
Orthogonal Matrices &
Symmetric Matrices

Hung-yi Lee



Announcement

•如果三個作業都滿分請忽略以下訊息 ……

• We have a bonus homework

•三個作業都滿分就是 300

• Bonus homework全對可以加 50

•最多可以加到 300

•助教第二堂課會來講解



Outline

Orthogonal Matrices 
• Reference: Chapter 7.5

Symmetric Matrices
• Reference: Chapter 7.6



Norm-preserving

• A linear operator is norm-preserving if

𝑇 𝑢 = 𝑢 For all u

Example: linear operator T on R2 that rotates a vector by .
 Is T norm-preserving?

Example: linear operator T is refection
 Is T norm-preserving?

𝐴 =
1 0
0 −1



Norm-preserving

• A linear operator is norm-preserving if

𝑇 𝑢 = 𝑢 For all u

Example: linear operator U on Rn that has an eigenvalue   ±1.
 U is not norm-preserving, since for the corresponding

eigenvector v, U(v) = v = ·v  v.

Example: linear operator T is projection
 Is T norm-preserving?

𝐴 =
1 0
0 0



Orthogonal Matrix

• An nxn matrix Q is called an orthogonal matrix (or 
simply orthogonal) if the columns of Q form an 
orthonormal basis for Rn

• Orthogonal operator: standard matrix is an 
orthogonal matrix.

is an orthogonal matrix.

orthogonal

unit unit



Norm-preserving

• Necessary conditions:

Norm-
preserving

?

???

qj = Qej = ej

Linear operator Q is norm-preserving 

qj = 1

qi and qj are orthogonal

qi + qj
2 = Qei + Qej

2 = Q(ei + ej)
2 = ei + ej

2 = 2 = qi
2 + qj

2

Orthogonal 
Matrix

畢式定理



Orthogonal Matrix

• Q is an orthogonal matrix

• 𝑄𝑄𝑇 = 𝐼𝑛
• 𝑄 is invertible, and 𝑄−1 = 𝑄𝑇

• 𝑄𝑢 ∙ 𝑄𝑣 = 𝑢 ∙ 𝑣 for any u and v

• 𝑄𝑢 = 𝑢 for any u

Norm-
preserving

Orthogonal 
Matrix

Q preserves dot projects

Q preserves norms

Those properties are 
used to check orthogonal 
matrix.

Simple inverse



Orthogonal Matrix

• Q is orthogonal if and only if 𝑄𝑇 is orthogonal.

• Let P and Q be n x n orthogonal matrices

• 𝑑𝑒𝑡𝑄 = ±1

• 𝑃𝑄 is an orthogonal matrix

• 𝑄−1 is an orthogonal matrix

• 𝑄𝑇 is an orthogonal matrix

Proof (a) QQT = In  1 = det(In) = det(QQT) = det(Q)det(QT)

= det(Q)2  det(Q) = ±1.

(b) (PQ)T = QTPT = Q1P1 = (PQ)1.

Proof

Rows and columns

Check by 𝑄−1 = 𝑄𝑇

Check by 𝑃𝑄 −1 = 𝑃𝑄 𝑇



Orthogonal Operator

• Applying the properties of orthogonal matrices on 
orthogonal operators

• T is an orthogonal operator

• 𝑇 𝑢 ∙ 𝑇 𝑣 = 𝑢 ∙ 𝑣 for all 𝑢 and 𝑣

• 𝑇 𝑢 = 𝑢 for all 𝑢

• T and U are orthogonal operators, then 𝑇𝑈 and 
𝑇−1 are orthogonal operators.

Preserves dot product

Preserves norms



Example: Find an orthogonal operator T on R3 such that

Norm-preserving

𝑣 =
 1 2
0

 1 2

𝑇
 1 2
0

 1 2

=
0
1
0

𝐴𝑣 = 𝑒2 𝑣 = 𝐴−1𝑒2
Find 𝐴−1 first

Because 𝐴−1 = 𝐴𝑇

𝐴−1 =
∗  1 2 ∗
∗ 0 ∗

∗  1 2 ∗

Also orthogonal 

 1 2
0

 −1 2

0
1
0

𝐴−1 =
 1 2  1 2 0
0 0 1

 −1 2  1 2 0

𝐴 = 𝐴−1 𝑇 =
 1 2 0  −1 2

 1 2 0  1 2
0 1 0



Conclusion

• Orthogonal Matrix (Operator)

• Columns and rows are orthogonal unit vectors

• Preserving norms, dot products

• Its inverse is equal its transpose



Outline

Orthogonal Matrices 
• Reference: Chapter 7.5

Symmetric Matrices
• Reference: Chapter 7.6



Eigenvalues are real

• The eigenvalues for symmetric matrices are always 
real. 

Consider 2 x 2 symmetric matrices

The symmetric matrices always have real eigenvalues.

實係數多項式虛根共軛

How about more 
general cases?



Orthogonal Eigenvectors

𝑑𝑒𝑡 𝐴 − 𝑡𝐼𝑛

𝜆1 𝜆2
𝑑𝑘

= 𝑡 − 𝜆1
𝑚1 𝑡 − 𝜆2

𝑚2 … 𝑡 − 𝜆𝑘
𝑚𝑘 ……

Factorization

Eigenvalue:

Eigenspace:

(dimension)

𝑑1 𝑑2

𝜆𝑘
≤ 𝑚1 ≤ 𝑚2 ≤ 𝑚𝑘

……

……

Independent orthogonal

A is symmetric



Orthogonal Eigenvectors

• A is symmetric. 

