BERT and its family
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Outline

What is pre-train model
How to fine-tune

How to pre-train



Pre-train Model



Pre-train Model

Represent each token by a embedding vector
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The token with the same type
has the same embedding.

Simply a table look-up

F O 0 H O

Word2vec [Mikoloy, et al., NIPS’13]

Glove [Pennington, et al., EMNLP’14]



Pre-train Model

Represent each token by a embedding vector

The token with the same type
has the same embedding.

T T T English word as token ...
FastText
Model Model Model [Bojanowski, et al.,
TACL'17] T
I ‘ ‘ Model
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Pre-train Model

Represent each token by a embedding vector

The token with the same type
has the same embedding.

T T T Chinese character as token ...
Model Model Model [Su, et al., H
EMNLP’17]
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Pre-train Model

Represent each token by a embedding vector

v v
Model Model Model Model Model Model
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Pre-train Model
Contextualized Word Embedding



Pre-train Model
Contextualized Word Embedding

—

Many Layers =<

e LSTM
e Self-attention layers

* Tree-based model (?)
 Ref: https://youtu.be/z0u0g2wEGcc
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Bigger Model

Source of image: https://www.microsoft.com/en-
us/research/blog/turing-nlg-a-17-billion-parameter-
language-model-by-microsoft/
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Megatron
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[Shoeybi, et al., arXiv'19]
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Distill BERT
[Sanh, et al., NeurlIPS workshop’19]

Tiny BERT [Jian, et al., arXiv’'19]

Mobile BERT [Sun, et al., ACL'20]

Q8BERT
[Zafrir, et al., NeurlPS workshop 2019]

ALBERT I[Lan, et al., ICLR’20]


https://arxiv.org/search/cs?searchtype=author&query=Zafrir,+O

Smaller Model

* Network Compression  Ref: https://youtu.be/dPp8rCAnU_A
* Network Pruning
* Knowledge Distillation All of them have

e Parameter Quantization been tried.
* Architecture Design

Excellent reference:
http://mitchgordon.me/machine/learning/2019/11/18/all-the-
ways-to-compress-BERT.html



Network Architecture

* Transformer-XL: Segment-Level Recurrence with
State Reuse [Dai, etal., ACLU'19]
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(a) Training phase. (b) Evaluation phase.
* Reformer [kitaey, et al., ICLR20] Reduce the
- complexity of self-
* Longformer (geltagy, etal, arxiv'20] |  Sttention




How to fine-tune

Task-specific Layer

For a specific
NLP task




NLP tasks

" one sentence
Input =

multiple sentences

g

one class

class for each token
Output =

copy from input

_general sequence



" one sentence
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O Utp ut class for each token
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Output

e Extraction-based QA

Document: D = {d,,d,, -, dy}
Q= {CI1; qu""CIM}

Query:

D QA S
Q Model e

output: two integers (s, e)

A={d,,

Answer: ,d,}

g

ohe class

class for each token

copy from input

_general sequence

In meteorology, precipitation is any product
of the condensation of atmospheric water vapor
that falls under gravity. The main forms of pre-
cipitation include drizzle, rain, sleet, snow, grau-
pel and hail... Preci on as smaller
droplets coalesce via ion 73 other rain
drops or ice crystals within a cloud. Short, in-
tense periods of rain in scattered locations are
called “showers”.

