One slide for this course

Text-to-Speech (TTS) Synthesis

Model

Model

Model

Model

Model

class

class
Outline

- TTS before End-to-end
- Tacotron: End-to-end TTS
- Beyond Tacotron
- Controllable TTS
VODER (1939)

Source of video: https://www.youtube.com/watch?v=0rAyrmm7vv0

https://en.wikipedia.org/wiki/Voder
IBM computer (1960s)

• In 1961, John Larry Kelly Jr. using an IBM computer to synthesize speech at Bell lab.

Source of video and audio: https://youtu.be/UGsfwhb4-bQ
https://www.vintagecomputermusic.com/mp3/s2t9_Computer_Speech_Demonstration.mp3
Concatenative Approach

speeches from a large database

Source of image:
Parametric Approach

HMM/DNN-based Speech Synthesis System (HTS)

Source of image: http://hts.sp.nitech.ac.jp/?Tutorial
All the components are deep learning based.

Deep Voice

[Arik, et al., ICML’17]

Deep Voice 3 is end-to-end.

[Ping, et al., ICLR’18]
Outline

1. TTS before End-to-end
2. Tacotron: End-to-end TTS
3. Beyond Tacotron
4. Controllable TTS
Tacotron

[Wang, et al., INTERSPEECH’17]
[Shen, et al., ICASSP’18]

TACOTRON: TOWARDS END-TO-END SPEECH SYNTHESIS

Yuxuan Wang*, RJ Skerry-Ryan*, Daisy Stanton, Yonghui Wu, Ron J. Weiss†, Navdeep Jaitly,
Zongheng Yang, Ying Xiao*, Zhifeng Chen, Samy Bengio†, Quoc Le, Yannis Agiomyrgiannakis,
Rob Clark, Rif A. Saurous*

Google, Inc.
{yxwang,rjryan,rif}@google.com

*These authors really like tacos.
†These authors would prefer sushi.
Before Tacotron ...

• Tacotron:
 • Input: character
 • Output: (linear) spectrogram

• First Step Towards End-to-end Parametric TTS Synthesis
 [Wang, et al., INTERSPEECH’16]
 • Input: phoneme
 • Output: acoustic features for STRAIGHT (vocoder)

• Char2wav
 [Sotelo, et al., ICLR workshop’17]
 • Input: character
 • Output: acoustic features for SampleRNN (vocoder)
Tacotron

Encoder

Input embeddings

CBHG

Pre-net

Attention

Attention is applied to all decoder output

Decoder

Post-processing

CBHG

Vocoder

Hello!
Encoder = Grapheme-to-phoneme?

- **Pre-net**
 - CBHG
 - Conv1D layers
 - Highway layers
 - Bidirectional GRU
 - Conv1D projections
 - Max-pool along time
 - Conv1D bank + stacking

- **Input embeddings**: hello!

(v2)
Attention \quad = Modeling Duration ?

- The output audio and input text must be monotonic aligned.
Using teacher forcing, but dropout acts like schedule sampling

Mel-spectrogram → Audio Synthesis

Decoder

Generating \(r \) frames each time

\(r = 1 \) in v2

Attention

dropout

Pre-net

zero vector
Using teacher forcing, but dropout acts like schedule sampling.
Post processing

Mel/Linear-spectrogram

Two loses

Mel-spectrogram

Non-causal

CBHG

generated by RNN-based decoder

Vocoder:
Griffin-Lim in v1
Wavnet in v2
How good is Tacotron?

<table>
<thead>
<tr>
<th>System</th>
<th>MOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parametric</td>
<td>3.492 ± 0.096</td>
</tr>
<tr>
<td>Tacotron (Griffin-Lim)</td>
<td>4.001 ± 0.087</td>
</tr>
<tr>
<td>Concatenative</td>
<td>4.166 ± 0.091</td>
</tr>
<tr>
<td>WaveNet (Linguistic)</td>
<td>4.341 ± 0.051</td>
</tr>
<tr>
<td>Ground truth</td>
<td>4.582 ± 0.053</td>
</tr>
<tr>
<td>Tacotron 2 (this paper)</td>
<td>4.526 ± 0.066</td>
</tr>
</tbody>
</table>

Version 1
[Wang, et al., INTERSPEECH’17]

Version 2
[Shen, et al., ICASSP’18]
How good is Tacotron?

<table>
<thead>
<tr>
<th>System</th>
<th>MOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tacotron 2 (Linear + G-L)</td>
<td>3.944 ± 0.091</td>
</tr>
<tr>
<td>Tacotron 2 (Linear + WaveNet)</td>
<td>4.510 ± 0.054</td>
</tr>
<tr>
<td>Tacotron 2 (Mel + WaveNet)</td>
<td>4.526 ± 0.066</td>
</tr>
</tbody>
</table>

WaveNet is much better than Griffin-Lim

<table>
<thead>
<tr>
<th>Training</th>
<th>Synthesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predicted</td>
<td>Predicted</td>
</tr>
<tr>
<td>Predicted</td>
<td>4.526 ± 0.066</td>
</tr>
<tr>
<td>Ground truth</td>
<td>4.362 ± 0.066</td>
</tr>
</tbody>
</table>

WaveNet needs to be trained
Tip at Inference Phase

• You need dropout!

