model.” The following sections will describe our imple-
mentation in detail. Section 2 is about the data processing which
include some pre-processing methods and the virtual examples
approaches. Section 3 is the description of our models. Section
4 shows the experiment results. Section 5 is our conclusions in
this work.

2. Data Processing
This section will introduce all the data processing methods we
have implemented, including pre-processing, feature transform,
feature extraction, and so on.

Figure 1: This figure contains the original instances(left) and
the data processing instances(right). (a)Centralization, crop-
ping and re-sizing (b)Noise removal (c)Non-linear normaliza-
tion (d)masking

2.1. Data description

This data set is acquired from Machine Learning class which
contains 22116 words, and 32 different type of handwritten Chi-
nese character. Each instance has 12810 features with a range
of [0,1], which is flatten by 105x122 height images. Most of
the characters are incomplete cause they are partially covered
by round masks. Due to the data noisy problem, we need to
handle them before using the recognition models.

2.2. Centralization, cropping and re-sizing

At first, we discovered that after visualization, most of the Chi-
nese characters are not at the center of the images. Moreover,
some characters only hold a small portion in the 105x122 height
images but some do not, which means the size of characters are
different.

As a result, we proposed a method using MATLAB to ad-
just these data. We detected the location of every character, and
moved it to the center of the image. Next, we cropped and re-
sized the character to fit a 64x64 window to ensure every image
be the same size. This method not only normalized the Chinese
character instance, but also reduced the dimensions of feature
vector and consequently reduced model complexity. The result
is shown in Figure 1-(a).

1



2.3. Noise removal

While taking a glance at the training data, we found several
cases of data noisy problem. One is the missing problem. Some
instances lost their feature vectors and they should be removed
from training data due to no training information. The other
case, which we called ”double-line” problem, can be found if
some double-lines across an training image. We were not sure
what they are, but they didn’t belong to any kind of words, ob-
viously.

To remove these double-lines, we therefore use a plug-in
”DBScan” in MATLAB, which is a density-based clustering
algorithm, so that we can acquire strokes from every Chinese
character image. If a stroke is longer than a threshold, it will be
detected as a double-line because any Chinese character con-
taining an extremely long stroke is an unusual phenomenon.
The result after noise removal is shown in Figure 1-(b).

2.4. Virtual example: Rotation

Because of the lack of training data, we intuitively thought out
a method to increase the training data – rotate the characters.
When a person is writing, he/she may deviate the right angle,
so the character will be slant. Based on this concept, we have
tried many angles to rotate the training data: -3 to +3 degrees,
and we found that rotate -2 to +2 degrees of training data cause
the model overfitting. Therefore, we picked the rotating angle
-3 and +3 to be the rotated virtual examples.

2.5. Virtual example and regularization: Masking

Due to the same reason in the previous sub-section, we need to
increase the amount of training data to acquire higher training
performance. Besides, we also faced some problem during the
training process. The convolutional neural network models we
used were very easily to over-fit the training data.

To solve these two problems, we came out with a novel
method, which could support virtual examples and regulariza-
tion techniques simultaneously. We know that most of the train-
ing instances were partially covered with small round masks at
a random location. Therefore we place one more round mask
on each character to add some noises, and then put these new
instances back to the original training data. The radius of round
mask we generate is 22 pixel, which is almost the same size
as original instances, and the location of the centre is random.
After the masking procedure, the size of training data is three
times as the original one. The masking result is shown in Figure
1-(d).

2.6. Special: Non-linear normalization

Handwriting Chinese characters have complex structures and
large shape variations[4]. Also, many similar patterns exist.
Matching methods based on pixel values cannot perform well.
Nonlinear normalization[5] is a useful technique for correcting
nonlinear shape variations and homogenizing the two dimen-
sional line density so that space can be more efficiently utilized
and feature sampling points are stabilized for pattern matching
methods. We implemented the nonlinear normalization in [4].
The output result is shown in Figure 1-(c).

3. Models
3.1. Support vector machines (SVM)

3.1.1. Model introduction

Support vector machines (SVMs) are well-known supervised
learning models in machine learning. They are used for classi-
fication and regression analysis. Given a set of training data, a
support vector machine tends to find a best hyper-plane to sep-
arate the data set and then classifies them. Besides linear clas-
sification, the support vector machine can efficiently perform a
non-linear classification by using what is so-called kernel func-
tion, which mapped the data into a new feature space. The next
subsection will show how we use the toolkit, libsvm.

