Meta Learning & More

講解助教:B05901111 陳建成

授課教授: 李宏毅 教授

Outline

- What is meta learning?
- Why meta learning?
- How and what to do meta learning?
 - Categories
 - Datasets
 - Models
- Related machine learning topics

What is **meta learning**?

What is **meta learning**?

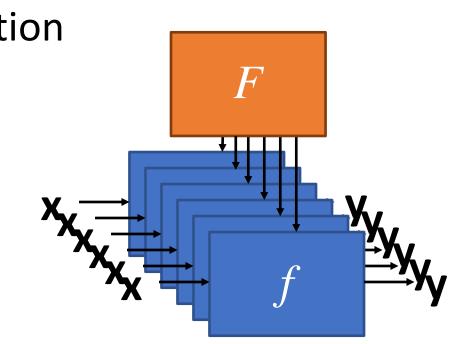
meme

meme about meme

meta-meme \rightarrow

Meta learning - Definition

• Learn to learn



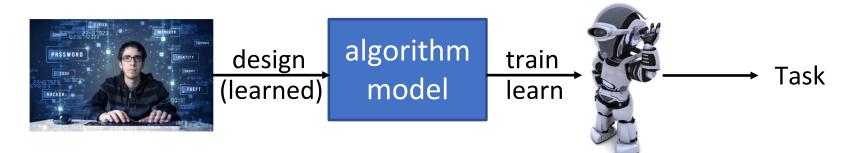
learning

meta learning

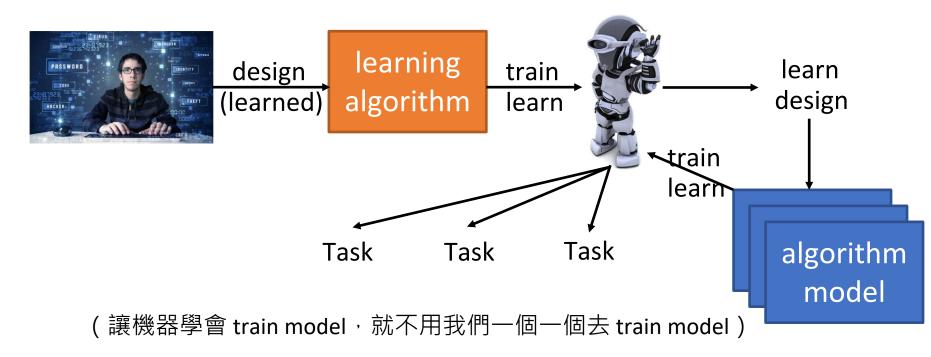
• Usually considered to achieve Few-shot learning (but not limited to)

Why do we need meta learning?

1. Too many tasks to learn, to learn more efficiently \rightarrow learning to learn

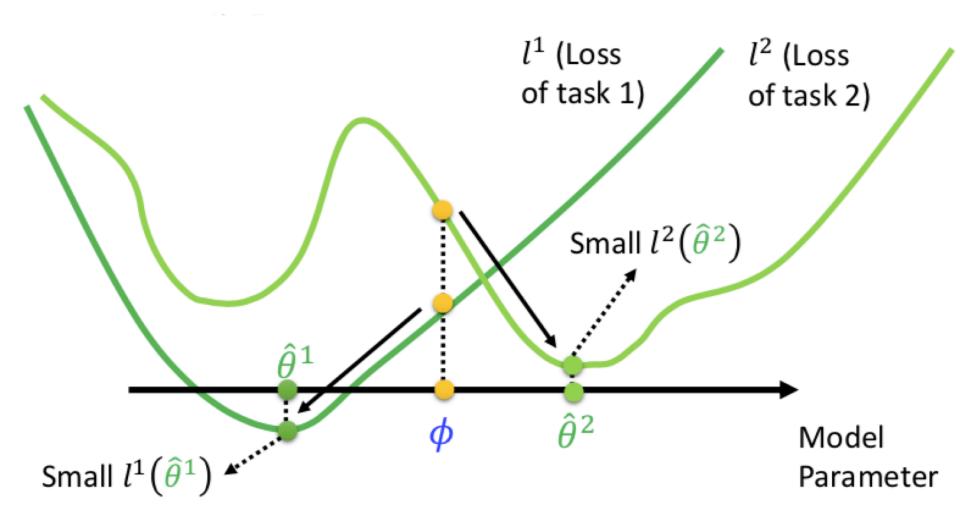


1. Too many tasks to learn, to learn more efficiently \rightarrow learning to learn



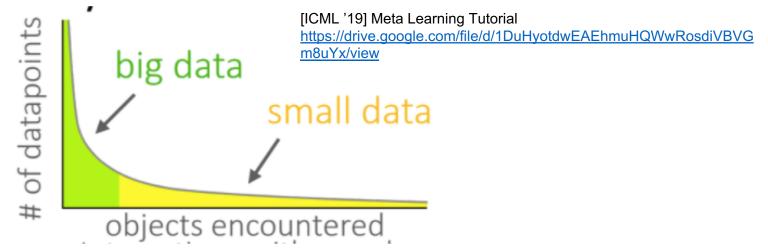
- 1. Too many tasks to learn, to learn more efficiently \rightarrow learning to learn
 - Faster learning methods (adaptation)
 - Better hyper-parameters / learning algorithms
 - Related to:
 - transfer learning
 - domain adaptation
 - multi-task learning
 - life-long learning
 - •••

 \rightarrow "general" AI



- 1. Too many tasks to learn, to learn more efficiently \rightarrow learning to learn
 - Faster learning methods (adaptation)
 - Better hyper-parameters / learning algorithms
 - Related to:
 - transfer learning
 - domain adaptation
 - multi-task learning
 - life-long learning
 - …
- Too little data, to fit more accurately → few-shot learning (Better learner, fit more quickly)
 - Traditional supervised may not work

 \rightarrow "general" AI



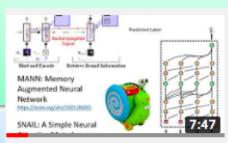
- Too little data, to fit more accurately → few-shot learning (Better learner, fit more quickly)
 - Traditional supervised may not work

(即使資料不多,或許也 train 得起來)

How to do meta learning?

