What can we know from RREF? Hung-yi Lee

Reference

- Textbook: Chapter 1.6, 1.7

Outline

- RREF v.s. Linear Combination
- RREF v.s. Independent
- RREF v.s. Rank
- RREF v.s. Span

RREF v.s. Linear Combination

Column Correspondence Theorem

RREF

$$
A=\left[\begin{array}{lll}
\boldsymbol{a}_{\mathbf{1}} & \cdots & \boldsymbol{a}_{\boldsymbol{n}}
\end{array}\right] \square R=\left[\begin{array}{lll}
\boldsymbol{r}_{\mathbf{1}} & \cdots & \boldsymbol{r}_{\boldsymbol{n}}
\end{array}\right]
$$

If $\boldsymbol{a}_{\boldsymbol{j}}$ is a linear combination of other columns of A

$$
a_{5}=-a_{1}+a_{4}
$$

$\boldsymbol{a}_{\boldsymbol{j}}$ is a linear combination of the corresponding columns of A with the same coefficients

$$
a_{3}=3 a_{1}-2 a_{2}
$$

$\boldsymbol{r}_{\boldsymbol{j}}$ is a linear combination of the corresponding columns of R with the same coefficients

$$
r_{5}=-r_{1}+r_{4}
$$

If $\boldsymbol{r}_{\boldsymbol{j}}$ is a linear combination of other columns of R

$$
r_{3}=3 r_{1}-2 r_{2}
$$

Column Correspondence Theorem - Example

$$
\left.A=\begin{array}{cccccc}
\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3} & \mathbf{a}_{4} & \mathbf{a}_{5} & \mathbf{a}_{6} \\
{\left[\begin{array}{cccc}
1 & 2 & -1 & 2
\end{array} 1\right.} & 2 \\
-1 & -2 & 1 & 2 & 3 & 6 \\
2 & 4 & -3 & 2 & 0 & 3 \\
-3 & -6 & 2 & 0 & 3 & 9
\end{array}\right] \quad R=\left[\begin{array}{cccccc}
\mathbf{r}_{1} & \mathbf{r}_{2} & \mathbf{r}_{3} & \mathbf{r}_{4} & \mathbf{r}_{5} & \mathbf{r}_{6} \\
1 & 2 & 0 & 0 & -1 & -5 \\
0 & 0 & 1 & 0 & 0 & -3 \\
0 & 0 & 0 & 1 & 1 & 2 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Column Correspondence Theorem－Intuitive Idea

$$
\left.\begin{array}{cc}
a_{1}+a_{2}=a_{3} \\
A=\left[\begin{array}{ccc}
6 & 9 & 15 \\
8 & 0 & 8 \\
9 & 2 & 11
\end{array}\right]
\end{array} \begin{array}{c}
\\
b_{1}+b_{2}=b_{3}
\end{array}, \begin{array}{ccc}
9 & 2 & 11 \\
8 & 0 & 8 \\
6 & 9 & 15
\end{array}\right], ~ D=\left[\begin{array}{ccc}
6 & 9 & 15 \\
8 & 0 & 8 \\
3 & -7 & -4
\end{array}\right]
$$

Column Correspondence Theorem（Column 間的承諾）：

就算 row elementary operation 讓 column 變的不同，他們之間的關係永遠不變。
Column Correspondence Theorem - Reason

- Before we start:

Coefficient Matrix:
RREF

RREF
Augmented Matrix: $\left[\begin{array}{ll}A & b\end{array}\right]$
$\left[\begin{array}{ll}R & b^{\prime}\end{array}\right]$

$$
\frac{\left[\begin{array}{ccccc|c}
\hline 1 & 2 & -1 & 2 & 1 \\
2 \\
-1 & -2 & 1 & 2 & 3 & 6 \\
2 & 4 & -3 & 2 & 0 & 3 \\
-3 & -6 & 2 & 0 & 3 \\
9
\end{array}\right]}{\left[\begin{array}{ll}
A & b
\end{array}\right]}\left[\begin{array}{ccccc}
{\left[\begin{array}{ccccc}
1 & 2 & 0 & 0 & -1 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]} & -5 \\
-3 \\
2 \\
0
\end{array}\right]
$$