What causes precipitation to fall?
gravity

Where do water droplets collide with ice crystals
to form precipitation?

within a cloud | ¢ = 77 @ = 79




Copy from Input (BERT)

I I Task Oi3 Oi5 sz
c=? Specific Softmax
dot product =)

[CLS] q; q,  [SEP] d, d, ds

guestion document



Copy from Input (BERT)

s=2 e=3 Specific Softmax

The answer is “d, d;”. dot product =)

[CLS] q; q,  [SEP] d, d, ds

guestion document




Output — General Sequence (v1)

* Seq2seq model

output sequence
Attention

f\ V\T/4 V}/5 <E(T)S>

Model Task Specific
Encoder Decoder

[

[CLS] w, W, W3

input sequence



Output — General Sequence (v2)

output sequence Ws  <EQOS>

Speufl SpeC|f| SpeC|f| SpeC|f|c

| 1 t 1 1 1
Model
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Wy W [SEP] W3 Wy Ws

input sequence



Fine-tune «==+- Task-specific
How to

fine-tune 1 -
Feature 1 f t
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-~ Model
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AdaptOr [Stickland, et al., ICML’19] [Houlsby, et al., ICML’19]

[ Task ] [ Task J [ Task ]
Specific Specific Specific

Model Model Model

Fine-tune




AdaptOr [Stickland, et al., ICML’19] [Houlsby, et al., ICML’19]

[ Task ] [ Task J [ Task ]
Specific Specific Specific

Model Apt Model Apt Model Apt

Fine-tune

[ Task ] [ Task J [ Task ]
Specific Specific Specific

Model Model Model
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Source of image: https://arxiv.org/abs/1902.00751
[Houlsby, et al., ICML'19]
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Source of image: https://arxiv.org/abs/1902.00751
[Houlsby, et al., ICML'19]
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Why Pre-train Models?

e GLUE scores
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Source of image: https://arxiv.org/abs/1905.00537
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Why Fine-tune?

o
o
>

—= MMNLI fine-tune
—#=: MNLI scratch
—+— RTE fine-tune

\ =4 RTE scratch
o
_..
——

o
o

MRPC fine-tune
MRPC scratch

S5T-2 fine-tune
SST-2 scratch

Training Loss
= o
N =

o
o

0 2 4 6 8 10 12 14 16 18 20
Epochs

[Hao, et al., EMNLP’19] Source of image: https://arxiv.org/abs/1908.05620



Training from scratch

How to generate the figures

Why Fine-tune?  below?

https://youtu.be/XysGHANOTbg

[Hao, et al., EMNLP’19] Source of image: https://arxiv.org/abs/1908.05620



How to Pre-train

‘ A model that can read text

G
\% — Model
Pre-train 1
Text\v'v;f:out B

annotation



e Context Vector (CoVe)

p A output: B language
I Ws Wg Wy
Encoder  Model —— Decoder
Wiy W, W3 W, Need sentences pairs

Input: A language for languages A and B



Self-supervised Learning

Yann LeCun wee
' 201945302 - @

| now call it "self-supervised learning”, because "unsupervised” is both
a loaded and confusing term.

In self-supervised learning, the system learns to predict part of its input
from other parts of it input. In other words a portion of the input is used
as a supervisory signal to a predictor fed with the remaining portion of

the input.

Text without abel N
annotation ape y 4R LLLTLLLLLTITIL :
;«
SuperViSEd X Se—/f- x’ @rrrnsmnsannanns -

supervised




Predict Next Token
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Predict Next Token

W, W3 W, Ws
I S M . |
H H H H This is exactly how we train
? ? ? ? language models (LM).
Tt t t
J { J Universal Language Model
1 Fine-tuning (ULMFiT)
hz h3 [Howard, et al., ACL’18]
T t t
LSTM ELMo
[Peters, et al.,
Y ‘ Y ‘ NAACL'18]




[Alec, et al.,
2019]

Megatron

[Shoeybi, et al.,
arXiv’19]

with constraint
E Self-attention J




https://talktotransformer.com/

Predict Next Token

They can do generation.

M PROMPT Tn a shocking finding, scientist discovered g [

WRITTEN) ] _ "\ 4
in a remote, previously unexplored valley, in the

Even more surprising to the researchers was thejact
unicorns spoke perfect English. '

MODEL The scientist named the population, after their distinctive horn,
MPLETION

MACHINE- . )
10 TRIES) prev1ously unknown to science.