3.1.2. Training architecture and implementation

In libSVM[1], we can choose many types of SVMs and ker-
nels. The task is multi-class classification, so we choose C-SVC
as our SVM type. The Chinese characters recognition is obvi-
ously not a linear separable case, and the characters are com-
plicated, so we choose radial basis function (RBF) as the kernel
type. The parameter cost and gamma on normalized training
data after tuning is 4 and 0.00128 respectively; we try some
parameter on all the other training data set include cost=4 and
gamma=0.00128 and find out that these parameters are magic
numbers which make the SVMs perform relatively well.

Besides the data processing we used as described in section
2, here we implemented the feature extraction in [4]. They di-
vide a character image into 81 subarea, and each subarea is split
into 4 parts, and accumulate the strengths of gradients with each
32 quantized gradient directions in each part. Then, downsam-
pling the 32 dimensions vector to 16 dimension. Finally, we can
get a 1296 (81*16) dimensions feature for one character. The
result will show in next section.

3.2. Convolutional neural networks (CNN)

3.2.1. Model introduction

Convolutional neural network (CNN) is an advanced type of
feed-forward artificial neural work, which is a biologically-
inspired process and is a variation of multilayer perceptrons
(MLP). In CNN models, the individual neurons are tiled in such
a way that they respond to overlapping regions in the visual
field. They are widely used models for image and video recog-
nition, being a powerful tool for different vision problems.

3.2.2. Training architecture

The convolutional neural networks architecture is shown in Fig-
ure 2. There are some important structures of CNN we need to
know:

• Convolutional layer: In a convolutional neural network,
the parameters of each convolution kernel are trained by
the backpropagation algorithm. There are many convo-
lution kernels in each layer, and each kernel is replicated
over the entire image with the same parameters. The
function of the convolution operators is to extract dif-
ferent features of the input.

• Max Pooling: Another important technique of CNN
is max-pooling, which is a form of non-linear down-
sampling. Max-pooling partitions the input image into
a set of non-overlapping rectangles and, for each such
sub-region, outputs the maximum value.

2



Figure 2: Convolutional neural network model architecture.

• Dropout: Because the fully connected layers almost
copy all the parameters, it’s really to over-fit the train-
ing data. Using the dropout technique, we can not only
prevent over-fitting, but also speed up the training proce-
dure. Dropout will perform randomly for every neuron.
During the training procedure, if the neurons are dropped
out, they won’t be considered in forward pass and back
propagation.

3.2.3. Implementation details

For every CNN models, we set the structure as 20x5x5-2s-
20x4x4-2s-20x4x4-1023, three convolution layer and one fully
connected layer. The down-sampling rate is 2, and learning
rate is near by 0.005. To prevent over-fitting, we also set
dropout layers between each convolution layer and fully con-
nected layer. The dropout ratios are 0.1,0.1,0.1, and 0.25 re-
spectively.

3.3. Caffe: A Deep CNN model with more Regularizatons

3.3.1. Model introduction and architecture

Caffe [3] is an open source toolkit for researchers to build
DNN/CNN architectures intuitively and efficiently. In this
work, we implemented a deep convolutional neural network
model that A. Krizhevsky et al.[7] proposed which consist of
5 convolutional layers and 3 fully-connected layers with the
dropout technique to prevent from overfitting. [8]

Before the start of training, the model rescales all training
images into 256x256 size and crops each image into 5 parts:
upper-left, upper-right, lower-left, lower-right, center, with the
cropping size 224. In each feed-forward stage, the model ran-
domly selects one of them and feed it into the neural networks
to calculate and accumulate loss.

Here, in the feed-forward stage, instead of taking the widely
used logistic sigmoids, we take rectifiers as our activation func-
tions which can accelerate the model training speed without de-
grading the performance. [9] A rectifier is a activation function
defined as

f(x) = max(0, x) (1)

where x is the input to a neuron. A unit employing the rectifier
is called a Rectified Linear Unit (ReLU). If at least some train-
ing examples produce a positive input to a ReLU, learning will
happen in that neuron.