觀看次數:4234次・1年前

Metric based



Meta Learning - Train+Test as RNN 觀看次數: 3909次 • 1 年前 MAML Reptile MetaLSTM

Siamese Network Matching Network Prototypical Network Relation Network

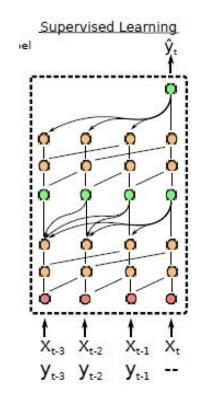
MANN SNAIL

(Interesting Names of) Models / Techniques

mammal

66

- MAML (Model Agnostic Meta-Learning)
- Reptile (???)
- SNAIL (Simple Neural Attentive Learner)



(Interesting *Names* of) Models / Techniques

- 鴨嘴獸(卵生哺乳類)
 PLATIPUS (Probabilistic LATent model for Incorporating Priors and Uncertainty in few-Shot learning)
- Ⅰ 略馬 LLAMA (Lightweight Laplace Approximation for Meta-Adaptation)
- ALPaCA (Adaptive Learning for Probabilistic Connectionist Architectures) 羊駝
- CAML (Conditional class-Aware Meta Learning) 駱駝

(Interesting *Names* of) Models / Techniques

- LEO (Latent Embedding Optimization) (拉丁文)獅子;獅子座
- LEOPARD 豹
 - (Learning to generate softmax parameters for diverse classification)
- CAVIA (Context Adaptation via meta-learning) (新拉丁文) 豚鼠(屬)、天竺鼠 (not CAML)
- R2-D2 (Ridge Regression Differentiable Discriminator) 星際大戰機器人

What can we "meta learn"?

- 1. Model Parameters (suitable for Few-shot framework)
 - Initializations
 - Embeddings / Representations / Metrics
 - Optimizers
 - Reinforcement learning (Policies / other settings)
- 2. Hyperparameters (e.g. AutoML)

(beyond the scope of today, but can be viewed as kind of meta learning)

- Hyperparameters search ((training) settings) https://www.youtube.com/watch?v=kyX29rUntjM
- Network architectures → Network architecture search (NAS) (related to: evolutional strategy, genetic algorithm...)
- 3. Others
 - Algorithm itself (literally, not a network)

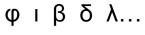
..... (More in DLHLP

What can we meta learn on? \rightarrow Datasets

omni = all, glot = language

- 1. Omniglot

 Launched by linguist Simon Ager in 1998
 - As a dataset by Lake in 2015, Science
 - Concept learning



Greek

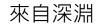
Hebrew

Bengali

Futurama

L	P	সা	ন	চ	-ज्य	欬
3	ক	য়	অ	υ	٩Ľ	ব
ন	খ	শ্ব	ঝ	ใ	ই	रा
র্শ	ন্থ	୍	ভ	স	ণ	ম
E	6	5_	শ্ব	ঘ	उै	থ
ਿ	51	Ţ	ল	৾ড়	È	শ
ঠ	ξē	8	व			

How about ... "omniglot" of anime? ©



https://twitter.com/tka24/status/888380568043274240?lang=ar

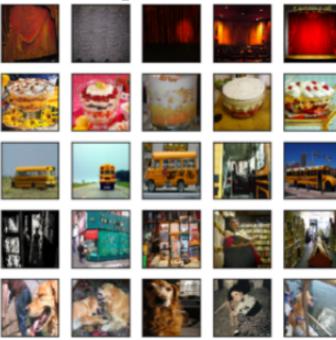
為美好的世界獻上祝福!(このすば)

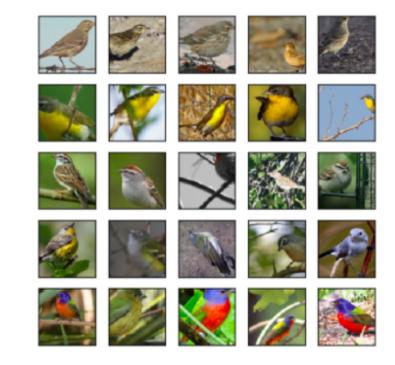
https://forum.gamer.com.tw/Co.php?bsn=60076&sn=41514705

https://ani.gamer.com.tw/animeVideo.php?sn=14454

What can we meta learn on? → Datasets 2. miniImageNet 3. CUB (Caltech-UCSD Birds)