Ovid’s Unicorn. These four-horned, silver-white unicorns were

Now, after almost two centuries, the mystery of what sparked this odd

phenomenon is finally solved.

Dr. Jorge Pérez, an evolutionary biologist from the University of La
Paz, and several companions, were exploring the Andes Mountains when
they found a small valley, with no other animals or humans. Pérez
noticed that the valley had what appeared to be a natural fountain,

surrounded by two peaks of rock and silver snow.



https://talktotransformer.com/

Predict Next Token

They can do generation.

Keaton Patti @ @KeatonPatti - 2019E8513H v
I forced a bot to watch over 1,000 hours of Batman movies and then
asked it to write a Batman movie of its own. Here is the first page.

BATMAN
INT. TRADITIONAL BATCAVE

BATMAN stands next to his batmobile
He’'s sometimee Bruce Wayne sometime

BATMAN
This is now a safe city.
punched a penguin into p

ALFRED, Batman's loyal batler, car:

ALFRED
Eat a dinner, Mattress W

An explosion explodes. THE JOKER ar
Joker is a clown but insane. Two-Fé

BATMAN
No! It ie Two~Face and 0O
They hate me for being a

Batman throws Alfred at Two-Face. 1
& coin. Alfred lands heads up whict

BATMAN (CONT'D
It ie just you and I, the¢
Bat versus clown. Moral «

Tl 548

THE JOKER
I am such a freak. Society i
You drink water, I drink ana

BATMAN
I drink bats just like a bat

Batman looks around for his parents, b
This makes him have anger. He fires a
deflects it with his sick sense of hum

THE JOKER
I have never followed a rule
is my rule. Do you follow? I

BATMAN
Alfred, give birth to Robin.

Alfred begins the process since it is
has a present in his hand. He juggles

THE JCKER
Happy batday, Birthman.

Batman opens the present since he’s a
coupon for new parents, but is expired

i

Q 143= T,




BATMAN
INT. TRADITIONAL BATCAVE

BATMAN stands next to his batmobile and uses his batcomputer.
He'’'s sometimes Bruce Wayne sometimes Batman. Alltimes orphan.

BATMAN
This is now a safe city. I have
punched a penguin into prison.

ALFRED, Batman’s loyal batler, carries a tray of goth ham.

ALFRED
Eat a dinner, Mattress Wayne.

An explosion explodes. THE JOKER and TWO-FACE enter the cave.
Joker is a clown but insane. Two-Face is a man but attorney.

BATMAN 13§Eﬂj

No! It is Two-Face and One-Face.
They hate me for being a bat.

Batman throws Alfred at Two-Face. Two-Face flips Alfred like
a coin. Alfred lands heads up which means Two-Face goes home.

BATMAN (CONT'D)
It is just you and I, the Joker.
Bat versus clown. Moral enemies.



THE JOKER
I am such a freak. Society is bad.
You drink water, I drink anarchy.\EarﬁL
N

JEE B
BATMAN
I drink bats just like a bat would!

Batman looks around for his parents, but they are still dead.
This makes him have anger. He fires a batrocket. The Joker
deflects it with his sick sense of humor. A clownly power.

THE JOKER
I have never followed a rule. That
is my rule. Do you follow? I don’'t.

BATMAN
Alfred, give birth to Robin.

Alfred begins the process since it is his job. The Joker now
has a present in his hand. He juggles it over to Batman.

THE JOKER
Happy batday, Birthman.

Batman opens the present since he’s a good guy. It contains a
coupon for new parents, but is expired. This is a Joker joke.




[ forced a bot to watch over 1,000 hours of XXX
= fEE! ATERS 1SR4 (5 A1)

- Keaton Patti @
@KeatonPatti

| forced a bot to watch over 1,000 hours
of Olive Garden commercials and then

ask| «® . Keaton Patti @

CO &\ @:eaat:r:’attia |

Pa | forced a bot to watch over 1,000
o episodes of Jerry Springer and then

- Keaton Patti &
' @KeatonPatti

| forced a bot to watch over 1,000 hours
of the Saw movies and then asked it to
write a Saw movie of its own. Here is the
first page.
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You shall know a word by
the company it keeps

y,
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John Rupert Firth [j
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right context!?