In order to aid generalization, local response normalization
technique is implemented after applying the ReLU nonlinearity
in first 2 convolutional layers. The response-normalized activity
bix,y is given by the expression

bix,y = aix,y/

(
k + α

min(N−1,i+n/2)∑
j=max(0,i−n/2)

(ajx,y)
2

)β
(2)

Figure 3: Caffe architecture. N*M*M means that there are N
kernels and the kernel size is M by M. LRN is the abbreviation of
local response normalization and FC stands for fully-connected
layer.

where aix,y denotes the activity of a neuron computed by ap-
plying kernel i at position (x, y) and then applying the ReLU
nonlinearity. The sum runs over n “adjacent kernels” and N is
the total number of kernels in the layer. The constants k, n, α, β
are hyperparameters. We set their values same as [7].

The idea of the local response normalization is inspired by
the real neurons. It is a form of lateral inhibition, creating com-
petition for big activities amongst neuron outputs computed us-
ing different kernels.

Except the settings described above, the remaining architec-
ture of this Caffe model is similar to the CNN model mentioned
in last subsection. The max-pooling method is also applied in
some convolutional layers and each fully-connected layer has
0.5 dropout-ratio to prevent overfitting. The whole 8-layer deep
convolutional model architecture is showed in Figure 3.

3.3.2. Hyperparameters tuning

Since the solver methods of deep convolutional neural networks
address the general optimization problem of loss minimization
which we often use SGD to handle, there are several hyper-
parameters that we can tune in this work. Stochastic gradient
descent (SGD) updates the weights W by a linear combination
of the negative gradient∇L(W ).

L(W ) ≈ 1

N

N∑
i

fW
(
X(i))+ λr(W ) (3)

Vt+1 = µVt − α∇L(Wt) (4)

Wt+1 =Wt + Vt+1 (5)

where fW (X(i)) is the loss on dataX(i) and r(W ) is a regular-
ization term with weight λ. N is the mini-batch size in equation
(3). Vt and Wt are the weight update and current weight at it-
eration t respectively. α is the SGD learning rate and µ is the

3



Figure 4: New group for hybrid-CNN training.

SGD momentum. We can tune different α and µ to get better
model performance. Following are the 2 hyperparameters we
have tuned.

• Learning rate: Conventionally, we usually set relative
higher learning rate at early training and decrease it
while training goes by. Choosing an appropriate learn-
ing rate is quite important. If we use a very large learning
rate, at the SGD stage it will go a “big” step to update the
model while if we use a very small value, the updating
step will be too small. Both will make our model hard to
find a local minima. After several experiments, we de-
cide to set the base learning rate 0.001 and divide it by
10 every 50 epoches.

• Momentum: Momentum is a technique for accelerating
gradient descent that accumulates a velocity vector in di-
rections of persistent reduction in the objective across
iterations. According to [10], we usually set the momen-
tum value near by 0.9, which really works significantly
in our project.

3.4. Hybrid-CNN model

3.4.1. Motivation and training architecture

While examining the mistakes on validation set, we discovered
that there are ambiguous relationship between some kinds of
characters. For example, Chinese character ”seven” is similar
to ”ten” and ”one”.

To deal with this ambiguous relationship, we thus per-
formed a two-layer hybrid-model . We first split the 32 kinds
of Chinese character into 3 groups, which is shown at Figure 4,
the training data are split into three groups as well. Then we
train for each group using original CNN model to form the first
layer. The second layer are trained by the whole training data.
The testing detail of hybrid-model will be mentioned about in
the experiment section.

4. Experiments
4.1. Feature Selection

In our first experiment, we want to see how different input
features affect the model performance. So that we choose 4
kinds of input data with different pre-processing methods, as
described following.

• Raw feature (Raw): Original data without any pre-
processing

• Normalized feature (Norm): Original data with central-
izing, cropping and resizing (described in section 2.2)

• Raw feature and remove noise (Raw+Rm): Original data
with noise removal (described in section 2.3)

• Normalized feature and remove noise (Norm+Rm):
Original data with centralizing, cropping, resizing and
noise removal (described in section 2.2 and 2.3)

The results are showed in Table1 and Table2.

Table 1: Feature Selection: Public Score

Model/data type Raw Norm Raw+Rm Norm+Rm
SVM 0.651499 0.446734 0.653640 0.453694
CNN 0.206103 0.211991 0.204229 0.176660
Caffe 0.104925 0.116435 0.116167 0.111884

Table 2: Feature Selection: Private Score

Model/data type Raw Norm Raw+Rm Norm+Rm
SVM 0.662741 0.488490 0.653640 0.498662
CNN 0.197270 0.228854 0.217612 0.196467
Caffe 0.099036 0.126874 0.085385 0.117773

We can notice that no matter what input feature used, Caffe
always performs the best and SVM is always the worst. It is not
suprised that both CNN-based models apparently outperform
the traditional SVM model.