At inference time!

RNN

RNN

RNN

Pre-net

Pre-net

Pre-net

Attention

dropout

with dropout

without dropout

感謝杜濤同學提供實驗結果
用 Tacotron 做閩南語語音合成

中文 ➔ Translation? ➔ 台羅拼音

https://i3thuan5.github.io/tai5-uan5_gian5-gi2_kang1-ku7/index.html

感謝張凱為同學提供實驗結果

台羅拼音 ➔ Tacotron ➔

Source of training data: https://suisiann-dataset.ithuan.tw/

台灣媠聲2.0
Outline

TTS before End-to-end

Tacotron: End-to-end TTS

Beyond Tacotron

Controllable TTS
The raters considered ground truth is better than Tacotron 2 because …

“… occasional mispronunciation by our system is the primary reason …”

(Mispronunciation)

Mispronunciation

• Using a lexicon to transform word to phoneme, and using phoneme as Tacotron input
 • But lots of OOV words ...

“What is nCoV”

not in lexicon???

Input of Tacotron

• Character and phoneme hybrid input [Ping, et al., ICLR’18]

If the pronunciation of machine is incorrect, one can add the word into the lexicon to fix the problem.
More information for Encoder

• Syntactic information
 [Guo, et al., INTERSPEECH’19]

[Figure 1: An example of syntactically parsed tree]

一日，小龍女對楊過說：
「我也想過過過兒過過的生活」

Source of example:
https://youtu.be/kptTHjBi_ak

• BERT embedding as input
 [Hayashi, et al., INTERSPEECH’19]
Attention

• **Guided Attention** [Tachibana, et al., ICASSP’18]

Penalizing the non-diagonal attention matrix during training
Attention

• Monotonic Attention
 [Raffel, et al., ICML’17]

• Location-aware attention
 (Have been mentioned when we talked about ASR)
More Attention ...
More ...

Attention matrix

Only attend in a fixed window

(constraint at inference)

Constraint attention by positional encoding

[Ping, et al., ICLR’18]
Fast Speech

[Ren, et al., NeurIPS’19]

How to train this model?

Duration Informed Attention Network (DurIAN) [Yu, et al, arXiv’19]
Fast Speech

[Ren, et al., NeurIPS’19]

During the **training** phase:

Using ground truth (alignment from another model?)

Duration Informed Attention Network (DurIAN) [Yu, et al, arXiv’19]
Fast Speech

In 50 sentences:

<table>
<thead>
<tr>
<th>Method</th>
<th>Repeats</th>
<th>Skips</th>
<th>Error Sentences</th>
<th>Error Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tacotron 2</td>
<td>4</td>
<td>11</td>
<td>12</td>
<td>24%</td>
</tr>
<tr>
<td>Transformer TTS</td>
<td>7</td>
<td>15</td>
<td>17</td>
<td>34%</td>
</tr>
<tr>
<td>FastSpeech</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0%</td>
</tr>
</tbody>
</table>

zero two seven nine eight F three forty zero zero zero zero zero zero six four two eight zero one eight
c five eight zero three three nine a zero bf eight FALSE zero zero zero bba3add2 - c229 - 4cdb -
Calendar agent failed with error code 0x80070005 while saving appointment.
Exit process - break ld - Load module - output ud - Unload module - ignore ser - System error -
ignore ibp - Initial breakpoint -
h t t p colon slash slash teams slash sites slash T A G slash default dot aspx As always , any
feedback , comments ,
two thousand and five h t t p colon slash slash news dot com dot com slash i slash n e slash f d slash two zero zero three slash f d
Dual Learning: ASR & TTS

ASR & TTS form a cycle.

Speech Chain
[Tjandra et al., ASRU 2017]
Dual Learning: TTS v.s. ASR

- Given pretrained TTS and ASR system

![Diagram showing the flow of speech and text between TTS and ASR systems.](Diagram.png)
Dual Learning: TTS v.s. ASR

• Experiments

1600 utterance-sentence pairs
7200 unpaired utterances and sentences

Table 2: Experiment result for multi-speaker test set.

<table>
<thead>
<tr>
<th>Data</th>
<th>Hyperparameters</th>
<th>ASR</th>
<th>TTS</th>
<th>mce</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>α</td>
<td>β</td>
<td>gen. mode</td>
<td>CER (%)</td>
</tr>
<tr>
<td>Paired (80 utt/spk)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>26.47</td>
</tr>
<tr>
<td>+ Unpaired (remaining)</td>
<td>0.25</td>
<td>1</td>
<td>greedy</td>
<td>23.03</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>1</td>
<td>greedy</td>
<td>20.91</td>
</tr>
<tr>
<td></td>
<td>0.25</td>
<td>1</td>
<td>beam 5</td>
<td>22.55</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>1</td>
<td>beam 5</td>
<td>19.99</td>
</tr>
</tbody>
</table>

Mel: mel-spectrogram
Raw: raw waveform

[Tjandra et al., ASRU 2017]
Outline

TTS before End-to-end

Tacotron: End-to-end TTS

Beyond Tacotron

Controllable TTS
Can we control these factors?