Column Correspondence Theorem - Reason

- The RREF of matrix A is R
$A x=b$ and $R x=b$ have the same solution set?
- The RREF of augmented matrix $\left[\begin{array}{ll}A & b\end{array}\right]$ is $\left[\begin{array}{ll}R & b^{\prime}\end{array}\right]$

$$
\begin{aligned}
& A x=b \text { and } R x=b^{\prime} \text { have } \\
& \text { the same solution set }
\end{aligned}
$$

- The RREF of matrix A is R
$A x=0$ and $R x=0$ have the same solution set

Column Correspondence Theorem - Reason

- The RREF of matrix A is $\mathrm{R}, A x=0$ and $R x=0$ have the same solution set

$$
\begin{aligned}
& A=\left[\begin{array}{ccccc}
\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3} & \mathbf{a}_{4} & \mathbf{a}_{5} \\
\mathbf{a}_{6} \\
1 & 2 & -1 & 2 & 1 \\
-1 & -2 & 1 & 2 & 3 \\
\hline \\
2 & 4 & -3 & 2 & 0 \\
-3 & -6 & 2 & 0 & 3
\end{array}\right] \quad . \quad R=\left[\begin{array}{cccccc}
\mathbf{r}_{1} & \mathbf{r}_{2} & \mathbf{r}_{3} & \mathbf{r}_{4} & \mathbf{r}_{5} & \mathbf{r}_{6} \\
1 & 2 & 0 & 0 & -1 & -5 \\
0 & 0 & 1 & 0 & 0 & -3 \\
0 & 0 & 0 & 1 & 1 & 2 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Column Correspondence Theorem - Reason

- The RREF of matrix A is $\mathrm{R}, A x=0$ and $R x=0$ have the same solution set

$$
A=\left[\begin{array}{cccccc}
\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3} & \mathbf{a}_{4} & \mathbf{a}_{5} & \mathbf{a}_{6} \\
1 & 2 & -1 & 2 & 1 & 2 \\
-1 & -2 & 1 & 2 & 3 & 6 \\
2 & 4 & -3 & 2 & 0 & 3 \\
-3 & -6 & 2 & 0 & 3 & 9
\end{array}\right] \quad R=\left[\begin{array}{cccccc}
\mathbf{r}_{1} & \mathbf{r}_{2} & \mathbf{r}_{3} & \mathbf{r}_{4} & \mathbf{r}_{5} & \mathbf{r}_{6} \\
1 & 2 & 0 & 0 & -1 & -5 \\
0 & 0 & 1 & 0 & 0 & -3 \\
0 & 0 & 0 & 1 & 1 & 2 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

How about Rows?

- Are there row correspondence theorem? NO

$$
\begin{aligned}
& A=\left[\begin{array}{cccccc}
1 & 2 & -1 & 2 & 1 & 2 \\
-1 & -2 & 1 & 2 & 3 & 6 \\
2 & 4 & -3 & 2 & 0 & 3 \\
-3 & -6 & 2 & 0 & 3 & 9
\end{array}\right] \quad R=\left[\begin{array}{cccccc}
1 & 2 & 0 & 0 & -1 & -5 \\
0 & 0 & 1 & 0 & 0 & -3 \\
0 & 0 & 0 & 1 & 1 & 2 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \\
& A=\left[\begin{array}{l}
\overline{-a_{1}^{T}} \overline{a_{2}^{T} \overline{a_{3}^{T}} \overline{a_{4}^{T}-}} \\
\bar{\square} \\
\hline
\end{array}\right. \\
& R=\left[\begin{array}{l}
\left.\overline{-r_{1}^{T} \overline{r_{2}^{T}} \overline{r_{3}^{T}} \overline{r_{4}^{T}-}}\right] \\
\bar{\square} \\
\hline
\end{array}\right] \\
& \begin{array}{r}
\operatorname{Span}\left\{\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \boldsymbol{a}_{3}, \boldsymbol{a}_{4}\right\}=\operatorname{Span} \\
\text { Are they the same? }
\end{array}
\end{aligned}
$$

