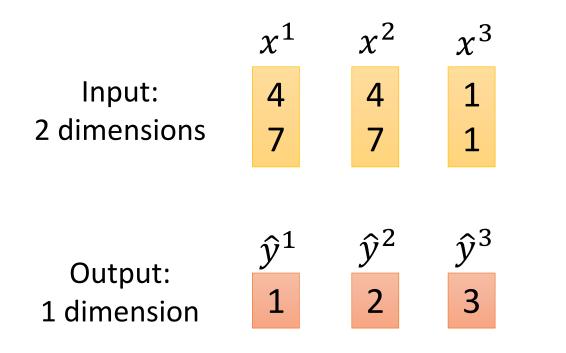
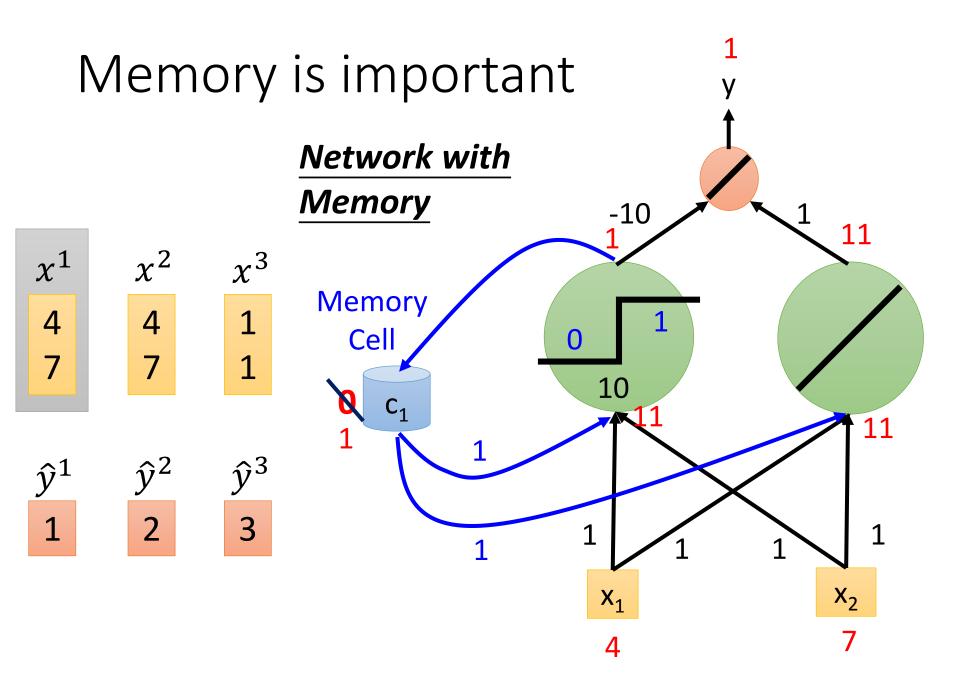
Deep Learning Neural Network with Memory (1) Hung-yi Lee