• from ImageNet but few-shot

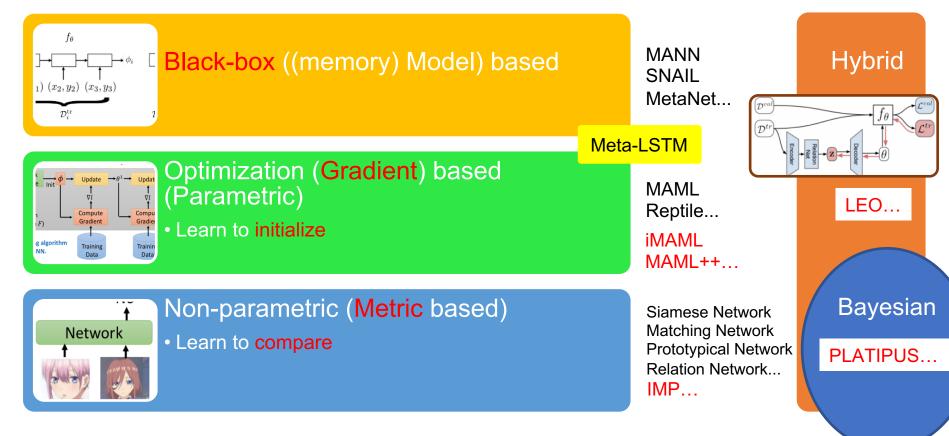




CIFAR-FS, FC100, Fungi...

Categories

(Not unified, but generally...)



Black-box

● 直接用 RNN 架構硬 train 一發!

希望中間的 RNN 去學出 distribution

$$p(\phi_i | \mathcal{D}_i^{\mathrm{tr}}, heta)$$

$$\begin{array}{ccc} \operatorname{rain} - \operatorname{blue} & \phi_i = f_{\theta}(\mathcal{D}_i^{\operatorname{tr}}) \\ & & & & & & \\ f_{\theta} & & & \\ f_{\theta} & & & \\ f_$$

Black-box

直接用 LSTM 硬 train[,] 跟 "viewing as LSTM" 剛好反向操作

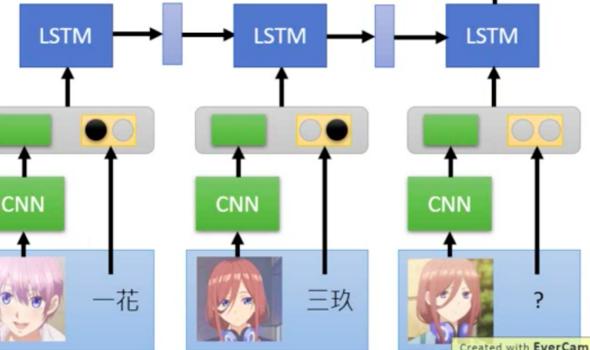
直接 train 就 train 不起來 ➔ 動一些手腳

- 加上 memory (Neural Turing Machine) (LST"M")
- 2. 加上 attention (Transformer)

lstm

General LSTM does not work

MANN: Neural Turing Machine
SNAIL: Using Attention



http://www.camdemy.com

三玖

Optimization / Gradient based

Learn model initialization

- MAML (Model Agnostic Meta Learning) (recap)
- Reptile
- Meta-LSTM (can be also viewed as RNN black-box)

different meta-parameters

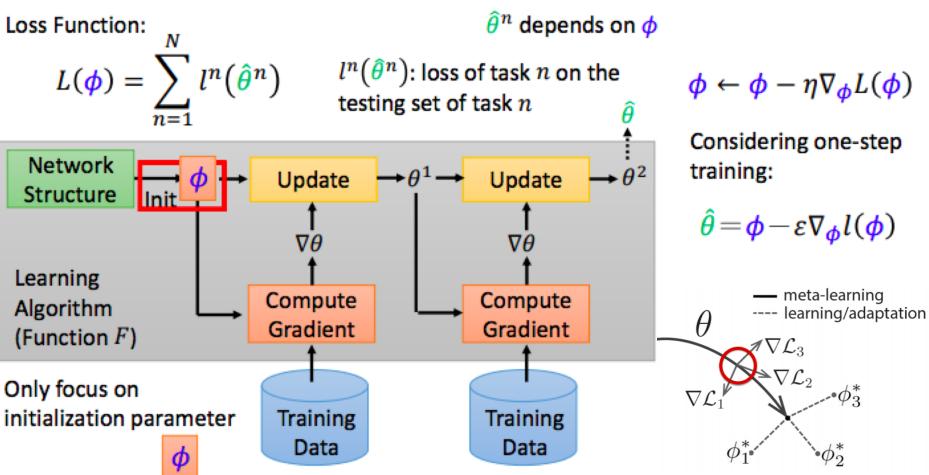
- iMAML
- R2-D2 / LR-D2
- ALPaCA
- MetaOptNet

improvements of MAML

- Meta-SGD
- MAML++
- AlphaMAML
- DEML
- CAVIA

MAML

 $\hat{\theta}^n$: model learned from task n



Problems of MAML

- Learning rate \rightarrow Meta-SGD, MAML++
- Second-order derivatives (instability) → MAML++
- Batch Normalization \rightarrow MAML++

Meta-SGD: Learning to Learn Quickly for Few-Shot Learning

Zhenguo Li Fengwei Zhou Fei Chen Hang Li Huawei Noah's Ark Lab {li.zhenguo, zhou.fengwei, chenfei100, hangli.hl}@huawei.com

