Singular Value Decomposition Hung-yi Lee

Outline

- Diagonalization can only apply on some square matrices.
- Singular value decomposition (SVD) can apply on any matrix.
- Reference: Chapter 7.7

SVD

- Any m x n matrix A

Orthonormal Set

Independent
$m \times n$

Diagonal
n x n

Orthonormal Set 1
Independent
(We can exchange some rows and columns to achieve that)
$\left[\begin{array}{cccc|cccc}\sigma_{1} & 0 & \ldots & 0 & 0 & 0 & \ldots & 0 \\ 0 & \sigma_{2} & \ldots & 0 & 0 & 0 & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & & \sigma_{k} & 0 & 0 & \ldots & 0 \\ \hline 0 & 0 & \ldots & 0 & 0 & 0 & \ldots & 0 \\ \vdots & \vdots & & \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & \ldots & 0 & 0 & 0 & \ldots & 0\end{array}\right]$

- Any m x n matrix A

If A is a $\mathrm{m} x \mathrm{n}$ matrix, and B is a $\mathrm{n} x \mathrm{k}$ matrix.

$$
\operatorname{Rank}(A B) \leq \min (\operatorname{Rank}(A), \operatorname{Rank}(B))
$$

If B is a matrix of rank n , then $\operatorname{Rank}(A B)=\operatorname{Rank}(A)$
If A is a matrix of rank n , then $\operatorname{Rank}(A B)=\operatorname{Rank}(B)$

SVD

- Any m x n matrix A
$m \times n$

Independent Diagonal

$$
\begin{gathered}
\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{k}>0 \\
\sigma_{k} \text { is deleted }
\end{gathered}\left[\begin{array}{ccc}
\sigma_{1} & 0 & \cdots \\
0 & \sigma_{2} & \cdots \\
\vdots & \vdots & \\
& & \sigma_{k-1}
\end{array}\right.
$$

SVD

- Any m x n matrix A

Low rank approximation using the singular value decomposition

https://www.youtube.com/watch?v=pAiVb7gWUrM
https://www.youtube.com/watch?v=fKVRSbFKnEw

It Had To Be U

The Singular Value Decomposition (SVD)

Thank You for Your Attention

