

沈昇勳 Sheng-syun Shen

Outline

- Classical Question Answering
- End-to-End Viausal Question Answering
- Attention Model on Question Answering
- Libraries and Toolkits

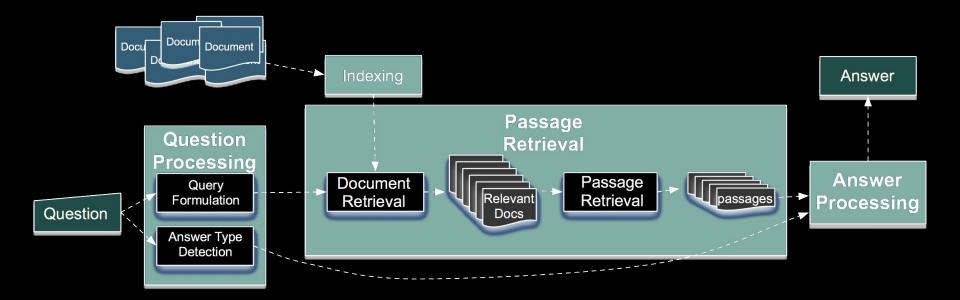
Classical Question Answering

Question Answering

One of the oldest NLP tasks.

asks.	↓●0000 遠傳電信 3G	≵ 100% 💻
	「你>	不要裝傻你是愛我的吧」
	你說是就是吧。	
		「所以你不愛我嗎」
	我怎麼知道。	
	「你為什』 「	麼不知道自己愛不愛我」
	我沒辦法給你滿滿	
	「不用 <u>滿滿</u> 白	的只要你跟我交往就好」
	很抱歉 [,] 我的使用 沒包含婚姻。	月者授權合約
		「你很煩那那走開啦」
Apple Siri	?	<u> </u>

Types of Questions in QA Sysyem


- Factoid questions
 - Where is Apple Computer based ?
 - How many calories are there in two slices of apple pie?
- Complex (Narrative) questions
 - In children with an acute febrile illness, what is the efficacy of acetaminophen in reducing fever ?

Approaches for Solving QA

- IR-based approaches (Information Retrieval)
 - TREC; IBM Watson; Google
- Knowledge-based and Hybrid approaches
 - Apple Siri; Wolfram Alpha

IR-based Factoid QA

IR-based Factoid QA

- Question processing
 - Detect question type, answer type
 - Formulate queries to send to a search engine
- Passage retrieval
 - Retrieve ranked documents
 - Break into suitable passages and rerank
- Answer processing
 - Extract candidate answers
 - Rank candidates

IR-based Factoid QA | Question Processing

- Answer type detection
 Decide the named entity type (person, place) of the answer
- Query formulation
 Choose query keywords for the IR system
- Question type classification
 Is this a definition question, a math question, a list question

IR-based Factoid QA | Question Processing

Answer type detection : Name entities

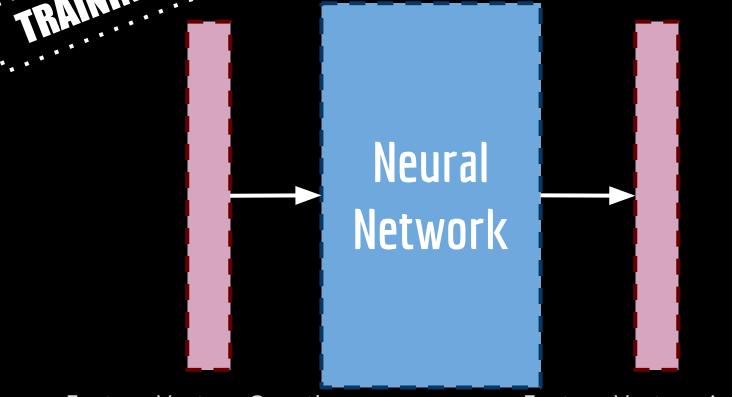
- Who founded Virgin Airlines ?
 - PERSON
- What Canadian city has the largest population?
 - CITY

End-to-End Viausal Question Answering

Visual QA may contain some sub-problems...

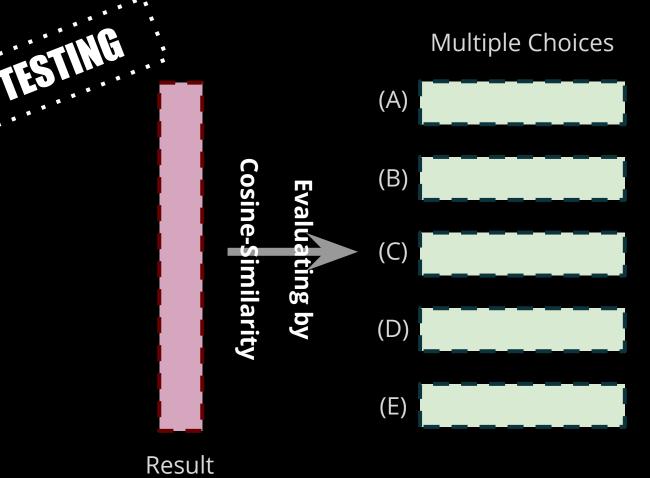
- Object detection
- Image segmentation
- Some Question Answering techniques
 - Question type classification
 - Answer type detection

Is there any banana in the picture?