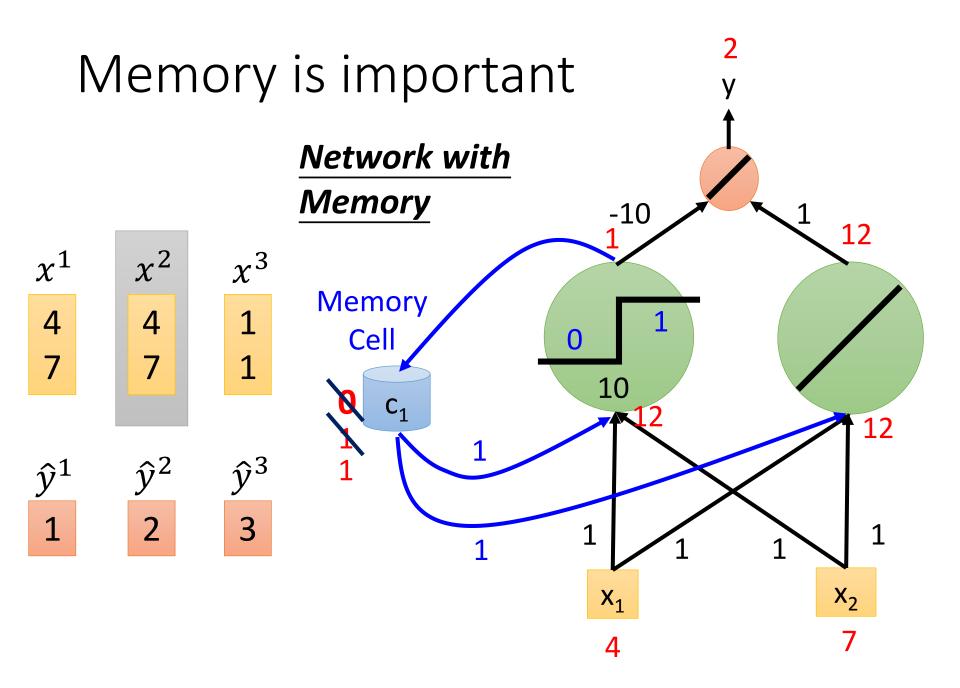
Memory is important

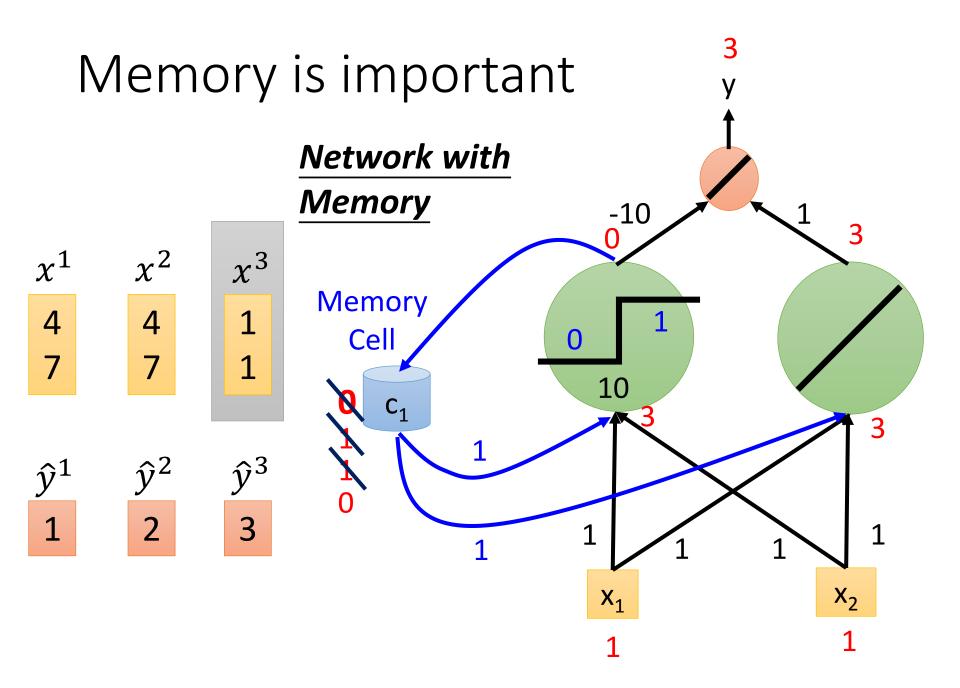


Network needs memory to achieve this

+

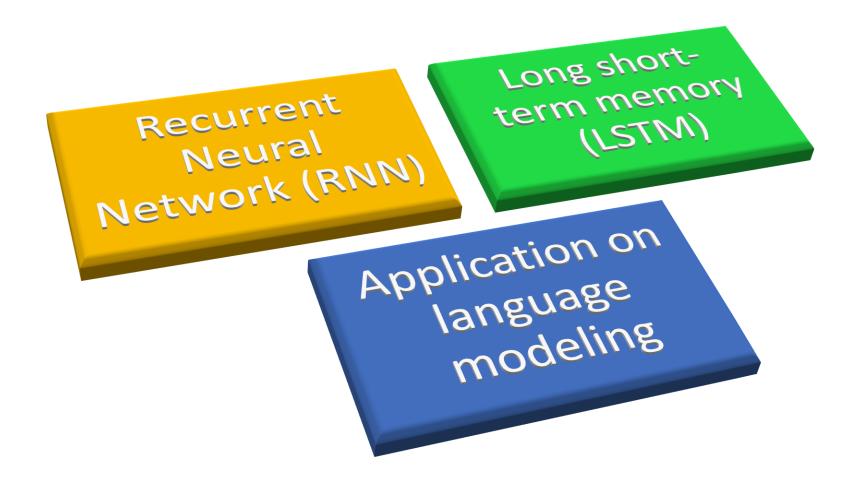


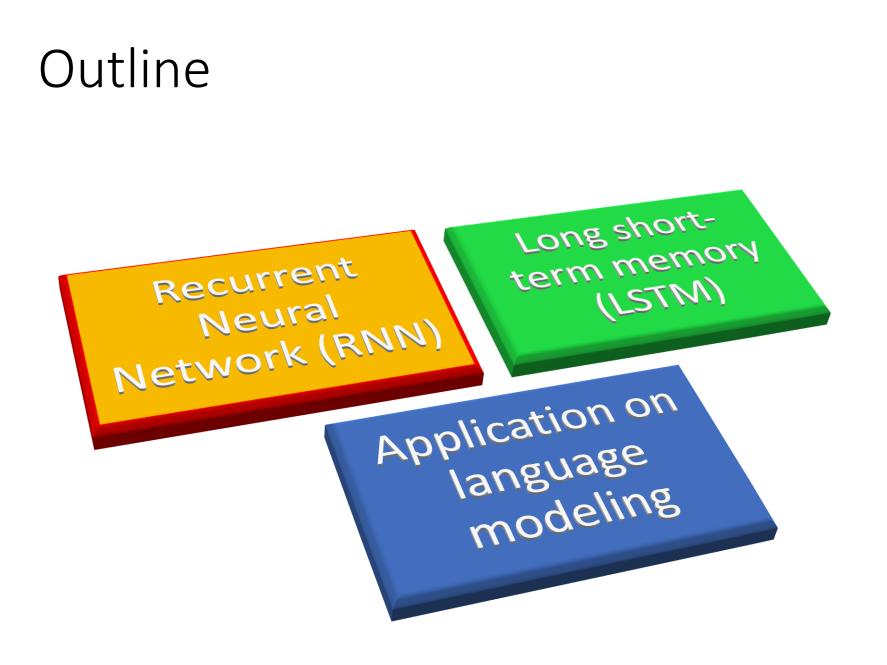


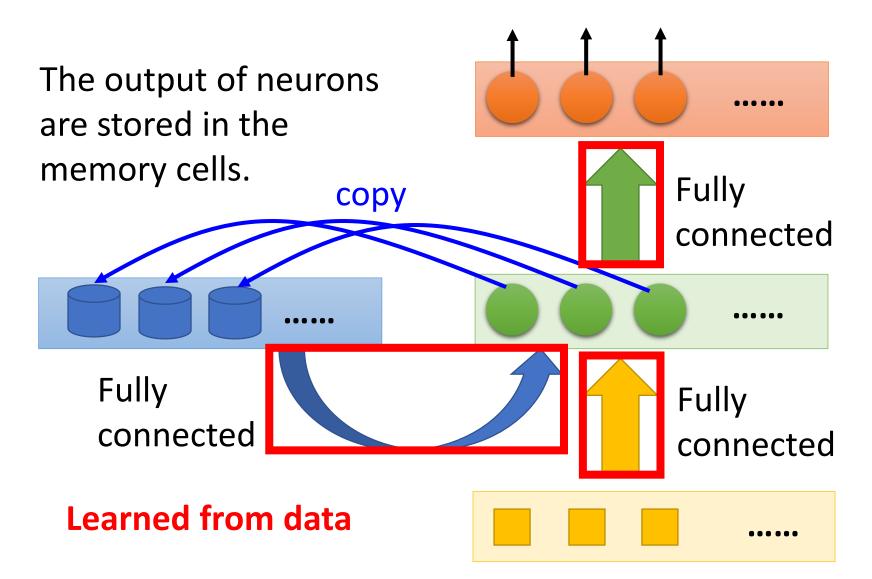


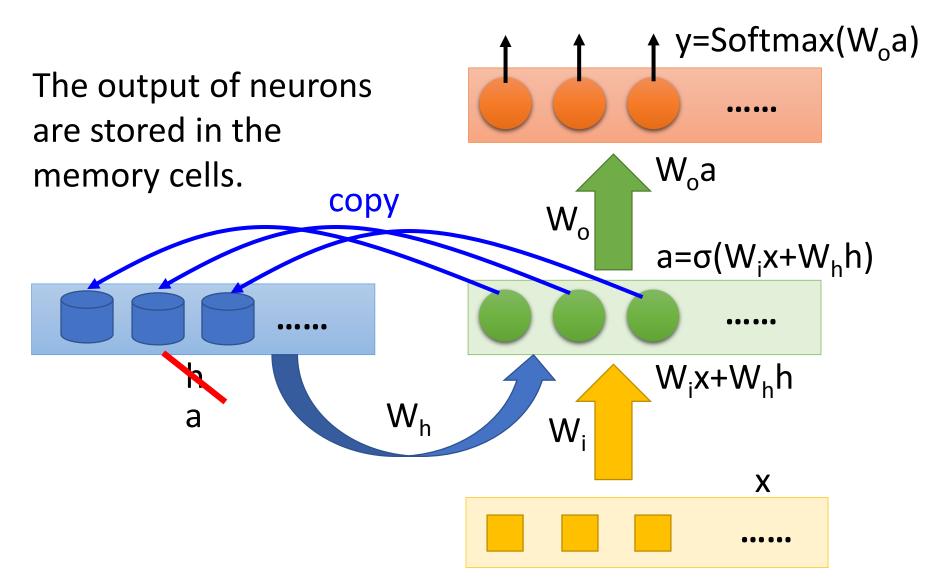
Outline

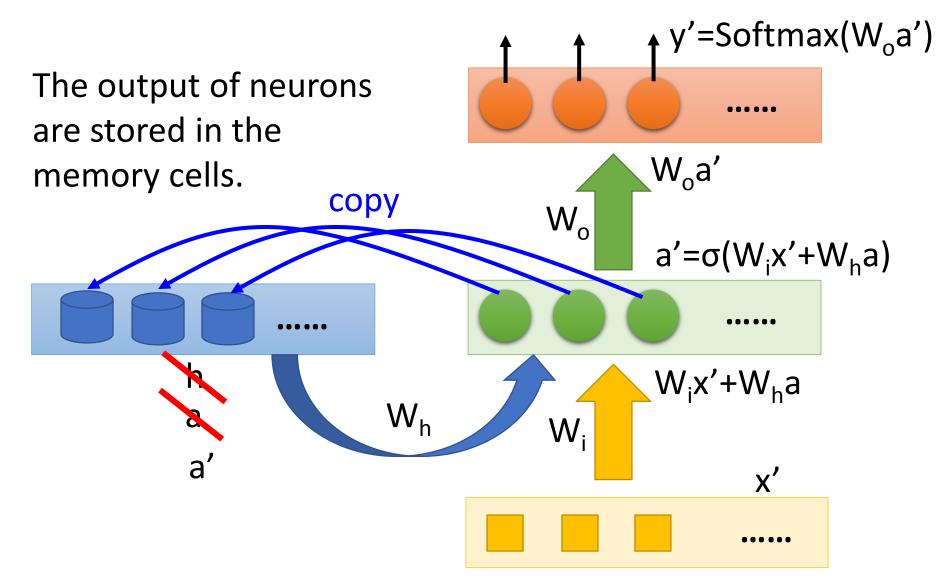
Today we will simply assume we already know the parameters in the network. Training will be discussed in the next week.