HOW TO TRAIN YOUR MAML

Antreas Antoniou University of Edinburgh {a.antoniou}@sms.ed.ac.uk

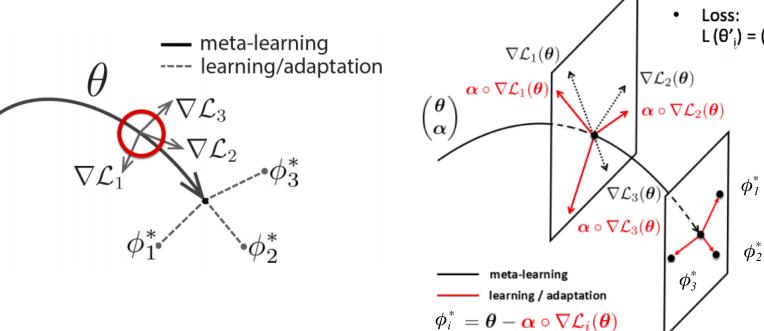
Amos Storkey University of Edinburgh {a.storkey}@ed.ac.uk Harrison Edwards OpenAI, University of Edinburgh {h.l.edwards}@sms.ed.ac.uk

CoRR, arXiv 1707.09835

ICLR '19

Meta-SGD

• "Adaptive learning rate" version of MAML



Outer loop

- Meta params: θ
- Learning rate: β
- Loss: $\Sigma L_{test(T_i)}(\Theta'_i)$

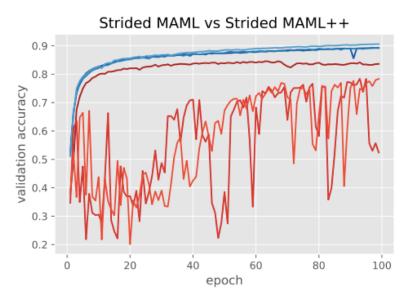
Inner loop

- Task params: φ* (θ' original)
- Learning rate: α (vector)
 - Loss: L (θ'_{i}) = (1/|data|) Σ l(f_{θ} (x), y)

How to train your MAML?

Problems of MAML

- 1. Training Instability
 - Gradient issues
- 2. Second Order Derivative Cost
 - Expensive to compute
 - First-order \rightarrow harmful to performance
- 3. Batch Normalization Statistics
 - No accumulation
 - Shared bias
- 4. Shared (across step and across parameter) inner loop learning rate
 - Not well scaled
- 5. Fixed outer loop learning rate



How to train your MAML?

Solutions proposed

- 1. Training Instability \Rightarrow Multi-Step Loss Optimization (MSL)
 - Gradient issues
- 2. Second Order Derivative Cost \Rightarrow Derivative-Order Annealing (DA)
 - Expensive to compute
 - First-order \rightarrow harmful to performance
- 3. Batch Normalization Statistics
 - No accumulation \Rightarrow Per-Step Batch Normalization Running Statistics
 - Shared bias \Rightarrow Per-Step Batch Normalization Weights & Biases
- Shared (across step and across parameter) inner loop learning rate
 ⇒ Learning Per-Layer Per-Step Learning Rates & Gradient Directions (LSLR)
- 5. Fixed outer loop learning rate
 - \Rightarrow Cosine Annealing of Meta-Optimizer Learning Rate (CA)

Different meta-parameters

- Implicit gradients \rightarrow iMAML
- Closed-form on feature extraction \rightarrow R2-D2

Meta-Learning with Implicit Gradients

Aravind Rajeswaran* University of Washington aravraj@cs.washington.edu

Sham M. Kakade University of Washington sham@cs.washington.edu Chelsea Finn* University of California Berkeley cbfinn@cs.stanford.edu

Sergey Levine University of California Berkeley svlevine@eecs.berkeley.edu META-LEARNING WITH DIFFERENTIABLE CLOSED-FORM SOLVERS

Luca Bertinetto FiveAI & University of Oxford luca@robots.ox.ac.uk

Philip H.S. Torr FiveAI & University of Oxford philip.torr@eng.ox.ac.uk João Henriques University of Oxford joao@robots.ox.ac.uk

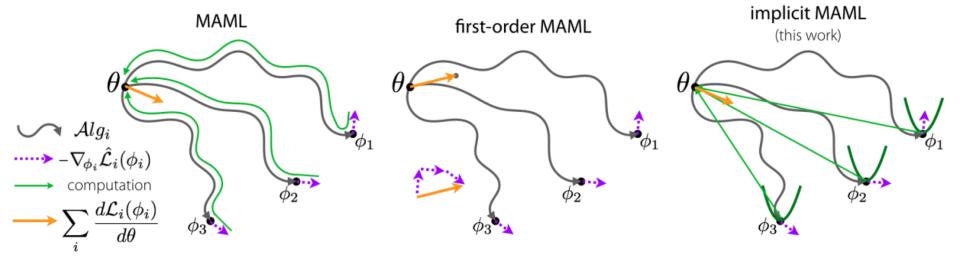
Andrea Vedaldi University of Oxford vedaldi@robots.ox.ac.uk