In further comparison, the reasons that the Caffe model out-
performs the traditional CNN can be contributed to some gen-
eralization techniques, e.g. 5 random cropping and the local
response normalization, that Caffe takes.

We also discover that the Caffe model prefers raw data
rather than normalized data while traditional CNN model
prefers normalized data rather than raw data. One of the possi-
ble explanations is that Caffe model already has its own crop-
ping strategies which the traditional CNN does not have and we
are not necessary to centralize and crop images for Caffe model
again.

Here, we will choose the best result for each model (Norm
for SVM, Norm+Rm for CNN and Raw+Rm for Caffe) and dis-
cuss some regularization issues in the next experiment subsec-
tion.

4.2. Regularize / Virtual Example / Feature Transform

In this section, we compare the result between different virtual
example and regularization techniques which is mentioned in
section 2.4 to 2.6 and also check the affection after feature trans-
form by implementing the method from Yamada et al. [5].

We can easily discover that the both virtual example and
regularization techniques really help the improvement on recog-
nition accuracy. Especially, Caffe can achieve an error rate
lower than 10%, which is inspiring to us. The result shows
that increasing the amount of training data can help machine
learn better, and regularization will prevent CNN models from
over-fitting during the training process.

While examining the Non-linear transform column, it’s sur-
prised to see that SVM had a huge progress comparing to the
original data set. Besides, Non-linear normalization on origi-
nal CNN and Caffe model didn’t perform well. The SVM even
beat the CNN model in this case. It’s interesting and we might
discuss about it in the future.

4



Table 3: Regularize/Virtual Example/Feature Transform: Pub-
lic Score

Model/data type Rotation Mask Nonlinear
SVM 0.412473 0.422645 0.309690
CNN 0.153908 0.134368 0.447270
Caffe 0.097966 0.107602 0.148287

Table 4: Regularize/Virtual Example/Feature Transform: Pri-
vate Score

Model/data type Rotation Mask Nonlinear
SVM 0.448073 0.475642 0.338062
CNN 0.169433 0.150161 0.462527
Caffe 0.079497 0.087527 0.173983

4.3. Gradient feature extraction

In [4], a new feature is extracted. Table5 shows the results of
the best parameters we found on the new feature extracted from
Norm+Rm image and Nonlinear transform image.

Table 5: Gradient Feature
type/parameters Public Private

Nonlinear
c=100 g=0.1 0.337259 0.3841012

Norm+Rm
c=1000 g=0.1 0.268201 0.307013

Other results of different parameters didn’t show on table.
We have tried the cost form 0.01 to 1000 and gamma from 0.001
to 100 in log scale. The cost 10, 100 and 1000 coupled with
gamma = 0.1 and 0.01 got the most comparable results. Accord-
ing to Table5, the gradient feature extracted from Norm+Rm is
better than that from Nonlinear image, which is different from
[4]. We thought that it is resulted from the variation of the train-
ing data. Our data has much noise and the characters are not
unbroken. With the nonlinear transform, the characters became
distorted and strange, which is the same reason that we thought
why CNN not perform well on nonlinear transformed image.

4.4. Hybrid-CNN model and blending

In this section we preformed hybrid-CNN model using both
original CNN and Caffe. The result is shown in Table 6.

For the three group models in the first layer, we selected
the Norm+Rm with Mask for CNN as the training set. The
training data will be split into three part according to the mem-
bers of each group. We chose the same data set on the second
layer CNN model, and this time we used the whole training
data instead. After generating a hybrid-CNN model, we then
performed blending. The other model we chose to blend is the
caffe recognition result on Raw+Rm with Rotation data set. We
blend the two model by weighted sum the two output vector.
The weight for hybrid model is 0.25, and 1.0 for caffe model.

The public and private error rate outperformed all the other
method we previously implemented. The tiny difference be-
tween public and private score also shows no over-fitting prob-
lem here.

There is still another way for error rate evaluation, which

is called ”track 1” and we didn’t mention on it. We believe
that trying to optimize the error rate on ”track 0” only, the
”track 1” evaluation score will also be lower naturally. The er-
ror rate using ”track 1” measurement on our hybrid-CNN model
is 0.213597 / 0.169433 (public / private).