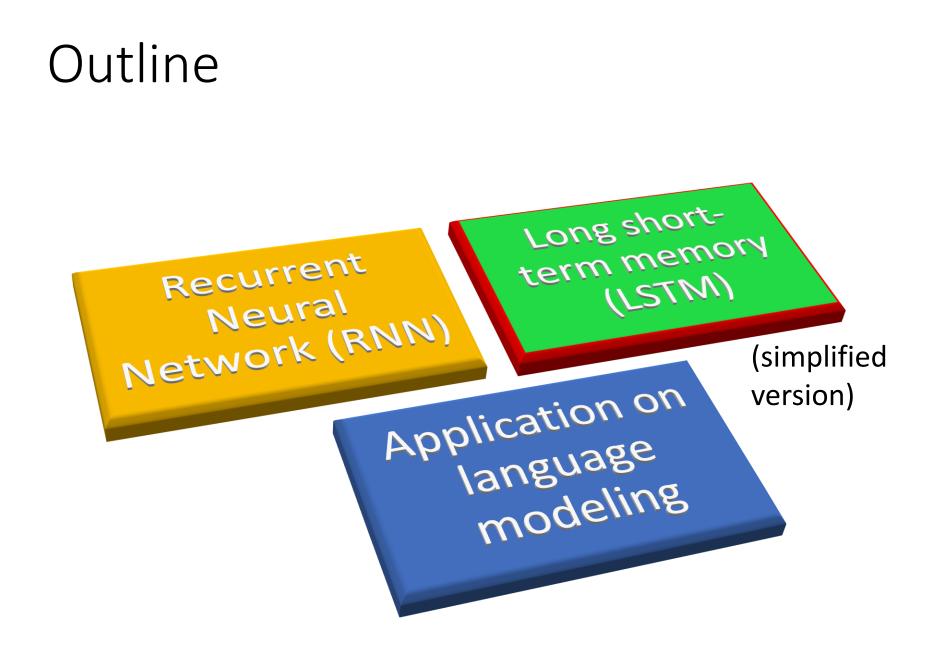


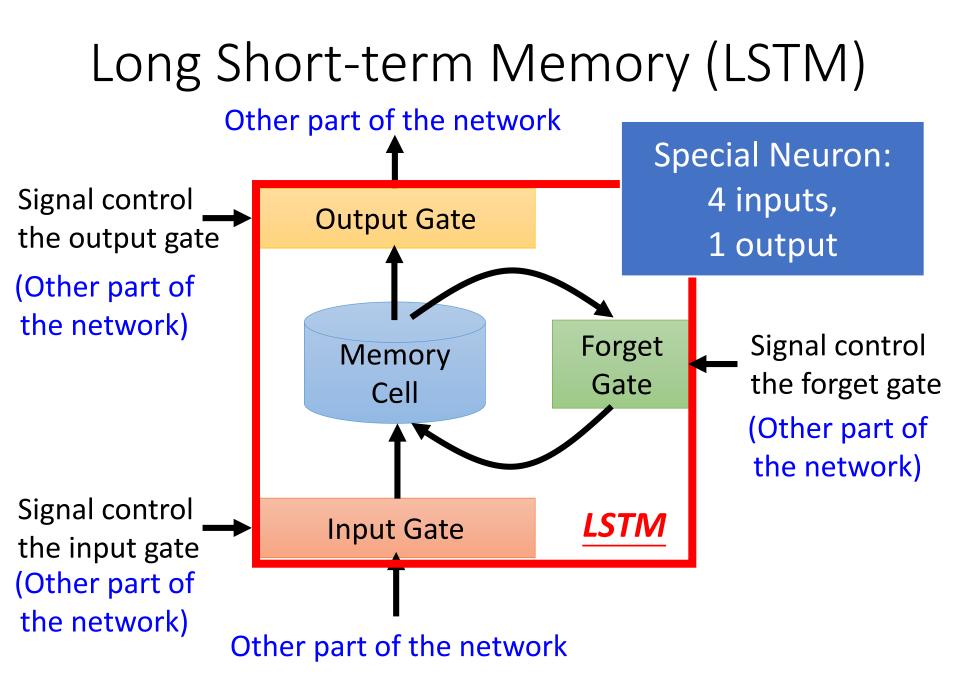


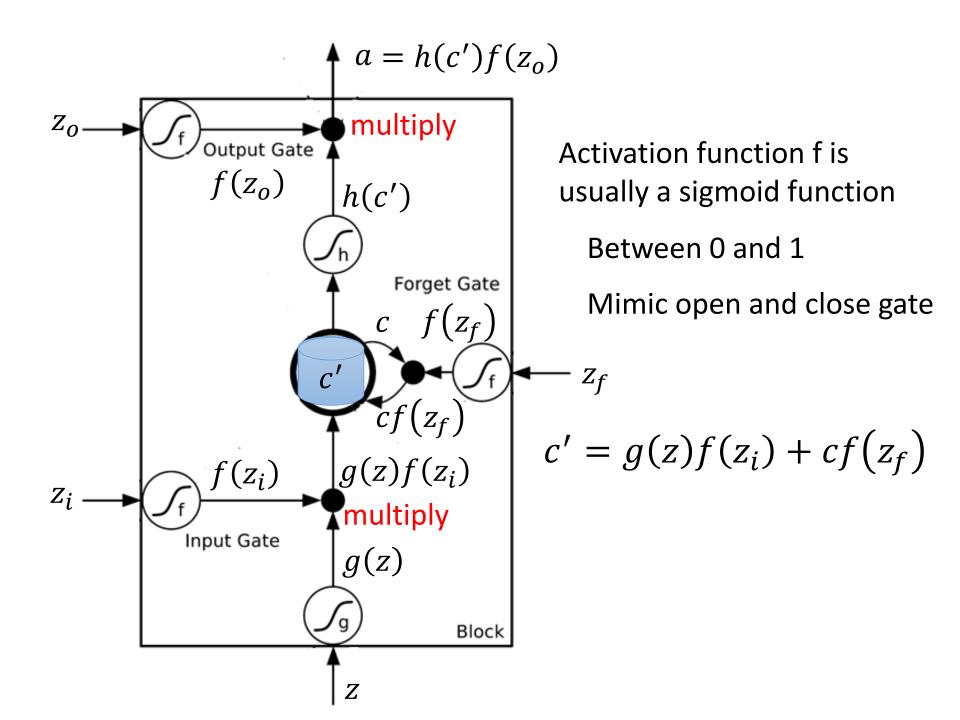


Input data: x^1 x^2 x^3 (xⁱ are vectors) y^2 V^1 V^3 W copy W W copy a² а³ a^1 a¹ a² \mathbf{O} W_{h} Wh W_h W; W W X^1 x² **x**³