• If 𝑢 and 𝑣 are eigenvectors corresponding to 
eigenvalues 𝜆 and 𝜇 (𝜆 ≠ 𝜇)

𝑢 and 𝑣 are orthogonal.



Diagonalization

A is 
symmetric

: simple
P is an orthogonal matrix

P𝑇A𝑃 = D

?P560

D is a diagonal matrix

P𝑇A𝑃 = D P−1A𝑃 = D

A = 𝑃DP−1 Diagonalization

P consists of eigenvectors , D are eigenvalues

A = 𝑃DP𝑇

A = 𝑃DP𝑇



Diagonalization

• Example

 B1 = {[ 1  2 ]T/5} and B2 = {[ 2  1 ]T/5}

2 2

2 5
A

 
  

 

1 2 6 01
 and .

2 1 0 15
P D

   
    

   

A has eigenvalues 1 = 6 and 2 = 1,

A = 𝑃DP−1

with corresponding eigenspaces E1 = Span{[ 1  2 ]T} and
E2 = Span{[ 2  1 ]T} 

A = 𝑃DP𝑇

P𝑇A𝑃 = D

orthogonal



𝑆𝑝𝑎𝑛
 −1 2

 1 2
0

,

 1 6

 1 6

 −2 6

1 = 2

2 = 8

Eigenspace: 𝑆𝑝𝑎𝑛
−1
1
0

,
−1
0
1

Eigenspace: 𝑆𝑝𝑎𝑛
1
1
1

P is an orthogonal 
matrix

A = 𝑃DP−1 A = 𝑃DP𝑇

Gram-
Schmidt 

normali
zation

𝑆𝑝𝑎𝑛

 1 3

 1 3

 1 3normalization

𝑃 =
 −1 2

 1 2
0

 1 6

 1 6

 −2 6

 1 3

 1 3

 1 3

Example of Diagonalization of Symmetric Matrix

𝐷 =
2 0 0
0 2 0
0 0 8

Not orthogonal

Intendent



Diagonalization

A is 
symmetric

P𝑇A𝑃 = D

Finding an orthonormal basis consisting of eigenvectors of A
(1) Compute all distinct eigenvalues 1, 2,, k of A.
(2) Determine the corresponding eigenspaces E1, E2,, Ek.
(3) Get an orthonormal basis B i for each Ei.
(4) B = B 1 B 2 B k is an orthonormal basis for A. 

P consists of eigenvectors , D are eigenvalues

P is an orthogonal matrix

A = 𝑃DP𝑇



Diagonalization of 
Symmetric Matrix

𝑣 𝑇 𝑣

𝑣 B 𝑇 𝑣 B

𝑇 B

𝐵𝐵−1

Properly 
selected

Properly 
selected

simple

𝐴 = 𝑃𝐷𝑃−1

𝑃−1 𝑃

𝐷

Eigenvectors form 
the good system

A is symmetric

Orthonormal  
basis

𝑢 = 𝑐1𝑣1 + 𝑐2𝑣2 +⋯+ 𝑐𝑘𝑣𝑘

𝑢 ∙ 𝑣1 𝑢 ∙ 𝑣2 𝑢 ∙ 𝑣𝑘



Spectral Decomposition

= [ 1Pe1 2Pe2  nPen ]PT = [ 1u1 2u2  nun ]PT

Let P = [ u1 u2  un ] and D = diag[ 1 2  n ].

Orthonormal basis

= 𝜆1P1 + 𝜆2P2 +⋯+ 𝜆𝑛P𝑛

𝑃1 𝑃2 𝑃𝑛

𝑃𝑖 are symmetric

A = PDPT 

= P[ 1e1 2e2  nen ]PT



Spectral Decomposition

A = PDPT Let P = [ u1 u2  un ] and D = diag[ 1 2  n ].

= 𝜆1P1 + 𝜆2P2 +⋯+ 𝜆𝑛P𝑛

Orthonormal basis



Spectral Decomposition

• Example

𝐴 =
3 −4
−4 −3

Find spectrum decomposition.

Eigenvalues 1 = 5 and 2 = 5.

An orthonormal basis consisting of 
eigenvectors of A is 

𝐵 =
 −2 5

 1 5
,

 1 5

 2 5

𝑢1 𝑢2 𝐴 = 𝜆1𝑃1 + 𝜆2𝑃2

𝑃1 = 𝑢1𝑢1
𝑇 =

4

5

−2

5
−2

5

1

5

𝑃2 = 𝑢2𝑢2
𝑇 =

1

5

2

5
2

5

4

5



Conclusion

• Any symmetric matrix 

• has only real eigenvalues 

• has orthogonal eigenvectors.

• is always diagonalizable 

A is symmetric

P is an orthogonal matrix

P𝑇A𝑃 = D A = 𝑃DP𝑇



Appendix



Diagonalization

• By induction on n.

• n = 1 is obvious.

• Assume it holds for n  1, and consider A 
R(n+1)(n+1).

• A has an eigenvector b1  Rn+1 corresponding to a 

real eigenvalue , so  an orthonormal basis B = 

{b1, b2, , bn+1} 

• by the Extension Theorem and Gram-

Schmidt Process.
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Example: reflection operator T about a line L passing the origin. 

b1 is a unit vector along L .
b2 is a unit vector perpendicular to L .
P = [ b1 b2 ] is an orthogonal matrix.
B = {b1, b2} is an orthonormal basis of R2.
[T]B = diag[1 1] is an orthogonal matrix.

Let the standard matrix of T be Q.  Then [T]B = P1QP, or Q = 

P[T]B P1  Q is an orthogonal matrix.  T is an orthogonal operator.

Question: Is T an orthogonal operator?

(An easier) Question: 
Is T orthogonal if L is the x-axis?