Predict Next Token

- Bidirectional D




Masking Input

[Devlin, et al., :
NAACL'19] ;
)

Transformer
(no limitation on
self-attention)

MASK

(special token)

Random Token



Masking Input VIV

INPUT PROJECTION OUTPUT
w(t-2) T T T T
w(t-1)
| \SUM Model
— wi(t) T
7 )
w(t+1)
wi(t+2) Using context to predict
the missing token
CBOW




Is random masking

Masking Input  good enough?

* Whole Word Masking (WWM) [cui, etal., arXiv'19]

[Orlgmal Sentence]
1% *EFU %?ﬁ{ﬂJ‘F—AT«‘J E/]pl‘()bablllty Source of image:

[Orlgmal Sentence with CWS] https://arxiv.org/abs/1906.08101
B &5 A Ok Il ~ — 1A #Y probability - P °

[Orlgmal BERT Input]

it i 5 [MASK] 2 > [MASK] #l] '~ — /> i /] pro [MASK] ##lity -
[Whold Word Masking Input] P
ff F iE = [MASK] [MASK] 3 [MASK] [MASK] § — > i £ [MASK] [MAS]}»;

* Phrase-level & Entity-level
[Sun, et al., ACL'19]

Enhanced Representation through
Knowledge Integration (ERNIE)




Source of image: https://arxiv.org/abs/1907.10529

0.25

|‘|||m

Span Length (# of Words)

SpanBert

[Joshi, et al., TACL'20]

o
M
o

o
=
L

Sampling Probability
o
o

o
=
L

SQuAD 2.0 NewsQA TriviaQA Coreference MNLI-m OQNLI GLUE (Avg)

Subword Tokens 83.8 72.0 76.3 77.7 86.7 92.5 83.2
Whole Words 84.3 72.8 77.1 76.6 86.3 92.8 82.9
Named Entities 84.8 727 78.7 75.6 86.0 93.1 83.2
Noun Phrases 85.0 73.0 T1.7 76.7 86.5 93.2 83.5

Geometric Spans 85.4 73.0 78.8 76.4 87.0 93.3 83.4




SpanBert —
Span Boundary Objective (SBO)

W
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Span BERT
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SpanBert —
Span Boundary Objective (SBO)

Useful in coreference?

W5

t t+ t+ t t t t t t f

Span BERT

| Tét | A N



X I_N et [Yang, et al., NeurlPS’19]

Transformer-XL
Model

1 =

Model
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X I_N et [Yang, et al., NeurlPS’19]

Transformer-XL

Model
w1 E2
Model
v
| E43
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TN



X I_N et [Yang, et al., NeurlPS’19]

Transformer-XL

2| E2 < MASK &4

N

2 | MASK &4 F®1  E2 MASK #4




Limited to
autoregressive model

BERT cannot ta | k? (non-autoregressive next

time)

Given partial sequence, predict the next token
Wy

T

BERT-style

f P } f Pt f

W, W, W, MASK

What LM born for Never seen partial sequence



MASS / BART Reconstruct

the input
W W W W
* The pre-train model is a s a4 .
typical seqg2seqg model. O

Wg  Wg W; Wy

t t t
Attention

Model > Model

t t 1 1

w;, w, W; w, Corrupted

MAsked Sequence to Sequence pre-training (MASS) [Song, et al., ICML19]
Bidirectional and Auto-Regressive Transformers (BART) [Lewis, et al., arXiv’19]



Input Corruption ||T| MASS
E

A B [SEP] C

A B [SEP] C E
(Delete “D”)

C D E[SEP] A B

(permutation)

D E A B [SEP] C
(rotation)