> The same network is used again and again. Output yⁱ depends on x¹, x², xⁱ

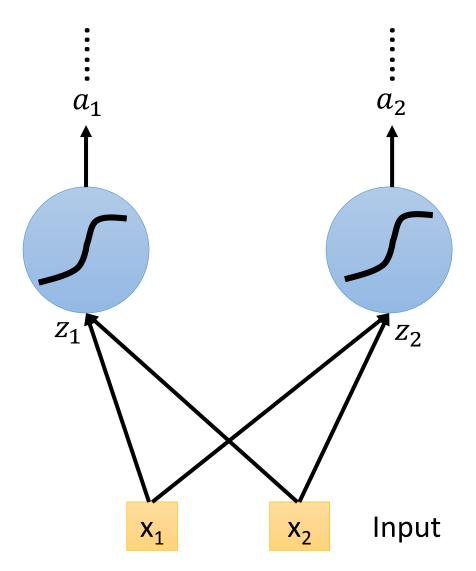


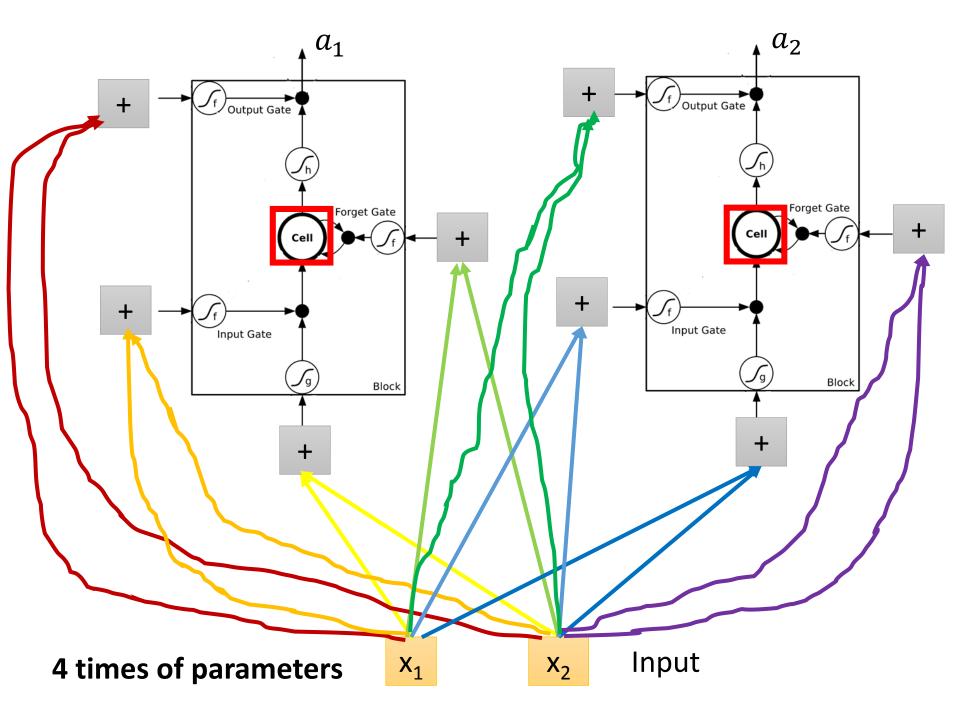




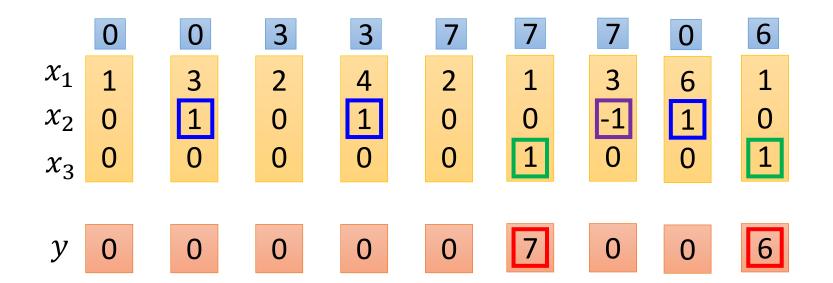
Original Network:

Simply replace the neurons with LSTM



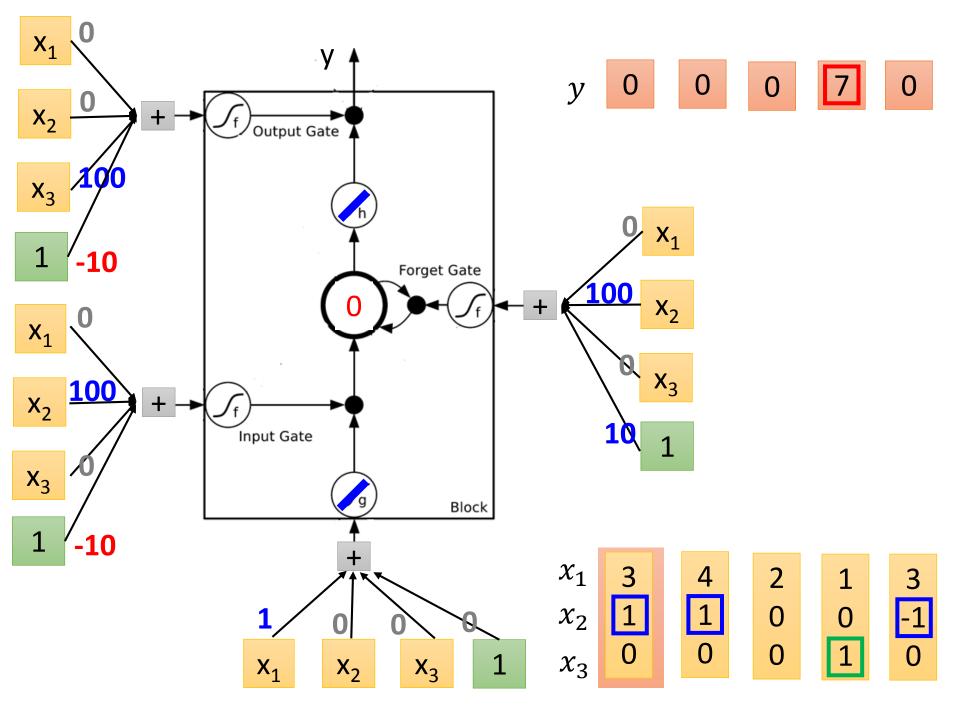


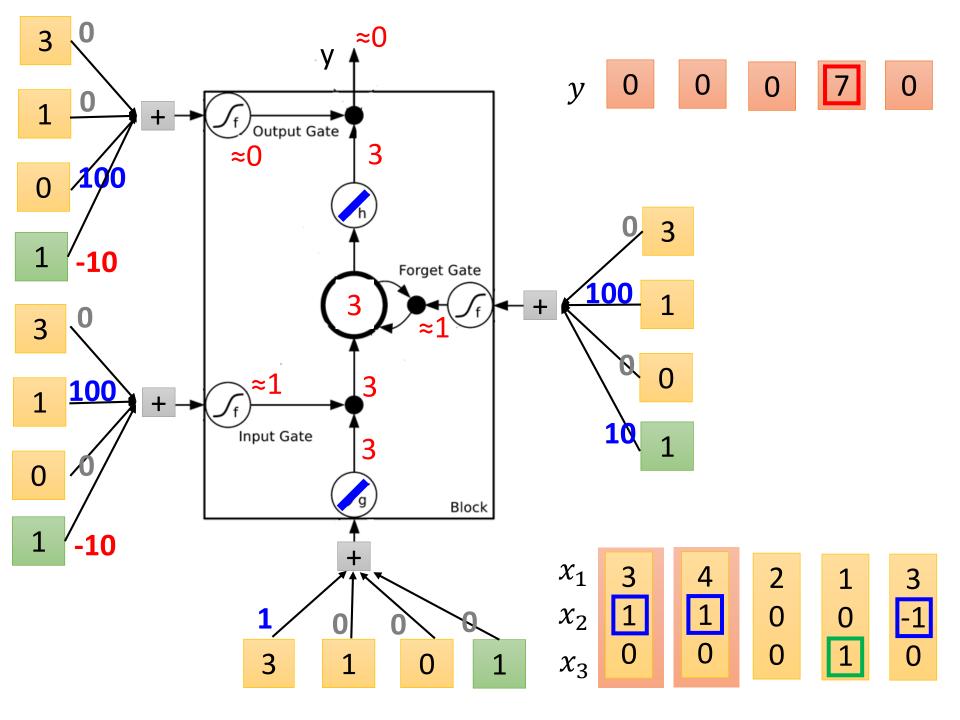
LSTM - Example

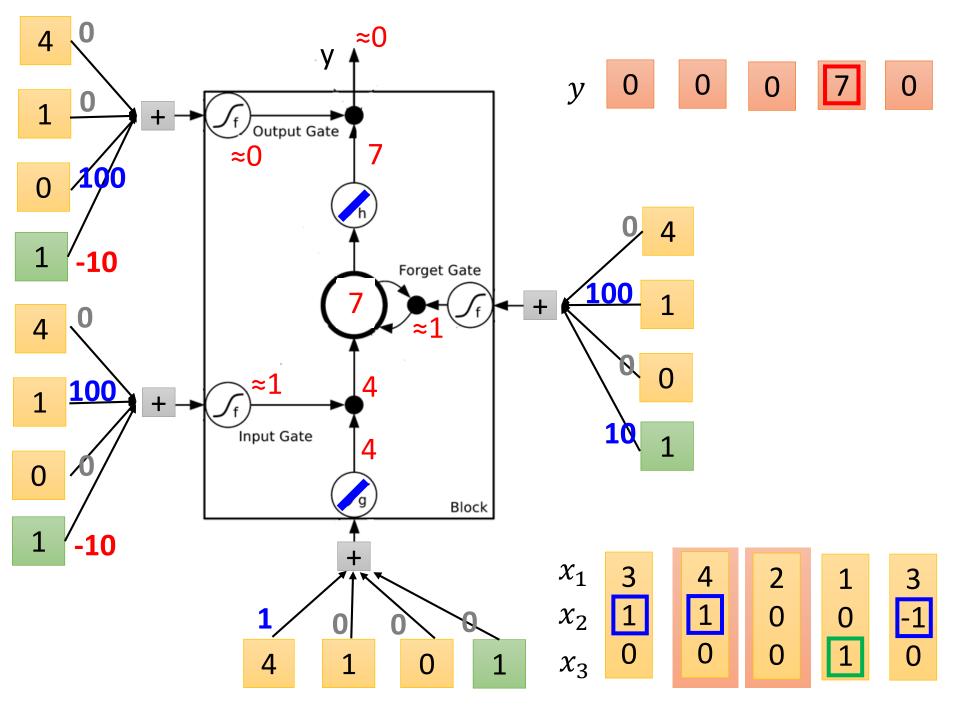


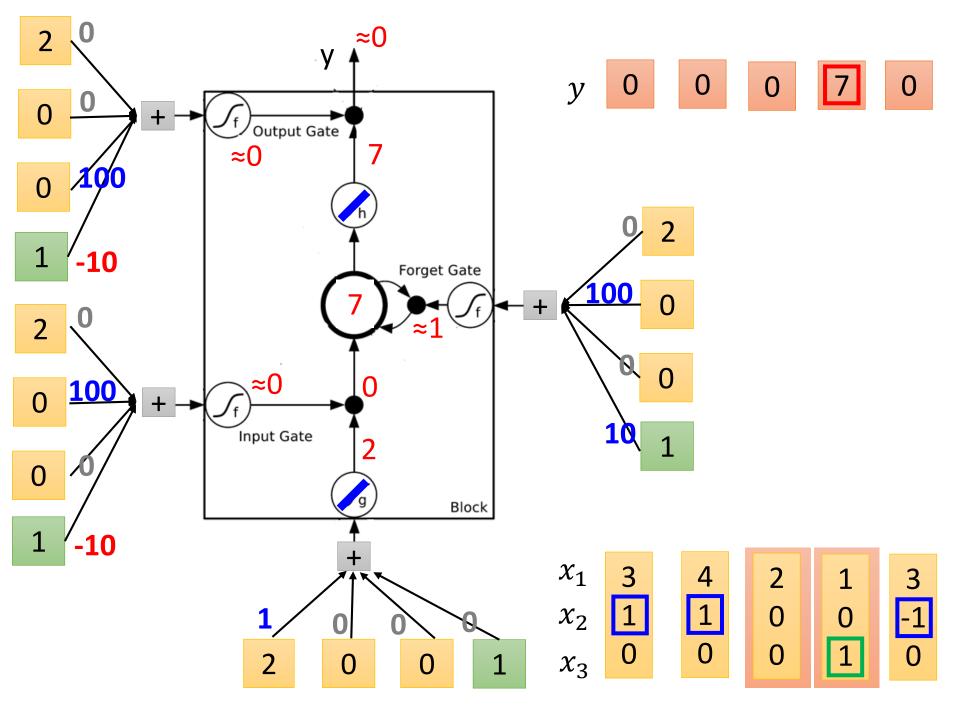
When $x_2 = 1$, add the numbers of x_1 into the memory When $x_2 = -1$, reset the memory

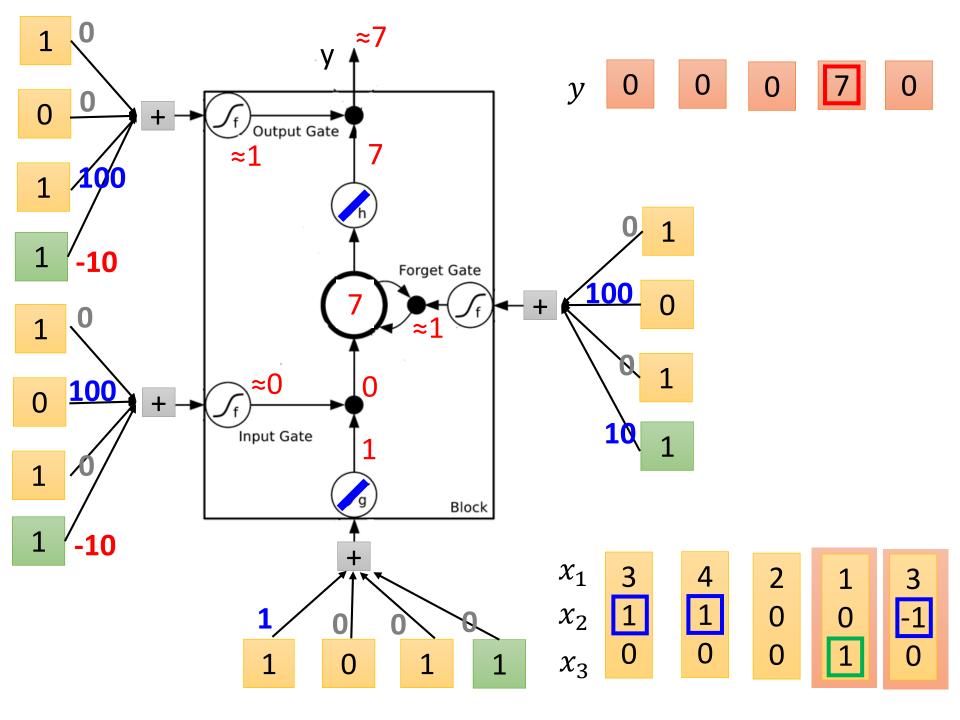
When $x_3 = 1$, output the number in the memory.