(A) Yes. (B) No.

End-to-End Visual QA

Can directly predict answers according to questions and images



Feature Vector : Question

Feature Vector : Answer

VQA

With a view to understanding sentences or documents, we need to model them in fixed-length vector representation.

Basic Representation Method :

Bag-of-words model / N-hot encoding

- Each document is represented by a set of keywords
- A pre-selected set of index terms can be used to summarize the document contents

Bag-of-words model / N-hot encoding

Definition

- The pre-selected vocabulary $V = \{k_1, \dots, k_i\}$ is the set of all distinct index terms in the collection
- Examples

V = {John,game,to,likes,watch}

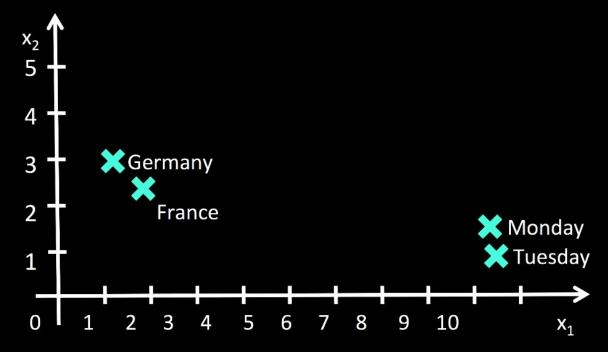
Sentence 1 $S_1 = [1,0,1,2,1]$ John likes to watch movies. Mary likes movies too. Sentence 2 $S_2 = [1,1,1,1,1]$ John also likes to watch football games.

Bag-of-words model / N-hot encoding

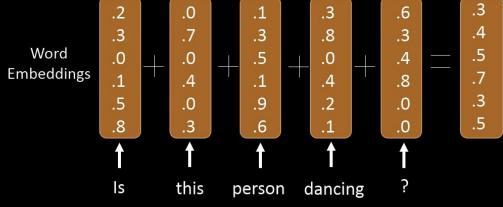
Property

- Simple and Powerful
- Problem :
 - \circ lose the ordering of the words
 - \circ $\,$ ignore the semantics of the words

Father = [00000100...0000] Mother = [0010000...0000] the cosine similarity between these two terms :


= 0 ?!

WTF


While word-embedding can solve these problems :

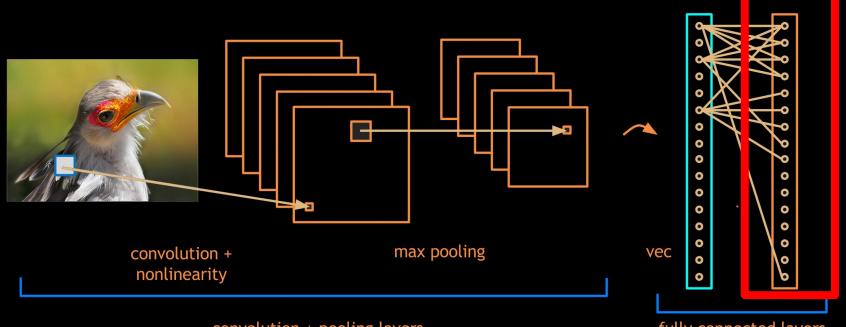
- Words are represented as a **DENSE**, **FIX-LENGTH** vector.
- Preserve semantic and syntatic information.

Using this technique, we can then represent phrases, or sentences by :

• Averaging word vectors

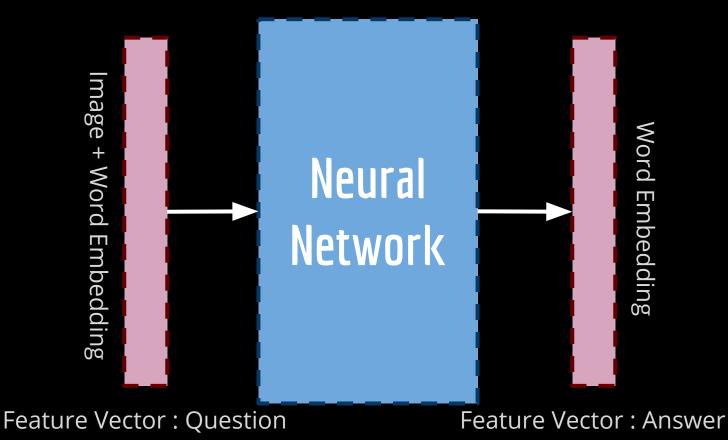
 Adapting sentence-embedding <u>https://cs.stanford.edu/~quocle/paragraph_vector.pdf</u>