Table 6: Hybrid-CNN using blending result
model Public Private

Hybrid-CNN
with blending 0.078426 0.076017

5. Conclusions
In this report, we implemented many methods to recognize Chi-
nese handwriting characters.

In data processing, besides raw data, we not only central-
ized, cropped and re-sized them but removed noise on both
data sets. Moreover, to increase the amount of training data,
we added virtual examples by rotating and masking. In addi-
tion, we referenced much papers to tune our hyperparameters
on CNN and Caffe.

Furthermore, in order to improve the bad performance of
SVM, we duplicated the work in [4], which used nonlinear nor-
malization on image and extracted a gradient feature.

Experiments showed that CNN performed the best espe-
cially using Caffe toolkit, but it seemed that nonlinear trans-
form on image is not suitable for CNN models. Increasing the
amount of training data by adding virtual examples is work on
all models. The gradient feature extracted form Norm+Rm im-
age got the best performance on SVM although it is still worse
than CNN.

Finally, most important of all, we blended many CNNs to
built a hybrid-CNN model, and it got the most significant per-
formance on both public and private scoreboards compared with
all the other methods.

After several experiments, we can conclude that the CNN
model is quite suitable for handling image processing tasks in-
cluding the Chinese handwriting recognition task in this project.
At the same time, the blending technique also demonstrates its
power. We combine them together, and get a powerful hybrid-
CNN model, which is quite an appropriate solver in this project.
We recommend the hybrid-CNN model for both 2 tracks be-
cause of its powerful recognition rate and the relatively efficient
training time.

5



6. Collaboration
All contents were discussed together. The following subsctions
are the division of works of all implementations.

6.1. Sheng-syun Shen

• Data preparation

• Centralization, cropping and re-sizing

• Noise removal

• Virtual example and regularization: Masking

• Convolutional neural network model

• Hybrid model: Two-layer CNN model with blending

6.2. Hung-tsung Lu

• Deep convolutional neural network model (Caffe)

• Hyperparameters tuning

6.3. Chih-hsiang Yang

• Virtual example: rotation

• Nonlinear normalization

• Implement the work in [4]

• SVM baseline

7. References
[1] Chih-Chung Chang and Chih-Jen Lin, LIBSVM : a library for

support vector machines. ACM Transactions on Intelligent Sys-
tems and Technology, 2:27:1–27:27, 2011. Software available at
http://www.csie.ntu.edu.tw/ cjlin/libsvm

[2] Boton Chou, libdnn : a lightweight, user-friendly, and read-
able C++ library for deep learning, 2013-2014. libdnn on github:
https://github.com/botonchou/libdnn

[3] Jia, Yangqing. ”Caffe: An open source convolutional architec-
ture for fast feature embedding.” http://caffe. berkeleyvision. org
(2013). Caffe on github: https://github.com/BVLC/caffe

[4] Dong, Jian-xiong, Adam Krzyak, and Ching Y. Suen. ”An im-
proved handwritten Chinese character recognition system us-
ing support vector machine.” Pattern Recognition Letters 26.12
(2005): 1849-1856.

[5] Yamada, Hiromitsu, Kazuhiko Yamamoto, and Taiichi Saito. ”A
nonlinear normalization method for handprinted Kanji character
recognitionline density equalization.” Pattern Recognition 23.9
(1990): 1023-1029.

[6] “Convolutional Neural Networks (LeNet) DeepLearning 0.1 doc-
umentation”, in Deep Learning, Retrieved January 20, 2015, from
http://deeplearning.net/tutorial/lenet.html

[7] Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. ”Im-
agenet classification with deep convolutional neural networks.”
Advances in neural information processing systems. 2012.

[8] Hinton, Geoffrey E., et al. ”Improving neural networks by
preventing co-adaptation of feature detectors.” arXiv preprint
arXiv:1207.0580 (2012).

[9] Nair, Vinod, and Geoffrey E. Hinton. ”Rectified linear units im-
prove restricted boltzmann machines.” Proceedings of the 27th In-
ternational Conference on Machine Learning (ICML-10). 2010.

[10] Sutskever, Ilya, et al. ”On the importance of initialization and mo-
mentum in deep learning.” Proceedings of the 30th International
Conference on Machine Learning (ICML-13). 2013.

[11] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li and L. Fei-
Fei, ImageNet: A Large-Scale Hierarchical Image Database.
IEEE Computer Vision and Pattern Recognition (CVPR), 2009.
http://www.image-net.org/

6