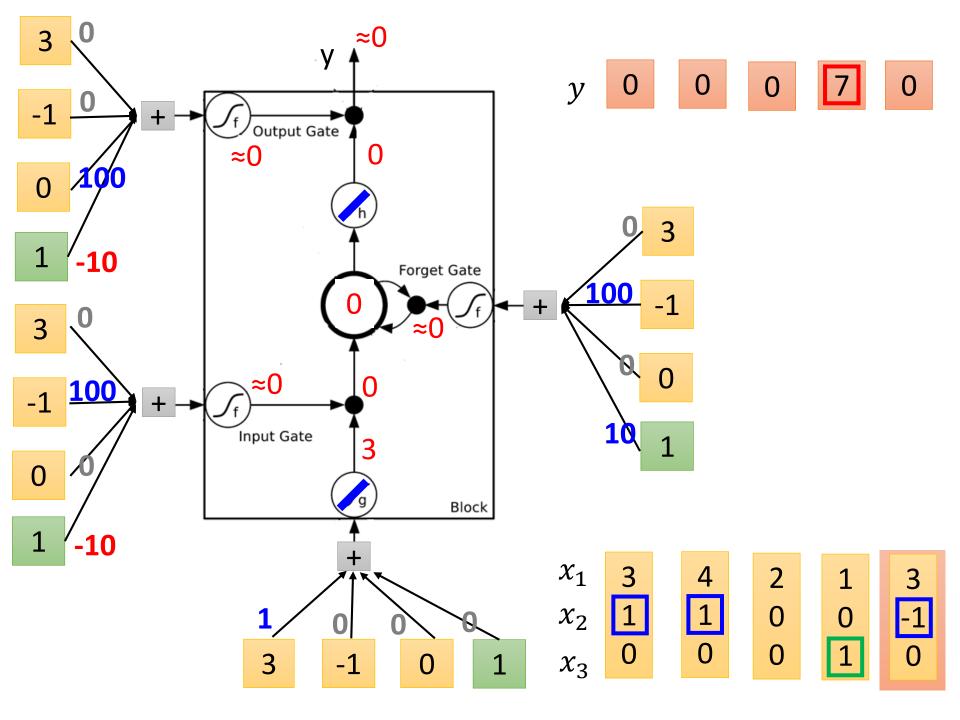


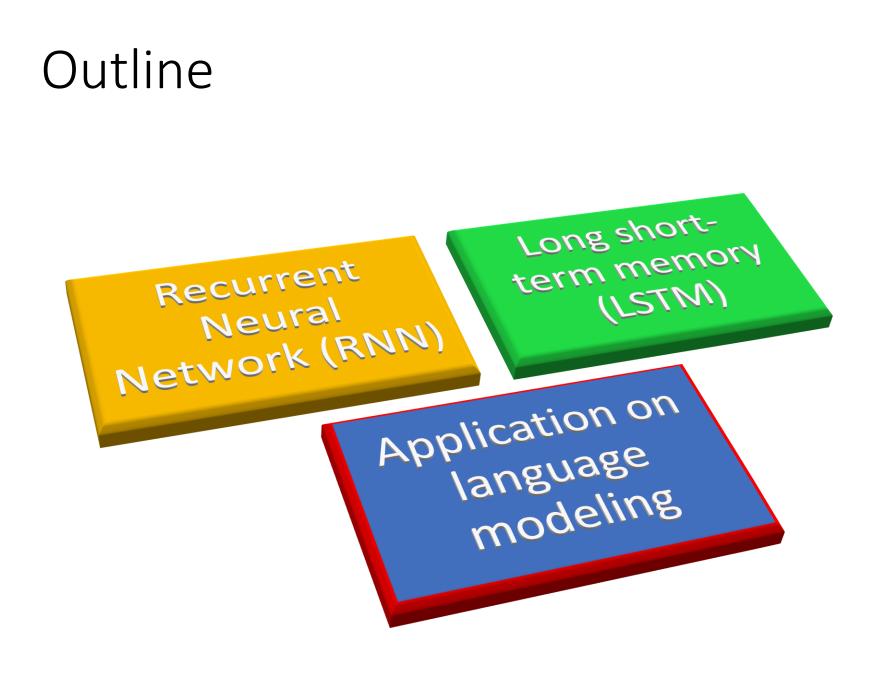












Language model (LM)

- Language model: Estimated the probability of word sequence
 - Word sequence: w₁, w₂, w₃,, w_n
 - P(w₁, w₂, w₃,, w_n)
- Useful in speech recognition
 - Different word sequence can have the same pronunciation

If P(recognize speech) >P(wreck a nice beach) Output = "recognize speech"

Language model

P("wreck a nice beach") =P(wreck|START)P(a|wreck) P(nice|a)P(beach|nice)

- How to estimate P(w₁, w₂, w₃, ..., w_n)
- Collect a large amount of text data as training data
 - However, the word sequence w₁, w₂, ..., w_n may not appear in the training data
- N-gram language model: P(w₁, w₂, w₃, ..., w_n) = P(w₁|START)P(w₂|w₁) P(w_n|w_{n-1})
- Estimate P(beach|nice) from training data

 $P(\text{beach}|\text{nice}) = \frac{C(\text{nice beach})}{C(\text{nice})} \qquad \begin{array}{c} \text{Count of "nice beach" in the training data} \\ \text{Count of "nice" in the training data} \end{array}$

Language model - Smoothing

- Training data:
 - The dog ran
 - The cat jumped

This is called **language model smoothing**.

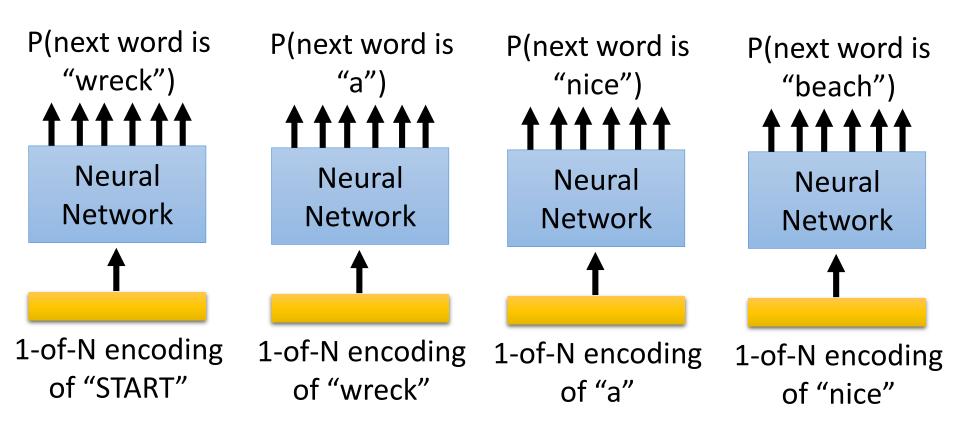
P(jumped | dog) = 0,0001 P(ran | cat) = 0,0001

Give some small probability

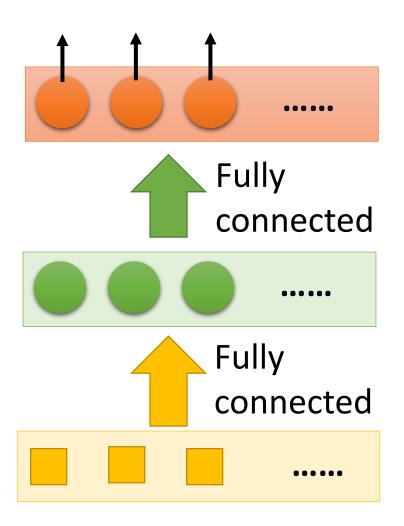
- The probability is not accurate.
- The phenomenon happens because we cannot collect all the possible text in the world as training data.

Neural-network based LM

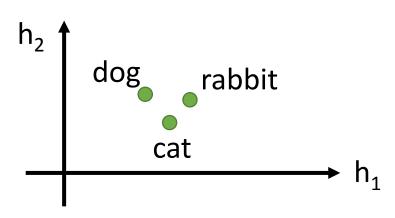
P("wreck a nice beach") =P(wreck|START)P(a|wreck)P(nice|a)P(beach|nice) P(b|a): not from count, but the NN that can predict the next word.