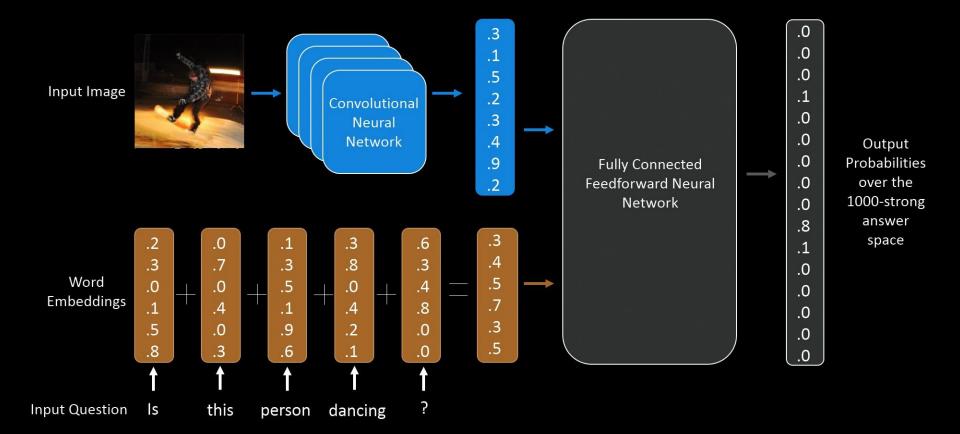
Extract Feature Vectors | Image Embedding


Using a Pre-trained CNN model, we can classify images

VQA

Extract Feature Vectors | Image Embedding


We can also represent images in vector-form by feeding them into the pre-trained CNN models


convolution + pooling layers

fully connected layers

VQA

References for implementation :

- <u>https://avisingh599.github.io/deeplearning/visual-qa/</u>
- http://www.cs.toronto.edu/~mren/imageqa/
- <u>https://www.d2.mpi-inf.mpg.de/sites/default/files/iccv15-ne</u> <u>ural_qa.pdf</u>

Variations

• BOW

"Blind" model. BOW+logistic regression

• LSTM

Another "Blind" model.

• IMG

CNN feature without question sentences but question type.

Attention Model on Question Answering

Discussion

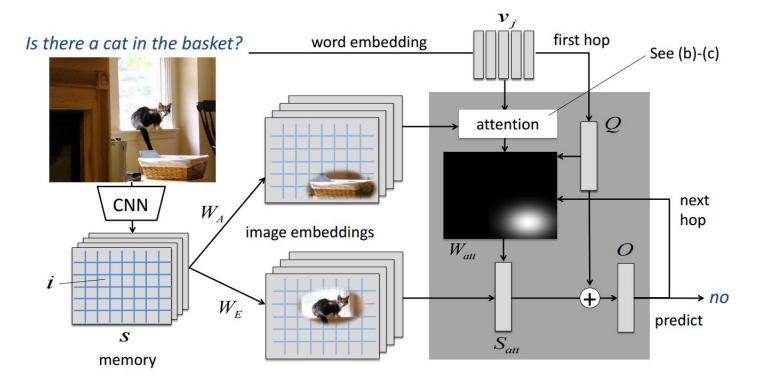
How to use image information precisely?

Reference Paper

Xu, Huijuan, and Kate Saenko.

UMass Lowell

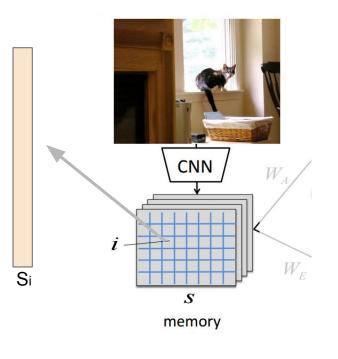
Ask, Attend and Answer: Exploring Question-Guided Spatial Attention for Visual Question Answering.


arXiv preprint arXiv:1511.05234 (2015).