Span of Columns

$$
\begin{aligned}
& A=\left[\begin{array}{cccccc}
1 & 2 & -1 & 2 & 1 & 2 \\
-1 & -2 & 1 & 2 & 3 & 6 \\
2 & 4 & -3 & 2 & 0 & 3 \\
-3 & -6 & 2 & 0 & 3 & 9
\end{array}\right] \quad R=\left[\begin{array}{cccccc}
1 & 2 & 0 & 0 & -1 & -5 \\
0 & 0 & 1 & 0 & 0 & -3 \\
0 & 0 & 0 & 1 & 1 & 2 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \\
& A=\left[\begin{array}{lll}
\boldsymbol{a}_{1} & \cdots & \boldsymbol{a}_{6}
\end{array}\right] \\
& R=\left[\begin{array}{lll}
\boldsymbol{r}_{\mathbf{1}} & \cdots & \boldsymbol{r}_{\mathbf{6}}
\end{array}\right] \\
& \operatorname{Span}\left\{\boldsymbol{a}_{\mathbf{1}}, \cdots, \boldsymbol{a}_{\mathbf{6}}\right\} \\
& \operatorname{Span}\left\{\boldsymbol{r}_{\mathbf{1}}, \cdots, \boldsymbol{r}_{\mathbf{6}}\right\}
\end{aligned}
$$

Are they the same?
The elementary row operations change the span of columns.

NOTE

- Original Matrix v.s. RREF
- Columns:
- The relations between the columns are the same.
- The span of the columns are different.
- Rows:
- The relations between the rows are changed.
- The span of the rows are the same.

RREF v.s. Independent

Column Correspondence Theorem

Leading entries

linear
independent

The pivot columns are linear independent.

Column Correspondence Theorem

Leading entries

The non-pivot columns are the linear combination of the previous pivot columns.

Independent

All columns are independent

Every column is a pivot column

Every column in $\operatorname{RREF}(A)$ is standard vector.

3X3
 $\left[\begin{array}{lll}* & * & * \\ * & * & * \\ * & * & *\end{array}\right]$
 Columns are linear independent

Independent

All columns are independent

Every column is a pivot column

Every column in $\operatorname{RREF}(\mathrm{A})$ is standard vector.

Columns are linear independent

Independent

Independent

因為太胖了，自己走不動

More than 3 vectors in R^{3} must be dependent．
More than \underline{m} vectors in R^{m} must be dependent．

Independent - Intuition

RREF v.s. Rank

Rank

Number of Pivot
 Column
 II
 Number of Non-zero rows

Properties of Rank from RREF

Maximum number of Independent Columns

II

Number of Pivot
 Column

Rank $A \leq$ Number of columns

Rank $A \leq \operatorname{Min}$ (Number of columns, Number of rows)

Number of Non-zero rows Rank $A \leq$ Number of rows

Properties of Rank from RREF

- Given a mxn matrix A:
- Rank $A \leq \min (m, n)$

> Matrix A is full rank if Rank $A=\min (m, n)$

- Because "the columns of A are independent" is equivalent to "rank $A=n$ "
- If $m<n$, the columns of A is dependent.

$$
\begin{gathered}
{\left[\begin{array}{llll}
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right]} \\
3 \times 4 \\
\text { Rank A } \leq 3
\end{gathered}
$$

$$
\begin{aligned}
& \left\{\left[\begin{array}{l}
* \\
* \\
* \\
*
\end{array}\right],\left[\begin{array}{c}
* \\
* \\
*
\end{array}\right],\left[\begin{array}{c}
* \\
* \\
*
\end{array}\right],\left[\begin{array}{c}
* \\
* \\
* \\
*
\end{array}\right]\right\} \tan \\
& \text { atrix set has } 4 \text { vectors }
\end{aligned}
$$ belonging to R^{3} is dependent

- In \underline{R}^{m}, you cannot find more than \underline{m} vectors that are independent.