Neural-network based LM



The hidden layer of the related words are close.



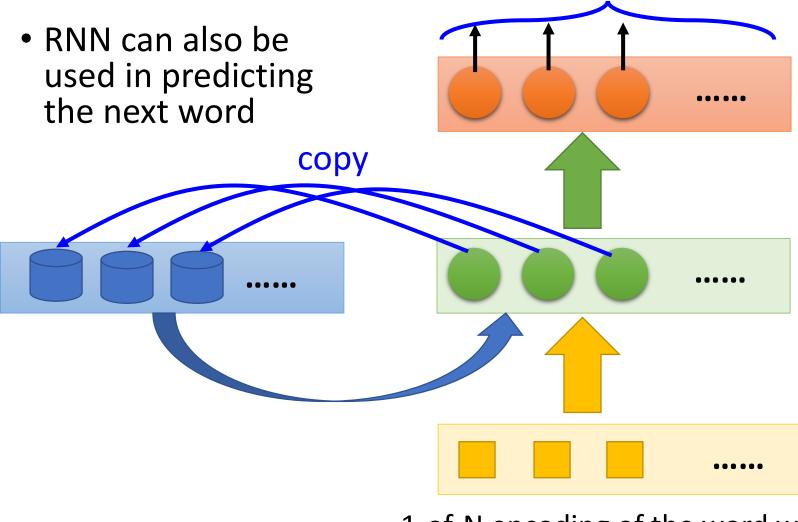
If P(jump|dog) is large, then P(jump|cat) increase accordingly.

(even there is not "... cat jump ..." in the data)

Smoothing is automatically done.

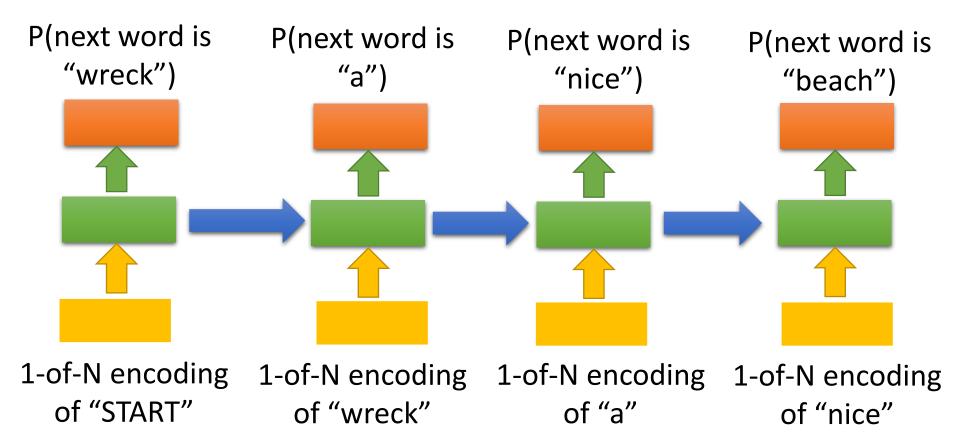
RNN-based LM

The probability for each word as the next word w_i



1-of-N encoding of the word w_{i-1}

RNN-based LM



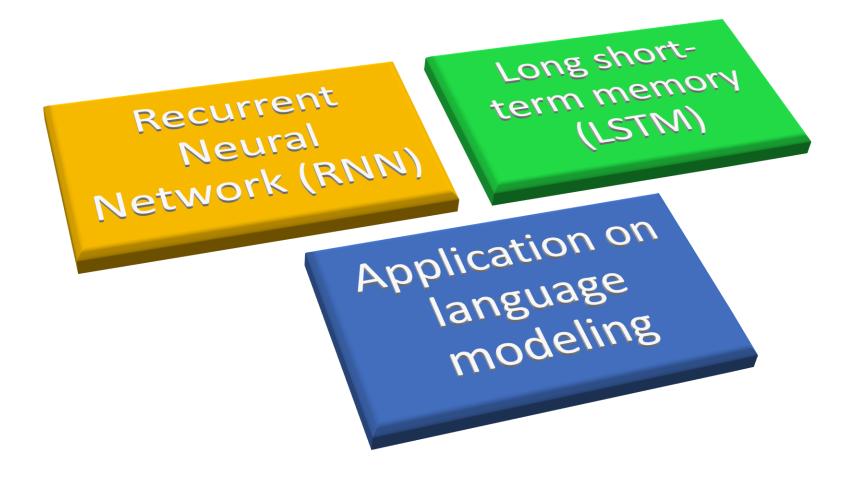
Model long-term information

Can also consider LSTM

Another Applications

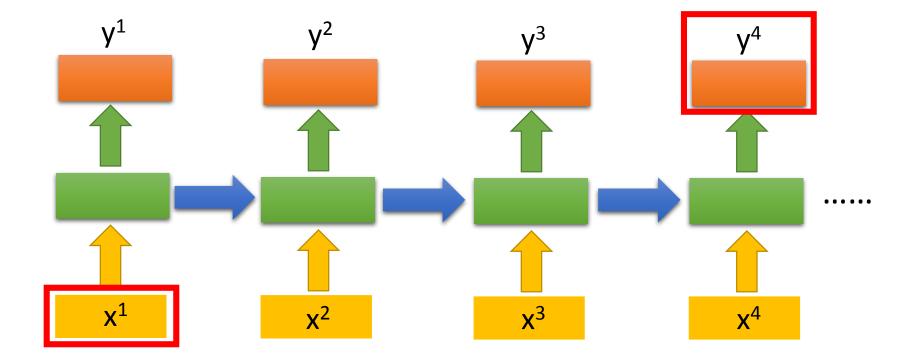
- Composer
 - http://people.idsia.ch/~juergen/blues/
- Sentence generation
 - http://www.cs.toronto.edu/~ilya/rnn.html