A B[SEP] C D E

71NN

 Permutation / Rotation

do not perform well. A B [SEP] E

* Text Infilling is
consistently good. Text Infilling



BART/MASS We  we W, W,

t 1ttt
Attention
Model > Model

Encoder Decoder

| I

W, W, W; W, Corrupted

/ Encoder

Model <« Decoder

\ Seg2seq

UnilM

[Dong, et al., NeurlPS’19]



[ ] Allow to attend

UnilM

B Prevent from attending

g s s s e
Transformer Block L
t

Transformer Block 2

f

Transformer Block 1

Token Embedding

Position Embedding

Segment Embedding

t t t t t
% Xa Xa % L %
Unified LM with

Shared Parameters

Source of image:

g

Left-to-Right LM

S,
®q. fo

3, S,
Ooooo
s, 11 |:|i 1]
BRHHR L2
3, i Transformer
. ﬂa\"ﬁ . sos| [ s, | [eos]| [ s, |[Eos
ec© 5,&S,: attend to all fokens : -

Segment 1 Segment 2

mlzl=l=l= [ Transformer GPT
ODOEEE Wi =
% E E E E . i kjl'ransf%rmer |
S, aftend to left context  [292] [ [ Sa | | S [ | 54 | [EOS
LSB‘? Loy S, s, Segmlent 1
[ [ Transformer BART
S :
| MASS
S, ‘ I

S, attend to S, tokens
Sa attend to left context

sos| [ s, | [E0s]| s, |[E0s]

Self-attention Masks  Segment1  Segment 2

https://arxiv.org/pdf/1905.03197.pdf



Replace or Not?

Efficiently Learning an Encoder that Classifies
Token Replacements Accurately (ELECTRA)

ELECTRA
NO NO YES NO NO

1 1 1 1 1
i Predicting yes/not
is easier than

reconstruction.
‘ position is used.

the chef ate the meal




NO

Small BERT

the

NO

chef

YES

ate

ate

mask

NO

the

NO

|

meal

Note: This is
not GAN.



GLUE 5core
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Source of image: https://arxiv.org/abs/2003.10555



Sentence Level

Representation for
whole sequence
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Model ‘

Representation for each token
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~
You shall know a sentence

: Next Sentence
by the company it keeps?

] @ rrsssssssssEEssEEEEEEEEns
Quick Thought I Consecutive? Yes >ﬂ
t

ot 1 I N

Wi W, Ws Wy Ws Wg Wy




In the original BERT, .....
I —»D—» Yes/No ‘

[

[CLS] w;  w, [SEP] w; w,; Ws

NSP: Next sentence prediction Robustly optimized BERT

approach (RoBERTa)
[Liu, et al., arXiv’'19]

SOP: Sentence order prediction .
Used in ALBERT

structBERT (Alice) [Want, et al., ICLR’20]



T5 — CO M pa rl SON [Raffel, et al., arXiv'19]

* Transfer Text-to-Text Transformer (T5)

 Colossal Clean Crawled Corpus (C4)

Objective

Inputs Targets

Prefix language modeling
BERT-style

Deshuffling

I.i.d. noise, mask tokens
I.i.d. noise, replace spans
[.i.d. noise, drop tokens
Random spans

Thank you for inviting

me to vour party last weel .

Thank vou <M> <M> me to vour partv apple week .

party me for your to . |

Thank you <M> <M> me t
Thank vou <X> me to vo
Thank yvou me to your p
Thank vou <X> to <¥> we

{original text)

High-level
approaches

Language
modeling )

L.

.

BERT-style

L A
.

Deshuffling

L "

Corruption

strategies
. |

Mask

— S
.

Replace
spans

e

Drop

| ——

Corruption
rate

10%

A
—eee

15%

Corrupted
span length

10




Kn Ow|edge This is another story ......

* Enhanced Language RepresentatioN with
Informative Entities (ERNIE)




Audio BERT
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