Basic, Free Variables v.s. Rank

$$
A x=b
$$

$$
3 \text { useful }
$$

$$
x_{1}+2 x_{2}-x_{3}+2 x_{4}+5 x_{5}=2
$$

$$
-x_{1}-2 x_{2}+x_{3}+2 x_{4}+3 x_{5}=6
$$

$$
\begin{aligned}
x_{1}+2 x_{2} & -x_{5} & =-5 \\
x_{3} & & =-3
\end{aligned}
$$

equations

$$
2 x_{1}+4 x_{2}-3 x_{3}+2 x_{4}=3
$$

$$
-3 x_{1}-6 x_{2}+2 x_{3} \quad+3 x_{5}=9
$$

rank $=$ non-zero row $=3$ basic variables

$$
x_{1}=-5-2 x_{2}+x_{5}
$$

nullity

$$
x_{3}=-3
$$

$$
x_{4}=2-x_{5}
$$

Rank

RREF v.s. Span

Consistent or not

- Given $\underline{A x}=\underline{b}$, if the reduced row echelon form of [A b] is

$$
\left[\begin{array}{cccc}
1 & 0 & 3 & 1 \\
0 & 1 & 2 & -2 \\
0 & 0 & 0 & Q \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Consistent
b is in the span of the columns of A

- Given $\mathrm{Ax}=\mathrm{b}$, if the reduced row echelon form of [A b] is

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
1 & 0 & 3 & 0 \\
0 & 1 & 2 & 0 \\
\hline 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]} \\
& 0 \cdot x_{1}+0 \cdot x_{2}+0 \cdot x_{3}=1
\end{aligned}
$$

inconsistent
b is NOT in the span of the columns of A

Consistent or not

$A x=b$ is inconsistent (no solution)

The RREF of [$\mathrm{A} b]$ is

Only the last column is non-zero

$$
\left[\begin{array}{ccccc|c}
* & * & * & * & * & * \\
* & * & * & * & * & * \\
* & * & * & * & * & * \\
\hline 0 & 0 & 0 & 0 & 0 & d \\
\hline 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] d \neq 0
$$

$\operatorname{Rank} \mathrm{A} \neq \operatorname{rank}[\mathrm{A} b]$
Need to know b

Consistent or not

$A x=b$ is consistent for every b

RREF of [A b] cannot have a row whose only non-zero entry is at the last column

RREF of A cannot have zero row

Rank $A=$ no. of rows

Consistent or not $m \times n$ v $n^{n} y^{n} n=4$
egg. $\underset{A}{\text { e. }}\left[\begin{array}{llll}* & * & * & * \\ * & * & * & * \\ * & * & * & *\end{array}\right]$
3 independent columns

Rank $A=$ no. of rows

$$
m \times n=m
$$

Every \underline{b} is in the span of the columns of
$\mathrm{A}=\left[\begin{array}{lll}a_{1} & \cdots & a_{n}\end{array}\right]$
Every \underline{b} belongs to $\operatorname{Span}\left\{a_{1}, \cdots, a_{n}\right\}$
Span $\left\{\overleftarrow{a}_{1}, R^{m} \cdots\right.$

$$
\left., a_{n}\right\}=R^{m}
$$

m independent vectors can span R^{m}
More than m vectors in R^{m} must be dependent.
m independent vectors
can span R^{m}

More than m vectors in R^{m} must be dependent.

- Consider R ${ }^{2}$

Does $\mathcal{S}=\{\underbrace{\left\{\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]}_{\text {independé体 }},\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ -2 \\ 1\end{array}\right]\}$ generate \mathcal{R}^{3} ?

Full Rank: Rank $=n \&$ Rank $=m$

- The size of A is $m \times n$

$A \mathbf{x}=\mathbf{b}$ has at most one solution

The columns of A are linearlyindependent.

All columns are pivot columns.

Full Rank: Rank = n \& Rank = m

- The size of A is $m x n$

> Rank $\underline{A}=\underline{m}$
> A is square or 矮胖

Every row of R contains a pivot position (leading entry).
$\mathbf{A} \mathbf{x}=\mathbf{b}$ always have solution (at least one solution) for every \mathbf{b} in \boldsymbol{R}^{m}.

The columns of A generate \mathfrak{R}^{m}.