NIPS '19

ICLR '19

iMAML

$$\overbrace{\boldsymbol{\theta}_{ML}^{*} := \underset{\boldsymbol{\theta} \in \Theta}{\operatorname{argmin}} F(\boldsymbol{\theta})}^{\operatorname{outer-level}}, \text{ where } F(\boldsymbol{\theta}) = \frac{1}{M} \sum_{i=1}^{M} \mathcal{L}\left(\overbrace{\mathcal{A}lg(\boldsymbol{\theta}, \mathcal{D}_{i}^{\operatorname{tr}})}^{\operatorname{inner-level}}, \mathcal{D}_{i}^{\operatorname{test}}\right).$$
$$\phi_{i} \equiv \mathcal{A}lg(\boldsymbol{\theta}, \mathcal{D}_{i}^{\operatorname{tr}}) = \boldsymbol{\theta} - \alpha \nabla_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta}, \mathcal{D}_{i}^{\operatorname{tr}}). \quad \text{(inner-level of MAML)}$$



$$\nabla_{\phi} L(\phi) = \nabla_{\phi} \sum_{n=1}^{N} l^{n} (\hat{\theta}^{n}) = \sum_{n=1}^{N} \underline{\nabla_{\phi} l^{n} (\hat{\theta}^{n})}$$

$$\frac{\partial l(\hat{\theta})}{\partial \phi_i} = \sum_j \frac{\partial l(\hat{\theta})}{\partial \hat{\theta}_j} \frac{\partial \hat{\theta}_j}{\partial \phi_i} \approx \frac{\partial l(\hat{\theta})}{\partial \hat{\theta}_j}$$

$$\hat{\theta}_j = \phi_j - \varepsilon \frac{\partial l(\phi)}{\partial \phi_j}$$

$$\frac{\partial l(\hat{\theta})}{\partial \hat{\theta}_{j}} \frac{\partial \hat{\theta}_{j}}{\partial \phi_{i}} \approx \frac{\partial l(\hat{\theta})}{\partial \hat{\theta}_{i}}$$

≈ 0

≈ 1

$$\phi_j = \phi_j - \varepsilon \frac{\partial l(\phi)}{\partial \phi_j}$$

$$\frac{d\hat{\theta}}{d\phi} =$$

$$\mathcal{T}_{\phi}l(\hat{\theta}) = \begin{bmatrix} \frac{\partial l(\hat{\theta})}{\partial \phi_1} \\ \frac{\partial l(\hat{\theta})}{\partial \phi_2} \\ \vdots \\ \frac{\partial l(\hat{\theta})}{\partial \phi_i} \end{bmatrix}$$

 $\boldsymbol{\phi} \leftarrow \boldsymbol{\phi} - \eta \nabla_{\boldsymbol{\phi}} L(\boldsymbol{\phi})$

 $L(\boldsymbol{\phi}) = \sum_{n=1}^{N} l^n \left(\hat{\boldsymbol{\theta}}^n \right)$

 $\overline{n=1}$

 $\hat{\theta} = \phi - \varepsilon \nabla_{\phi} l(\phi)$

$$\begin{array}{c} i \neq j: \\ \begin{array}{c} & \frac{\partial \hat{\theta}_{j}}{\partial \phi_{i}} = - \\ \phi_{1} \\ \end{array} \\ i = j: \\ \begin{array}{c} i = j: \\ \end{array} \\ \begin{array}{c} \frac{\partial \hat{\theta}_{j}}{\partial \phi_{i}} = 1 \\ \end{array} \end{array}$$

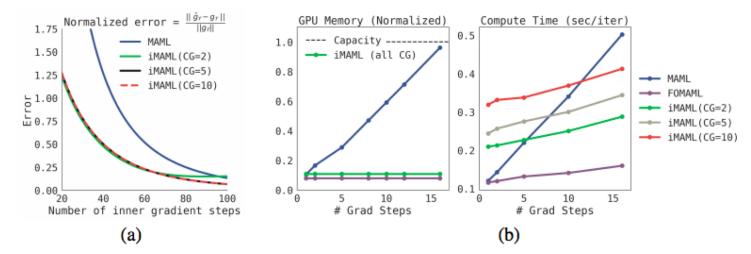
Prof. Hung-Yi Lee's

- Outer loop
 - Meta params: ϕ •
 - Learning rate: n •
 - Loss: $L(\phi) = \Sigma I^n(\Theta^n)$ •
- Inner loop •
 - Task params: θ ٠
 - Learning rate: ϵ ٠
 - Loss: Iⁿ(θⁿ) •

Can we do better? Consider the following...

• 如果要使 meta param. 發揮作用 我們的 ϕ 不應該離 θ 太遠! $\mathcal{A}lg^{\star}(\boldsymbol{\theta}, \mathcal{D}_{i}^{\mathrm{tr}}) = \operatorname*{argmin}_{\boldsymbol{\phi}' \in \Phi} \mathcal{L}(\boldsymbol{\phi}', \mathcal{D}_{i}^{\mathrm{tr}}) + \frac{\lambda}{2} \|\boldsymbol{\phi}' - \boldsymbol{\theta}\|^{2}.$ (This is $\boldsymbol{\phi}$.) **Proximal regularization!** implicit MAML (this work) $d_{\theta}\mathcal{L}_{i}(\mathcal{A}lg_{i}(\theta)) = \frac{d\mathcal{A}lg_{i}(\theta)}{d\theta} \nabla_{\phi}\mathcal{L}_{i}(\phi) \mid_{\phi = \mathcal{A}lg_{i}(\theta)} = \frac{d\mathcal{A}lg_{i}(\theta)}{d\theta} \nabla_{\phi}\mathcal{L}_{i}(\mathcal{A}lg_{i}(\theta))$ $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \eta \; \frac{1}{M} \sum_{i=1}^{M} \frac{d\mathcal{A}lg_{i}^{\star}(\boldsymbol{\theta})}{d\boldsymbol{\theta}} \, \nabla_{\phi} \mathcal{L}_{i}(\mathcal{A}lg_{i}^{\star}(\boldsymbol{\theta})).$ $\frac{d\mathcal{A}lg_i^{\star}(\boldsymbol{\theta})}{d\boldsymbol{\theta}} = \left(\boldsymbol{I} + \frac{1}{\lambda} \nabla_{\boldsymbol{\phi}}^2 \hat{\mathcal{L}}_i(\boldsymbol{\phi}_i)\right)^{-1}.$

How does it perform?