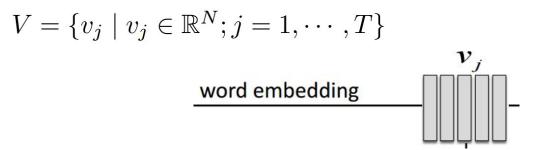
Samples in this paper

What season does this appear to be? GT: fall Our Model: fall

What is soaring in the sky? GT: kite Our Model: kite



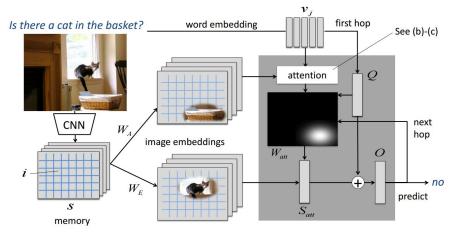
CNN features :


extract the last convolutional layer of GoogLeNet

 $S = \{s_i \mid s_i \in \mathbb{R}^M; i = 1, \cdots, L\}$

Text features :

extract the last convolutional layer of GoogLeNet


Sentence (Question) Attention

Attention Matrix : W_A

$$C = (S \times W_A) \times Q$$

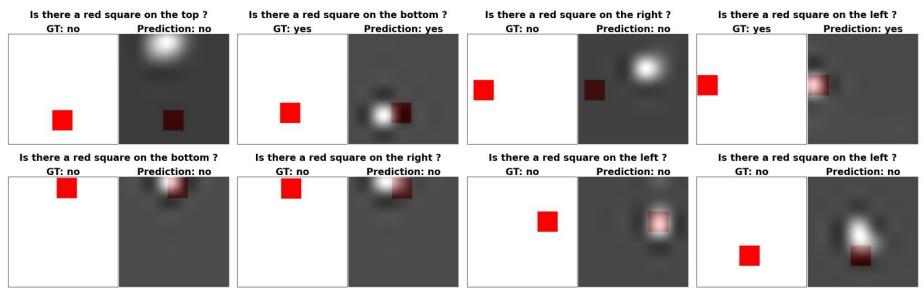
 $W_{att} = \operatorname{softmax}(C)$

 $S_{att} = W_{att} \times (S \times W_E)$

 $P = \operatorname{softmax}(W_P \times (S_{att} + Q) + B_P)$

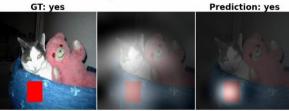
C: R^L, S: R^{L×M}, W_A: R^{M×N}, Q: R^N, W_{att}: R^L, W_E: R^{M×N}

Attention Analysis


Object Presence

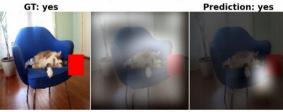
Attention Analysis

Absolute Position Recognition


With/O : 100% vs 75%

Attention Analysis

Relative Positition Recognition


Is there a red square on the bottom of the cat?

Is there a red square on the top of the cat? Prediction: no GT: no

Is there a red square on the right of the cat?

Is there a red square on the left of the cat?

Is there a red square on the right of the cat?

Is there a red square on the top of the cat? GT: no

Prediction: no

With/O : 96% vs 75%

Experimental Result

	VQA	DAQUAR	DAQUAR*
Multi-World [17]	-	-	12.73
Neural-Image-QA [18]	51.04	30.64	29.27
Question LSTM [18]	49.73	32.66	32.32
VIS+LSTM [20]	49.54	36.03	34.41
Question BOW [20]	49.67	36.36	32.67
IMG+BOW [20]	53.57	36.03	34.17
Question One-Hop	53.37	36.03	-
Word One-Hop	53.62	36.03	-
Two-Hop	54.69	40.07	-

Libraries and Toolkits

Word Embedding

- Word2Vec https://code.google.com/p/word2vec/
- GloVe <u>http://nlp.stanford.edu/projects/glove/</u>
- Sentence2vec <u>https://github.com/klb3713/sentence2vec</u>

Image Embedding

An pre-extracted feature set is provided : <u>http://cs.stanford.edu/people/karpathy/deepimagesent/coco.zip</u>

This is the web page. Hope it works for you : <u>http://cs.stanford.edu/people/karpathy/deepimagesent/</u> (It's about generating image descriptions.)

- Website and documentation : <u>http://keras.io/</u>
- Example :

Multilayer Perceptron (MLP):

from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation
from keras.optimizers import SGD

```
model = Sequential()
# Dense(64) is a fully-connected layer with 64 hidden units.
# in the first layer, you must specify the expected input data shape:
# here. 20-dimensional vectors.
model.add(Dense(64, input_dim=20, init='uniform'))
model.add(Activation('tanh'))
model.add(Dropout(0.5))
model.add(Dense(64, init='uniform'))
model.add(Activation('tanh'))
model.add(Dropout(0.5))
model.add(Dense(2, init='uniform'))
model.add(Activation('softmax'))
sgd = SGD(lr=0.1, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='mean squared error', optimizer=sgd)
model.fit(X train, y train, nb epoch=20, batch size=16)
score = model.evaluate(X test, y test, batch size=16)
```

VQA

Notification :

If input features are too large for you, you can load them in batch, and apply batch learning as well.

Here are some examples :

https://github.com/avisingh599/visual-qa/blob/master/scripts/trainMLP.py

References

References

• <u>https://web.stanford.edu/class/cs124/lec/qa.pdf</u>

The End Thanks for your listening