Summary – Network with Memory



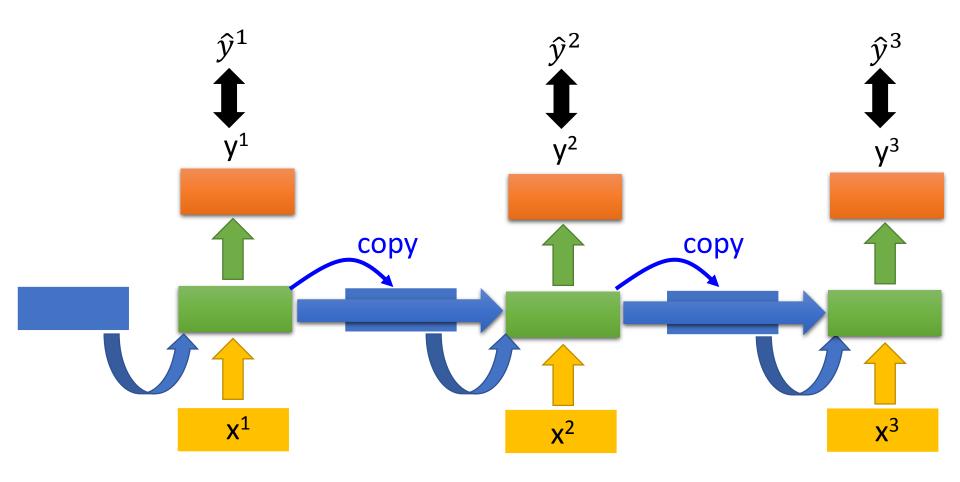
Appendix

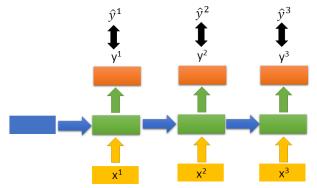
Long term memory

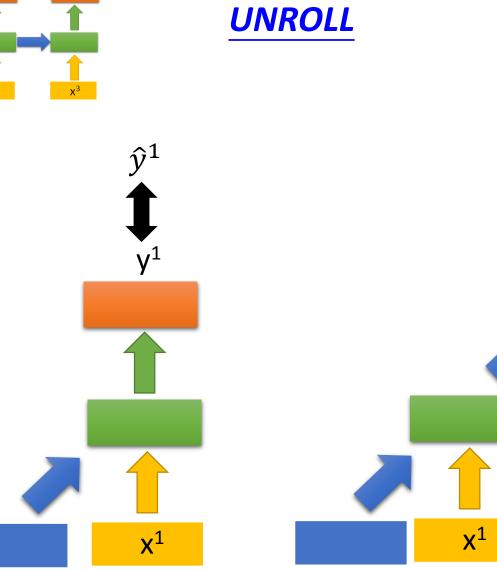


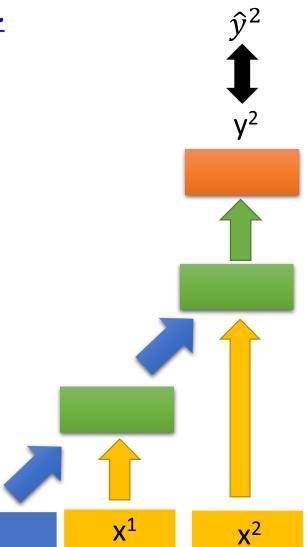
Training data: x^1 x^2 x^3RNN - Training \hat{y}^1 \hat{y}^2 \hat{y}^3

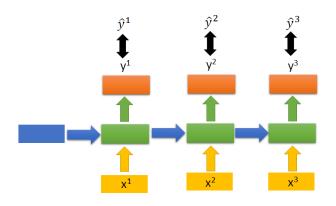
Training the parameters to let y close to \hat{y}







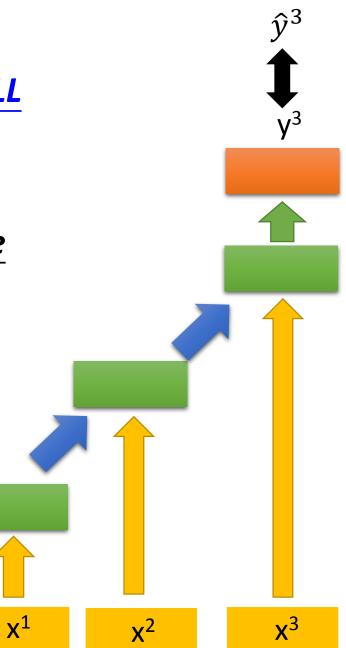




Backpropagation through time (BPTT)

When the sequence is long, the network can be extremely deep!

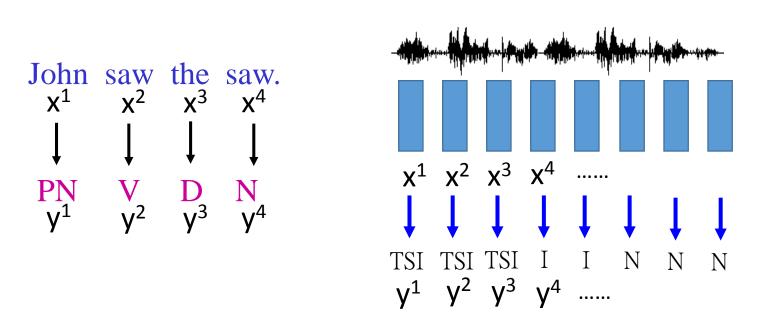
Some weights are shared



The task that needs memory Structured Leargning v.s. RNN

POS Tagging

Speech Recognition

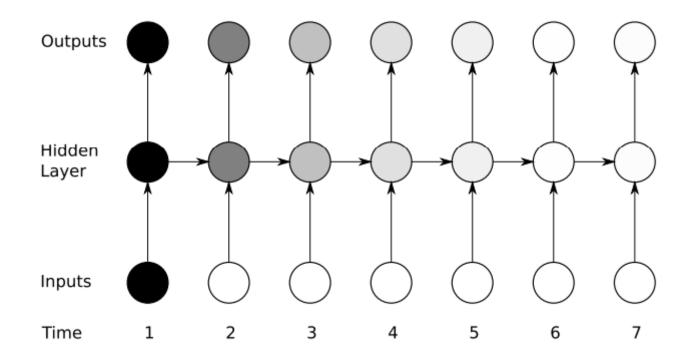


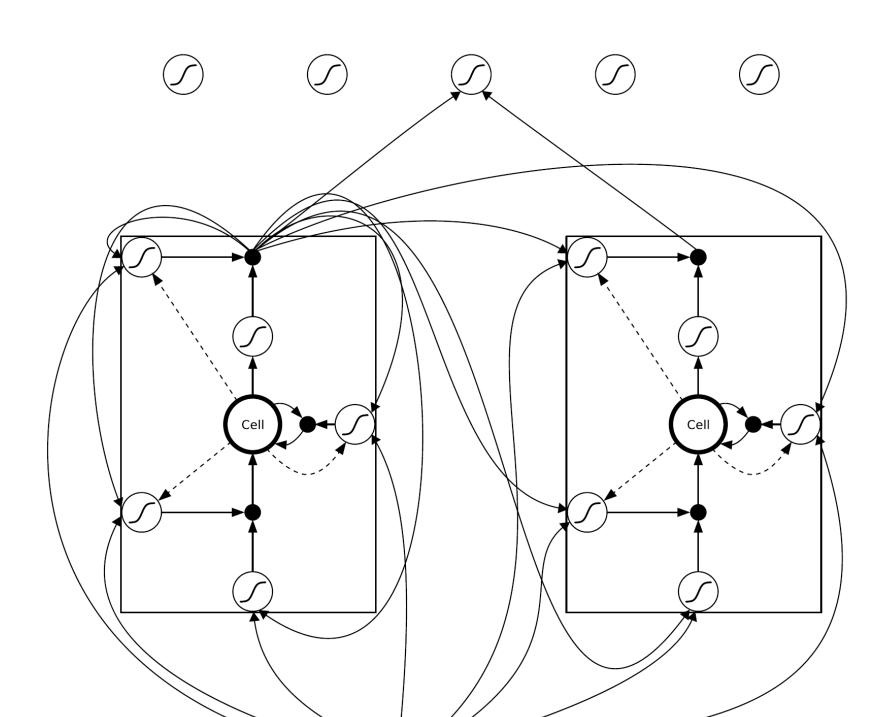
Structured learning can also deal with these problems

> What are their difference?

Outlook

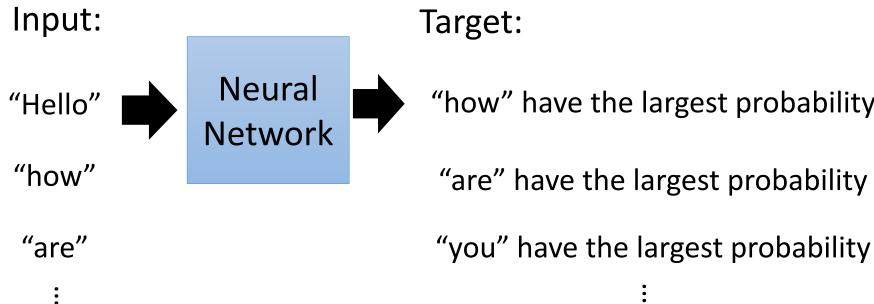
- Speech recognition
 - http://www.cs.toronto.edu/~fritz/absps/RNN13.pdf
- Structured + Deep
 - http://research.microsoft.com/pubs/210167/rcrf_v9.pdf





Neural-network based LM

- Training
 - Training data: "Hello how are you"



"how" have the largest probability

"are" have the largest probability