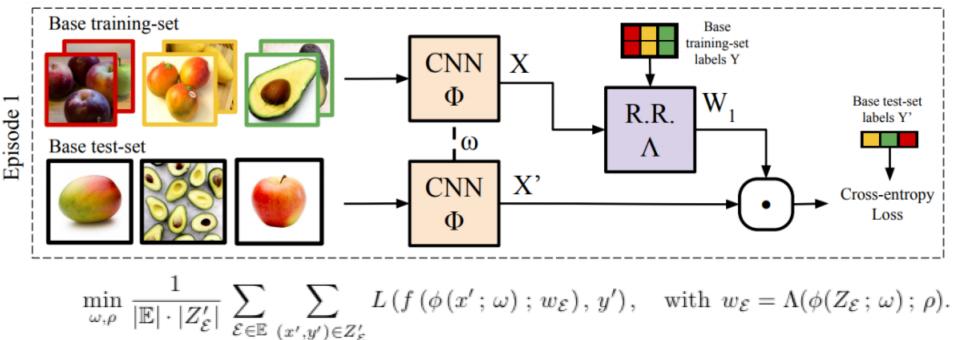


Algorithm	Algorithm Compute Memory Er		Error
MAML (GD + full back-prop)	$\kappa \log \left(rac{D}{\delta} ight)$	$\operatorname{Mem}(abla \hat{\mathcal{L}}_i) \cdot \kappa \log\left(rac{D}{\delta} ight)$	0
MAML (Nesterov's AGD + full back-prop)	$\sqrt{\kappa}\log\left(\frac{D}{\delta}\right)$	$\operatorname{Mem}(abla \hat{\mathcal{L}}_i) \cdot \sqrt{\kappa} \log\left(rac{D}{\delta} ight)$	0
Truncated back-prop [53] (GD)	$\kappa \log \left(rac{D}{\delta} ight)$	$\operatorname{Mem}(abla \hat{\mathcal{L}}_i) \cdot \kappa \log\left(rac{1}{\epsilon} ight)$	ε
Implicit MAML (this work)	$\sqrt{\kappa}\log\left(rac{D}{\delta} ight)$	$\operatorname{Mem}(abla \hat{\mathcal{L}}_i)$	δ