Control by input text

Who is speaking

What is being said

How is it said

Speech
Controllable TTS

• 誰在說？
 • Synthesize speech for a specific person (voice cloning)
 • Lack of high quality single speaker data to train a speech synthesis system

• 怎麼說？
 • Intonation (語調), stress (重音), rhythm (韻律) ...
 • Prosody (抑揚頓挫)

How to describe prosody?

Definition. Prosody is the variation in speech signals that remains after accounting for variation due to phonetics, speaker identity, and channel effects (i.e. the recording environment).

[Skerry-Ryan, et al., ICML’18]
Controllable TTS

Controllable TTS

Audio to be converted (provide content)

Reference audio ("say it like this")

VC Model

Reference audio ("say it like this")

Voice Conversion (VC)
Controllable TTS

Training

- Input: Text
- Output: Reference Audio

Inference

- Input: Text
- Output: Generated Audio

TTS Model

Reference audio

I love you

(with the style of “I love you”)
Controllable TTS

Training

- **Ignore text**
- **Minimize reconstruction error**

Inference

- **I love you (Reference audio)**

TTS Model

- **hello**
- **I love you**

- **L1 copy**
Speaker Embedding

[jia, et al., NeurIPS’18]

Training

Pre-trained network (fix)

Feature Extractor

Minimize reconstruction error

TTS Model

speaker embedding
GST-Tacotron

GST = global style tokens
[Wang, et al., ICML’18]
GST-Tacotron

output only one vector

Reference audio

Feature Extractor

vector set
(learned)

attention
weight

A

B

C

D

0.2

0.1

0.3

0.4

Style Tokens

Reference audio

Encoder
• What does the tokens effect?
 • One token corresponds to a lower pitch voice
 • One token for a decreasing pitch
 • One token for a faster speaking rate
 • ……

Two-stage Training

Training

2nd stage training

[Liu, et al., SLT’18]
Two-stage Training

minimize recognition error

TTS

ASR

attention consistency

reference audio

[Liu, et al., SLT’18]
Concluding Remarks

- TTS before End-to-end
- Tacotron: End-to-end TTS
- Beyond Tacotron
- Controllable TTS
Reference

• [Shen, et al., ICASSP’18] Jonathan Shen, Ruoming Pang, Ron J. Weiss, Mike Schuster, Navdeep Jaitly, Zongheng Yang, Zhifeng Chen, Yu Zhang, Yuxuan Wang, RJ Skerry-Ryan, Rif A. Saurous, Yannis Agiomyrgiannakis, Yonghui Wu, Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions, ICASSP, 2018

Reference

• [Zhang, et al., arXiv’19] Liqiang Zhang, Chengzhu Yu, Heng Lu, Chao Weng, Yusong Wu, Xiang Xie, Zijin Li, Dong Yu, Learning Singing From Speech, arXiv, 2019

• [Guo, et al., INTERSPEECH’19] Haohan Guo, Frank K. Soong, Lei He, Lei Xie, Exploiting Syntactic Features in a Parsed Tree to Improve End-to-End TTS, INTERSPEECH, 2019

• [Skerry-Ryan, et al., ICML’18] RJ Skerry-Ryan, Eric Battenberg, Ying Xiao, Yuxuan Wang, Daisy Stanton, Joel Shor, Ron J. Weiss, Rob Clark, Rif A. Saurous, Towards End-to-End Prosody Transfer for Expressive Speech Synthesis with Tacotron, ICML, 2018
Reference

• [Ren, et al., NeurIPS’19] Yi Ren, Yangjun Ruan, Xu Tan, Tao Qin, Sheng Zhao, Zhou Zhao, Tie-Yan Liu, FastSpeech: Fast, Robust and Controllable Text to Speech, NeurIPS, 2019

• [Raffel, et al., ICML’17] Colin Raffel, Minh-Thang Luong, Peter J. Liu, Ron J. Weiss, Douglas Eck, Online and Linear-Time Attention by Enforcing Monotonic Alignments, ICML, 2017
Reference

• [Tachibana, et al., ICASSP’18] Hideyuki Tachibana, Katsuya Uenoyama, Shunsuke Aihara, Efficiently Trainable Text-to-Speech System Based on Deep Convolutional Networks with Guided Attention, ICASSP, 2018

• [Liu, et al., SLT’18] Da-Rong Liu, Chi-Yu Yang, Szu-Lin Wu, Hung-Yi Lee, "Improving Unsupervised Style Transfer in End-to-End Speech Synthesis with End-to-End Speech Recognition", SLT, 2018