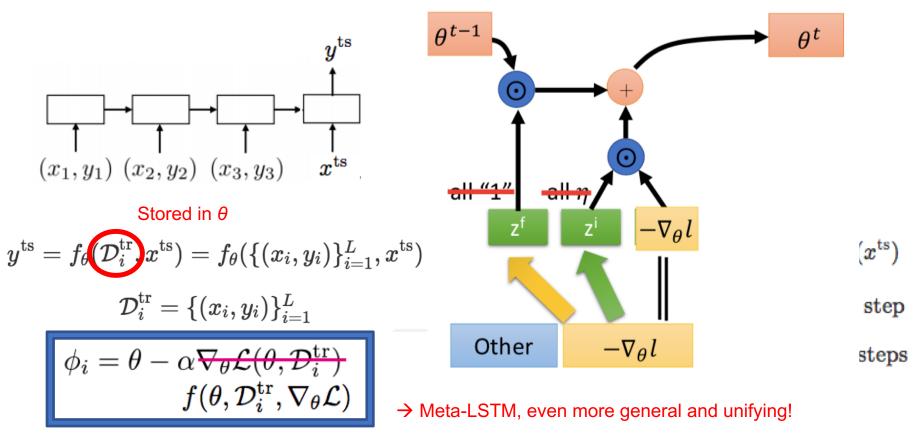
R2-D2: closed form solvers

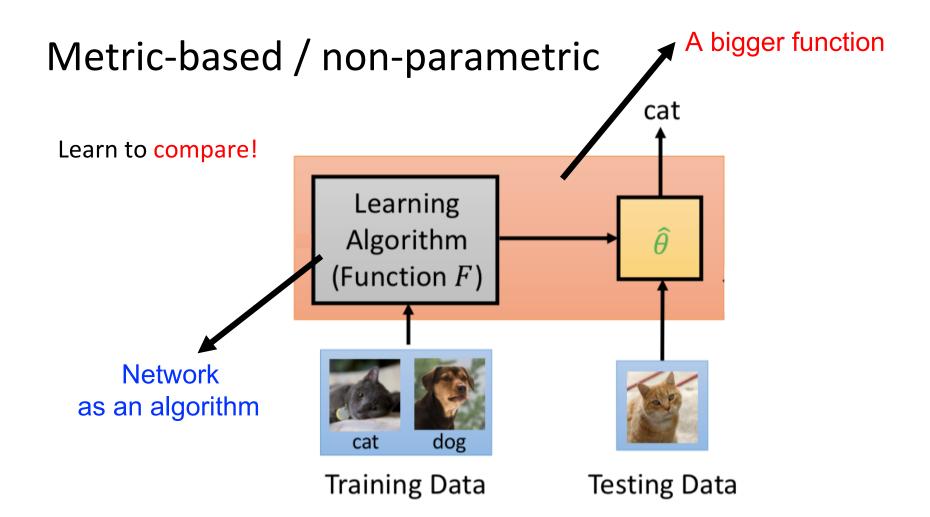
L2 regularization

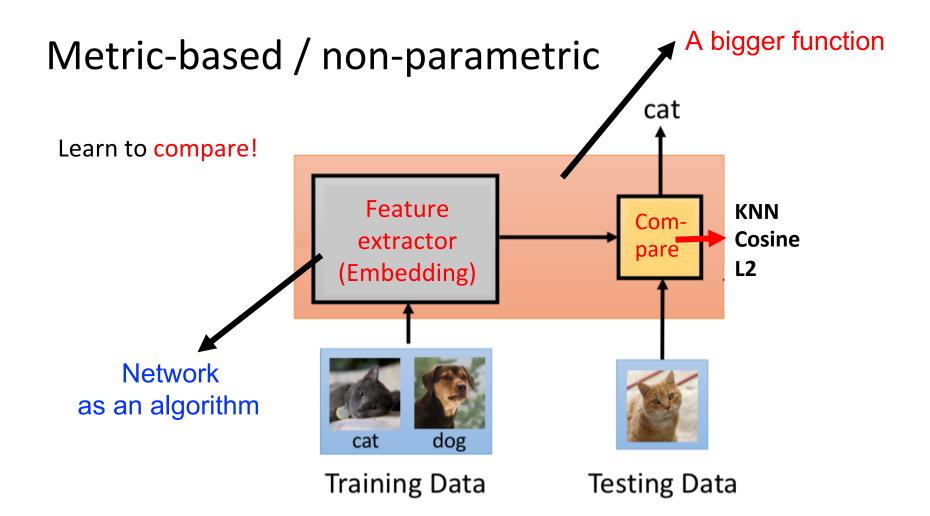
將 inner loop 的 base learners 用 closed form solvers (例如 ridge regression) 取代,只訓練 feature extractors 的參數(當作 meta parameters)

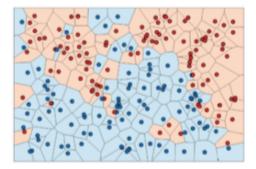


Black-box v.s Gradient based









Learn to compare!

No need to parametrize all the model, just the embedding / representation! Why?

- Few-shot → Just compare! No too complex models needed! (Even compare with something like L2-distances or pixel spaces)
- Too simple? → Learn from training! = learn a better "embedding"!

Learn to compare!

One reason: few-shot!

No need to parametrize all the model, just the embedding / representation!

- Siamese network
- Prototypical network
- Matching network
- Relation network

- IMP
- GNN

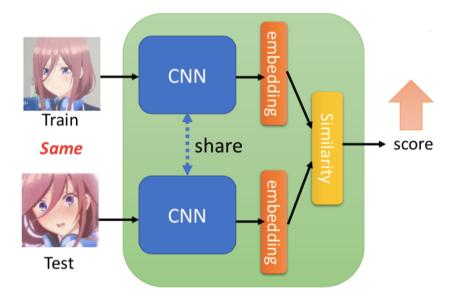
Learn to compare!

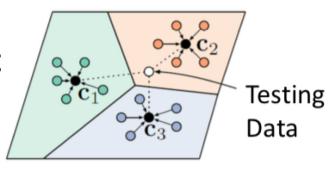
One reason: few-shot!

No need to parametrize all the model, just the embedding / representation!

- Siamese network
- Prototypical network
- Matching network
- Relation network

- IMP
- GNN





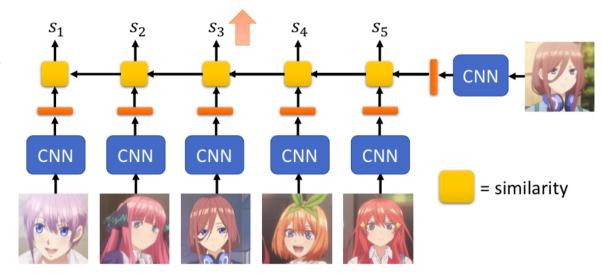
Learn to compare!

One reason: few-shot!

No need to parametrize all the model, just the embedding / representation!

- Siamese network
- Prototypical network
- Matching network
- Relation network

- IMP
- GNN



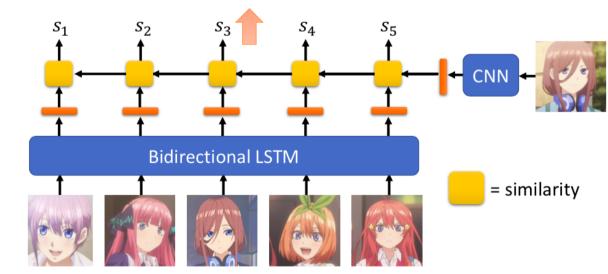
Learn to compare!

One reason: few-shot!

No need to parametrize all the model, just the embedding / representation!

- Siamese network
- Prototypical network
- Matching network
- Relation network

- IMP
- GNN



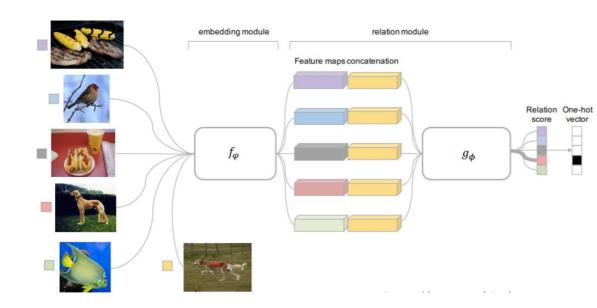
Learn to compare!

One reason: few-shot!

No need to parametrize all the model, just the embedding / representation!

- Siamese network
- Prototypical network
- Matching network
- <u>Relation network</u>

- IMP
- GNN

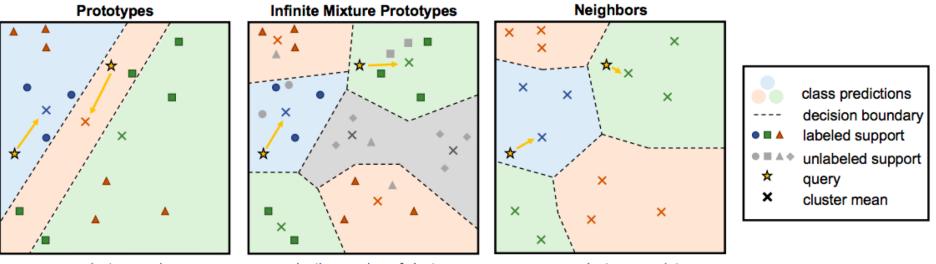


IMP (Infinite Mixture Prototypes)

• Modified from prototypical

https://arxiv.org/pdf/1902.04552.pdf

 The number of mixture determined from data through Bayesian nonparametric methods



one cluster per class

adaptive number of clusters

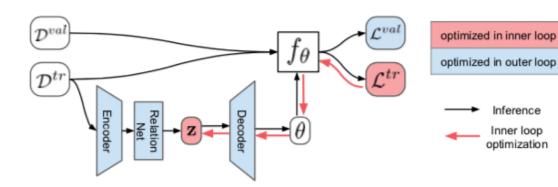
one cluster per point

Problems of metric-based

- When the K in N-way K-shot large \rightarrow difficult to scale
- Limited to classification (only learning to compare)

Hybrid

- CAML
- Proto-MAML
- LEO (Latent Embedding Optimization)



Alg	orithm 1 Latent Embedding Optimization
Req	uire: Training meta-set $S^{tr} \in T$
Req	uire: Learning rates α , η
1:	Randomly initialize ϕ_e, ϕ_r, ϕ_d
2:	Let $\phi = \{\phi_e, \phi_r, \phi_d, \alpha\}$
3:	while not converged do
4:	for number of tasks in batch do
5:	Sample task instance $T_i \sim S^{tr}$
6:	Let $(\mathcal{D}^{tr}, \mathcal{D}^{val}) = \mathcal{T}_i$
7:	Encode \mathcal{D}^{tr} to z using g_{ϕ_e} and g_{ϕ_r}
8:	Decode z to initial params θ_i using g_{ϕ_d}
9:	Initialize $\mathbf{z}' = \mathbf{z}, \theta'_i = \theta_i$
10:	for number of adaptation steps do
11:	Compute training loss $\mathcal{L}_{\mathcal{T}_i}^{tr}(f_{\theta'_i})$
12:	Perform gradient step w.r.t. \mathbf{z}' :
	$\mathbf{z}' \leftarrow \mathbf{z}' - \alpha \nabla_{\mathbf{z}'} \mathcal{L}_{\mathcal{T}_i}^{tr}(f_{\theta_i'})$
13:	Decode \mathbf{z}' to obtain θ'_i using g_{ϕ_d}
14:	end for
15:	Compute validation loss $\mathcal{L}_{\mathcal{T}_i}^{val}(f_{\theta'_i})$
16:	end for
17:	Perform gradient step w.r.t ϕ :
	$\phi \leftarrow \phi - \eta \nabla_{\phi} \sum_{\mathcal{T}_i} \mathcal{L}_{\mathcal{T}_i}^{val}(f_{\theta'_i})$
18:	end while

Optimization based on model + Metric based embedding (RelationNet z)

Bayesian meta-learning

Uncertainty problems

Black-box:

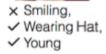
VERSA

Optimization:

- **PLATIPUS** •
- Bayesian MAML (BMAML) ٠
- Probabilistic MAML (PMAML) •

✓ Wearing Hat, × Young

✓ Smiling, ✓ Wearing Hat, Young



What matters with meta learning?

Related techniques in deep machine learning

- Reinforcement learning Meta-RL is a massive active research area!
- GNN & Adversarial attack
 Metric-based, feature extraction
 Attack on GNN by meta learning 😎

- GAN: metaGAN
 <u>https://papers.nips.cc/paper/7504-metagan-an-adversarial-approach-to-few-shot-learning.pdf</u>
- Transfer learning: Meta-Transfer Learning (MTL) <u>http://openaccess.thecvf.com/content_CVPR_2019/papers/Sun_Meta-Transfer_Learning_for_Few-Shot_Learning_CVPR_2019_paper.pdf</u>

Life-long learning, Domain adaption, Multi-task...

Reference

- <u>https://icml.cc/media/Slides/icml/2019/halla(10-09-15)-10-13-00-4340-meta-learning_.pdf</u>
- <u>https://arxiv.org/abs/1810.09502</u>
- <u>https://papers.nips.cc/paper/8306-meta-learning-with-implicit-gradients.pdf</u>
- <u>https://arxiv.org/abs/1807.05960</u>